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In large datasets, outliers may be difficult to find using informal inspection and graphical
displays, particularly when there are missing values. We present a semi-automatic method of
outlier detection for continuous, multivariate survey data that is designed to identify outlying
cases and suggest potential errors on a case-by-case basis, in the presence of missing data. Our
method relies on an explicit probability model for the data. The raw data with outliers is
described by a contaminated multivariate normal distribution, and an EM algorithm is applied
to obtain robust estimates of the means and covariances in the presence of missing values.
Mahalanobis distances are computed to identify potential outliers and offending variables.
The procedure is implemented in a software product, which detects outliers and suggests edits
to remove offending values. We apply the algorithm to preliminary body-measurement data
from the Third National Health and Nutrition Examination Survey, Phase I (1988–1991).
This method works quite generally for continuous survey data, and is particularly useful when
inter-variable correlations are strong.
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1. Introduction

1.1. What Is an Outlier?

Outliers are observations that deviate from the specified data model. Generally speaking,

outliers are all of those observations that appear to be extreme or unusual with respect to

the rest of the observed data, and to prior subject-matter knowledge about what values are

plausible. The presence of outliers may indicate that the data model does not have

sufficiently heavy tails, or that there are misreporting and misrecording errors in the data.

Outliers, for either reason, may exert undue influence on the results of statistical analyses,

so they need to be identified prior to performing data analyses.

When we encounter a potential outlier, our first suspicion is that the observation resulted

from a mistake or extraneous effect, and therefore should be discarded. However, if the

outlier is an extreme value, it may be conveying important information about the

underlying population of actual values. Thus, nonjudicious removal of observations that

appear to be outliers may result in underestimation of the uncertainty present in the data.
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As a consequence, estimated standard errors and p-values will be smaller than they should

be, leading to potentially false findings of significance. In this article, we demonstrate how

potential outliers may be identified, but we do not say what should be done with them.

Caution and good judgment should be exercised when rendering decisions about whether

outliers should be removed.

1.2. Informal Methods of Outlier Detection and Editing

Univariate displays such as histograms, boxplots and dot diagrams may be used to inspect

a dataset one variable at a time. When examining univariate distributions, we can flag all

observations beyond some range of plausibility as outliers. Figure 1 presents a dot diagram

of a single variable X1 with one outlier, which is much larger than the other observations,

indicated by the bold point. Univariate techniques are useful, but a data point that passes

all univariate tests may still be an outlier if it violates plausible relationships among

variables. Consider the situation of Figure 2, which shows a scatterplot of two variables X1

and X2. The bold point is clearly an outlier because it lies outside the cloud of other points.

However, each variable for this observation lies within its range of plausible values,

making it impossible to detect the point by univariate methods alone.

Bivariate graphical displays can reveal outliers like the one seen in Figure 2. But

bivariate plots are limited in the sense that they will not necessarily help identify, for any

outlying case, which of the two variables is more likely to be erroneous (if indeed one is

erroneous); this type of judgment must involve additional covariates and thus requires

analysis in three or more dimensions. Moreover, bivariate analyses of a multivariate

dataset can be tedious. A thorough inspection of multivariate data may require the

construction of all possible bivariate plots. Each outlier may show up in multiple plots,

making it difficult to match points in different plots. Finally, when the multivariate dataset

contains missing values, outliers may not show up on bivariate scatterplots because

standard plotting routines will typically omit an observation if either of the variables is

missing.

Survey agencies often adopt data editing procedures to “clean up” their data by

removing gross errors and then analyze the edited data as if it were the truth (e.g.,

Granquist and Kovar 1997). The edit procedures typically include data-specific edit rules

developed by subject-matter specialists to determine whether an observation is reliable

Fig. 1. Extreme value in a marginal distribution
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(Barcaroli and Venturi 1993; Thompson and Sigman 1999), followed by deletion and

imputation. Automated systems such as the U.S. Census Bureau’s Structured Program for

Economic Editing and Referrals (Winkler and Draper 1997) and Statistics Canada’s

Generalized Edit and Imputation System (Kovar and Whitridge 1990) also exist. These

rely on the editing principles proposed by Fellegi and Holt (1976). While these methods

work well, their approach is “rule based” and strictly deterministic while a more

statistically motivated approach ought to have a probabilistic component.

1.3. Motivating Example: NHANES III

The motivating example for this article is the Third National Health and Nutrition

Examination Survey (NHANES III), conducted by the National Center for Health

Statistics (1994), designed to collect information about the health and diet of people in the

United States. Multivariate surveys such as NHANES III are subject to nonresponse and

outliers. Initial exploration of the preliminary Phase I (1988–1991) data by Ezzati-Rice,

Khare, and Schafer (1993) revealed a substantial number of outliers, particularly in the

body-measurement variables. In NHANES III, medical staff obtained a variety of physical

measurements (e.g., height, weight, waist and hip circumference, skinfolds). When the

standard protocol was followed, these characteristics were measured accurately with

negligible error. Occasionally, mistakes or deviations from the intended protocol

introduced gross errors of large magnitude in one or more of the variables. Ezzati-Rice

et al. applied univariate and bivariate plots to edit the dataset and found that the informal

methods were inadequate.

The NHANES III exercise motivated our search for a fast, reliable approach to outlier

detection in multivariate datasets. In general, outliers in survey data require a multivariate

detection approach. Further, although detecting outliers by visual inspection of

scatterplots is straightforward, identifying which variables are at fault is hard. We

believe that our procedure is an efficient and sound approach to identifying outliers, which

also flags potentially erroneous variables. It is quite general and easily applied to other

continuous, multivariate data with strong inter-variable correlations.

Fig. 2. Extreme value in a bivariate plot
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1.4. The Proposed Method

We propose a semi-automatic method for outlier detection and editing in continuous

multivariate survey data. The technique discussed here relies on an explicit probability

model for the data. First, the raw data with outliers and missing values are described by a

contaminated multivariate normal distribution. This contaminated multivariate normal is a

mixture of two multivariate normal distributions with the same mean but different

covariance matrices, one proportionately larger than the other. The uncontaminated

population is described by the distribution with smaller covariances, and the outliers by the

distribution with larger covariances. The mixing probability describes the proportion of

observations expected to be outliers.

Maximum likelihood estimation of parameters requires maximizing the loglikelihood

function. In many statistical problems, this is done by setting first derivatives equal to zero,

i.e., l0ðujXÞ ¼ 0; for our problem, however, the solution to l0ðujXÞ ¼ 0 does not exist in

closed form. Moreover, gradient methods such as Newton-Raphson are difficult to apply

because the second derivative of the loglikelihood is a complicated function of the

elements of u. The situation is complicated even more by the presence of missing data. To

maximize the loglikelihood, we apply the version of the EM algorithm (Dempster, Laird,

and Rubin 1977) described in Little and Rubin (1987).

This procedure yields robust estimates of the unknown model parameters, namely the

means and covariances of the theoretical uncontaminated population. Mahalanobis

distances (Marcoulides and Hershberger 1997, p. 105) relative from the center of the

uncontaminated population are then calculated for all observations. Points whose

distances exceed a predetermined cutoff are flagged as possible outliers. Then, for each

potential outlier, Mahalanobis distances of subvectors are computed to identify one or

more offending variables and suggest plausible edits. Although we discuss how to identify

potential outliers only under the contaminated multivariate normal, other plausible

probability models for outliers are discussed. In addition, whether an outlier should be

deleted or not is a subjective decision and should be made by subject-matter experts with

knowledge of the data collection process. Thus, the method discussed here is semi-

automatic.

1.5. Scope of the Rest of the Article

Section 2 discusses the implementation of the outlier detection and editing method. The

contaminated multivariate normal model is presented, along with EM algorithms for

parameter estimation with and without missing data, and strategies for identifying the

outliers and suggesting plausible edits. Section 3 illustrates the performance of this method

when applied to a subset of NHANES III.

2. Methodology

2.1. Contaminated Multivariate Normal Distribution

The probability model chosen to describe the observed data is a contaminated multivariate

normal distribution. This distribution is a mixture of two multivariate normals centered at
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the same mean but with different covariance matrices, one being proportionately larger

than the other. Let {xi : i ¼ 1; : : : ; n} be a random sample of values subject to

contamination, where each xi is a vector of length k. We assume that xi , Nkðm;C=lÞ

with probability d and xi , Nkðm;CÞ with probability ð1 2 dÞ, where l is a positive scalar

less than 1. The parameters m and C are unknown, whereas d and l are assumed known.

The quantity d specifies what proportion of the observations are contaminated. The

quantity l is the variance inflation factor that indicates the magnitude of the errors leading

to contamination; for example, if l ¼ :5 the contamination is regarded as inflating the

variances by a factor of 2. In practice, it may be of interest to explore a grid of plausible

values of d and l, as the values of these parameters may affect determinations about

outliers.

The contaminated multivariate normal is not the only model that one might consider

to describe a dataset with outliers. For example, the multivariate t-distribution with few

degrees of freedom can also be used to model heavy-tailed datasets. The multivariate t,

however, generates a continuum of unusual values rather than only a few erratic

observations and thus seems less suitable for modeling data containing gross

measurement or recording errors. The contaminated multivariate normal, on the other

hand, allows for a modest number of gross errors. Moreover, its parameters m and C

have an attractive interpretation as the moments of the uncontaminated component of

the population.

Let xi be an observation from a dataset with k variables expressed as a ð1 £ kÞ vector.

Under the contaminated normal model, the probability density function of xi is

pðxijuÞ ¼ ð1 2 dÞj2PCj
2

1
2 exp { 2 ðxi 2 mÞC21ðxi 2 mÞT=2}

þ djð2PCÞ=lj
2

1
2 exp { 2 lðxi 2 mÞC21ðxi 2 mÞT=2} ð1Þ

where u ¼ ðm;CÞ is unknown, while d and l are regarded as fixed and known. Let

d2
i ¼ ðxi 2 mÞC21ðxi 2 mÞT denote the squared Mahalanobis distance from xi to the mean

m with respect to C, the covariance matrix of the uncontaminated population. The

probability density function can be written in terms of the d2
i as

pðxijuÞ ¼ ð2PÞ
2

k

2jCj
2

1
2 ð1 2 dÞ exp ð2d2

i =2Þ þ dl
k

2 exp ð2ld2
i =2Þ

� �
ð2Þ

Consider n independent, identically distributed (i.i.d.) observations from a k-variate

contaminated normal distribution, X ¼ ðx1; : : : ; xnÞ. The loglikelihood function of u

given X is

lðujXÞ ¼ 2
nk

2
log ð2PÞ2

n

2
log jCj

þ
Xn
i¼1

log ð1 2 dÞ exp ð2d2
i =2Þ þ dl

k

2 exp ð2ld2
i =2Þ

� �
ð3Þ

Ghosh-Dastidar and Schafer: Outlier Detection and Editing Procedures for Continuous Multivariate Data 491



2.2. Augmenting the Data

Maximum likelihood (ML) estimation of parameters requires maximizing the

loglikelihood function. As described in Section 1.4, the loglikelihood (3) is difficult to

maximize by gradient methods. We simplify the problem by augmenting the data–i.e., by

introducing an imaginary unobserved variable into the dataset which, if it were seen,

would lead to ML estimates in closed form. Associate with each observation xi a

dichotomous variable qi indicating whether or not the xi comes from the uncontaminated

component of the population; that is, qi ¼ l if xi is distributed as Nkðm;C=lÞ and qi ¼ 1 if

xi is distributed as Nkðm;CÞ. Each qi takes the values l and 1 with probabilities d and

ð1 2 dÞ, respectively. The marginal distribution of qi is pðqi ¼ lÞ ¼ d, and

pðqi ¼ 1Þ ¼ 1 2 d. The conditional distribution of xi given qi is then

xiju; qi , Nkðm;C=qiÞ ð4Þ

We will use the term “observed data” to refer to X alone, and “augmented data” to refer to

both X and Q ¼ ðq1; : : : ; qnÞ. The augmented-data loglikelihood function–i.e., the

loglikelihood function that we would get if Q was observed–is

lðujX;QÞ ¼2
nk

2
log ð2PÞ2

n

2
log jCj þ

k

2

Xn
i¼1

log ðqiÞ

2
1

2

Xn
i¼1

½ðxi 2 mÞC21qiðxi 2 mÞT �

ð5Þ

This loglikelihood function is a linear function of the following augmented-data sufficient

statistics:

S0 ¼
Xn
i¼1

qi

S1 ¼
Xn
i¼1

qixi

S2 ¼
Xn
i¼1

qix
T
i xi

ð6Þ

If X and Q are observed, ML estimates of the parameters m and C can be found by a

weighted least squares method in which the observations with larger variances are

automatically downweighted. In our model, the covariance matrix of xi given qi is C=qi
where qi equals l or 1, so if qi were known we would apply a weight to xi proportional to
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qi. The weighted estimates are

m̂ ¼
Xn
i¼1

qixi=
Xn
i¼1

qi ¼ S1=S0

Ĉ ¼
Xn
i¼1

qiðxi 2 m̂ÞT ðxi 2 m̂Þ

n
¼

S2 2 ST1S1=S0

n ð7Þ

2.3. Basic EM Algorithm

Without observing Q, we cannot use (7) to calculate ML estimates for the parameters.

Rather, we apply the EM algorithm, a general iterative procedure for ML estimation in

missing data problems. In EM, we start with an initial guess of the unknown parameters,

and then iteratively perform the following two steps.

. E-step: Replace the sufficient statistics in the augmented-data loglikelihood function

with their conditional expectations given the observed data and current parameter

estimates.

. M-step: Calculate new parameter estimates based on the augmented data–that is,

maximize the loglikelihood function obtained as a result of the E-step.

The augmented-data sufficient statistics S0, S1 and S2 are given by (6). When the data

matrix X is fully observed, the ðt þ 1Þst iteration of EM proceeds as follows.

. E-Step: Estimate S0, S1 and S2 by their conditional expectations given X and

ðm ðtÞ;CðtÞÞ, the parameter estimates from the previous iteration. S0, S1 and S2 are

linear functions of the qi’s (7). Therefore, the E-step reduces to finding the

conditional expectation of qi, which is wi or the observation weight,

wðtÞ
i ¼ Eðqijxi;m

ðtÞ;CðtÞÞ ð8Þ

For the contaminated normal model, it can be shown that

wðtÞ
i ¼

1 2 dþ dl k=2þ1 exp {ð1 2 lÞd2ðtÞ
i =2}

1 2 dþ dl k=2 exp {ð1 2 lÞd2ðtÞ
i =2}

ð9Þ

(Little and Rubin 1987, p. 212). The calculation of d2
i at the tth step uses ðm ðtÞ;CðtÞÞ in

place of m and C.

. M-Step: Compute new estimates ðm ðtþ1Þ, Cðtþ1ÞÞ as in (7), replacing the sufficient

statistics qi with their expected values wðtÞ
i from the E-step.

The estimates of m and C obtained through this procedure are more robust than the usual

estimates, because potential outliers have large values of d2
i , which are downweighted

proportional to their weight wi. This algorithm can be regarded as a special case of

iteratively reweighted least squares (Rubin 1983).
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2.4. Modifications to EM for Missing Data

The algorithm of Section 2.3 can be easily extended to situations where the data matrix X

contains missing values. Suppose we partitionX as (Xobs,Xmis), whereXobs andXmis denote the

observed and missing parts of X, respectively. The augmented data will consist of

X ¼ ðXobs;Xmis) and Q ¼ ðq1, : : : ,qn), of which only Xobs is observed; Xmis and Q are

missing. For each observation xi, let xobs;i and xmis;i denote the observed and missing portions,

respectively, so that Xobs ¼ {xobs;i : i ¼ 1; : : : ; n} and Xmis ¼ {xmis;i : i ¼ 1; : : : ; n}.

Let us assume that the missing data are missing at random (MAR) so that the missing-

data mechanism does not depend on Xmis (Rubin 1976, p. 582). Under a MAR assumption,

ML estimates of m and C can be computed by applying a modified EM algorithm which

treats both Xmis and Q as missing. The E-step requires a few modifications from the

previous section because portions of xi in the sufficient statistics S0, S1, and S2 are now

missing. The M-step, however, remains unchanged because the augmented-data

loglikelihood (5) is the same function as before.

The ðt þ 1Þst iteration of the modified EM algorithm proceeds as follows (Little and

Rubin 1987, pp. 212–213).

. E-Step: Estimate S0, S1 and S2 by their conditional expectations given Xobs and

u ðtÞ ¼ ðm ðtÞ;CðtÞÞ, the parameter estimates from the previous iteration. The

conditional expectations are

EðS0jXobs; u
ðtÞÞ ¼ E

Xn
i¼1

qijxobs;i; u
ðtÞ

 !
¼
Xn
i¼1

Eðqijxobs;i; u
ðtÞÞ ¼

Xn
i¼1

wðtÞ
i ð10Þ

The weights wðtÞ
i are a simple modification of (9), calculated as follows:

(i) Replace k by ki, the length of xobs;i
(ii) Compute the squared distances d2

i using xobs;i, and m̂obs and Ĉobs;obs; the portions of

the estimated mean vector and covariance matrix corresponding to the observed

variables in xobs;i

d2
i ¼ ðxobs;i 2 m̂obsÞĈ

21

obs;obsðxobs;i 2 m̂obsÞ
T ð11Þ

The calculation of d2
i at the tth step uses (m ðtÞ, CðtÞ) in place of m and C.

The jth component of EðS1jXobs; u
ðtÞÞ is

E
Xn
i¼1

qixijjXobs; u
ðtÞ

 !
¼
Xn
i¼1

E{qiEðxijjxobs;i; u
ðtÞ; qiÞjxobs;i; u

ðtÞ} ¼
Xn
i¼1

wðtÞ
i x̂ðtÞij ð12Þ

where x̂ðtÞij ¼ Eðxijjxobs;i; u
ðtÞÞ; because the conditional mean of xij given xobs;i, u

ðtÞ and qi
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does not depend on qi. Finally, the ð j; kÞth element of EðS2jXobs; u
ðtÞÞ is

E
Xn
i¼1

qixijxikjXobs; u
ðtÞ

 !
¼
Xn
i¼1

E{qiEðxijxikjxobs;i; u
ðtÞ; qiÞjxobs;i; u

ðtÞ}

¼
Xn
i¼1

ðwðtÞ
i x̂ðtÞij x̂

ðtÞ
ik þC

ðtÞ
jk:obs;iÞ ð13Þ

where

C
ðtÞ
jk:obs;i ¼

0 if xij or xik

are observed

qi Covðxij; xikjxobs;iÞ if xij or xik

are both missing

8>>>>><
>>>>>:

ð14Þ

The quantities x̂ðtÞij and C
ðtÞ
jk:obs;i are the means and covariances, respectively, of the

conditional distribution of xmis;i given xobs;i. Note that because the joint distribution of

x ¼ ðxmis;i; xobs;i) is normal, the conditional distribution of xmis;i given xobs;i is also normal.

Thus, the conditional means and covariances come from a multivariate regression of the

response xmis;i on the predictors xobs;i. These parameters may be computed from the

assumed values of m and C by applying the sweep operator, as described by Little and

Rubin (1987, pp. 112–119).

. M-Step: Compute new estimates ðm ðtþ1Þ;Cðtþ1ÞÞ as in (7), replacing the sufficient

statistics qi with their expected values wðtÞ
i from the E-step. This step remains

unmodified from Section 2.3.

2.5. Identifying Potential Outliers and Erroneous Values

The diagnostic tools we use to identify possible outliers are posterior probabilities and

weights. The posterior probability of an observation originating from the contaminated

population conditional upon the observed data and parameter estimates is given by

d*
i ¼ Pðqi ¼ ljxobs;i; m̂obs; Ĉobs;obsÞ ð15Þ

and Pðqi ¼ 1jxobs;i; m̂obs; Ĉobs;obsÞ ¼ ð1 2 d*
i Þ: This quantity is estimated in the E-step of

the EM algorithm because it goes into the computation of the weights (9). We will select a

cutoff value d c and consider observations with d*
i exceeding d c as potential outliers. The

most intuitive choice for the cutoff is .5. That is, if d*
i exceeds .5, the observation is more

likely to have come from the contaminated population than the noncontaminated

population. Thus, it is a potential outlier. Therefore we will set d c to .5 for our

applications.

The weight of observation i is the conditional expectation of qi given the observed data

and parameter estimates (8). We will refer to the final weight obtained from the converged

parameter estimates as w*
i ¼ Eðqijxobs;i; m̂obs; Ĉobs;obsÞ: From the marginal density of qi

given in Section 2.2, we see that w*
i must lie between l and 1 because it is a weighted
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average of the two values. Also, w*
i is a decreasing function of d2

i (9); therefore,

observations that are far from the observed mean mobs or potential outliers will tend to have

small weights. Thus, given an appropriate cutoff value wc in the lower tail, any

observation i for which w*
i , wc will be flagged as a potential outlier.

While the choice of wc may seem arbitrary, we will exploit the one-to-one relationship

between weights and posterior probabilities to derive a meaningful wc. Using the marginal

density of qi, (8) and (15), we see that

w*
i ¼ l £ Pðqi ¼ ljxobs;i; m̂obs; Ĉobs;obsÞ þ Pðqi ¼ 1jxobs;i; m̂obs; Ĉobs;obsÞ ð16Þ

and thus

w*
i ¼ 1 þ ð1 2 lÞdi ð17Þ

Therefore, we can plug in d c ¼ :5 and the assumed value of l from the data model to

obtain the corresponding cutoff value wc.

The one-to-one relationship between the weight and posterior probability of an

observation implies that the two methods will produce the same results. After identifying

potential outliers using either criterion, we will identify influential variables that may

cause the observation to be outlying so that we can suggest plausible edits on a case-by-

case basis. Influential variables are the ones that make the largest contributions toward the

squared distance. There may be one or more such variables in each outlying case. First, we

discuss the situation when there is only one influential variable (Little and Smith 1987).

(i) For each outlying case i and observed variable j, compute d
ð jÞ2
i , the squared distance

with variable j omitted. This distance is based on xobs;i with variable j omitted (11).

(ii) Find j1 such that d
ð j1Þ2
i , d

ð jÞ2
i amongst all observed j for case i. Thus, variable j1 is

the most influential variable in the ith case.

Therefore, the suggested delete for outlying case i is variable j1.

The Mahalanobis distance is asymptotically distributed as d2
i , x2

ki
(Mardia, Kent, and

Bibby 1979). Thus, we will compare the d
ð j1Þ2
i against the chi-squared reference statistic

with degrees of freedom equal to the number of observed variables and a ¼ :05. If the p-

value for d
ð j1Þ2
i is significant, there must be more than one offending variable. A procedure

to identify the next m deletes after removing j1 from xobs;i is:

(i) For each outlying case i and every possible combination of m remaining observed

variables, compute d
ð j1;jk1

; : : : ;jkm Þ2

i ; the squared distance with variables j1; jk1
; : : : ; jkm

omitted.

(ii) Find j2; : : : ; jmþ1 such that d
ð j1;j2; : : : ;jmþ1Þ2
i , d

ð j1;jk1
; : : : ;jkm Þ2

i : Variables j2; : : : ; jmþ1

are the m most influential variables in the ith case.

Variables j1; j2; : : : ; jmþ1 are then the suggested deletes for outlying case i. Perform the

above process for m ¼ 1, 2, 3, : : : until the p-value of the squared distance with the

influential variables omitted is no longer significant.
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3. Application

3.1. Data

In this section, we illustrate the method proposed with raw body measurements from

NHANES III preliminary Phase I, made available by the NCHS. These data were collected

during physical examinations of 1,262 children 2–3 years of age. The variables considered

here are self-reported height (SM5), standing height (HT), sitting height (SITHT),

recumbent length (RECUM), head (HEADC), waist (WAIST) and buttocks (BUTTO)

circumference, all of which are continuous and exhibit moderate to strong correlations

with one another. The only variable that may require an explanation is RECUM, which

refers to a body-length measurement taken while the child is lying down. The unit of

measurement is centimeter for all of these variables. Preliminary graphs (Figure 3) such as

histograms and normal quantile plots showed that most of the variables are approximately

normally distributed. Although a few of the variables had a slight skew, we left them

untransformed because the standard transformations did not help. Bivariate scatterplots

(Figure 4) indicated moderate to high inter-variable correlations amongst the body-

measurement variables and possible outliers.

3.2. Selection of Parameter and Cutoff Values

This method assumes that the contamination parameters d and l are known, while the

parameters of the normal distribution, m and C, are estimated. Reasonable choices of d and

l can be made from preliminary exploration of the data including tabulations, univariate

and bivariate scatter plots and from consultations with subject-matter experts. For

example, a bivariate plot of our data (Figure 4) suggested that the proportion of outlying

values is low while the variance of the gross errors is roughly twice that of the non-

outlying observations. We picked the values that struck an optimal balance between

identifying all of the gross errors but not too many of the data points that were part of the

regular data cloud. We found that a mixing proportion of .04 and a variance inflation factor

of .5 balanced these two objectives the best in the context of this application. For purposes

of comparison, we ran our algorithm with these values and also three other pairs of

parameter values and displayed the observations flagged by each set of parameter values

using the identify() function in S-Plus. In the absence of sufficient information about the

data, it is advisable to iterate through several pairs of plausible parameter values, make

graphical displays and see which values work well. While selecting d and l is not an exact

science, we found that similar reasonable values produced similar results.

We also required cutoff values d c and wc to identify outliers. We will use a cutoff value

of .5 for d c because it is intuitive to flag observations that are more likely to originate from

the contaminated normal distribution as outliers. Using the one-to-one relationship

between d c and wc (17), we plugged in l ¼ :5 and d c ¼ :5 to get the corresponding cutoff

wc ¼ :75. If desired, one can vary the cutoff values using the distributions of d*
i and w*

i

(Figure 5 and 6) and then inspect all of the observations identified as outliers on a case-by-

case basis.
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3.3. Results

The EM algorithm for this model converged in 20 iterations producing the robust estimates

of m and S displayed in Table 2. The estimated squared Mahalanobis distance, weight and

posterior probability of contamination of each observation were calculated from these

results. The d2
i ’s ranged from 0 to 422.6; the w*

i ’s ranged from .5 to .998; the d*
i ’s were

between .004 and 1. The cutoffs of d c ¼ :5 and wc ¼ :75 flagged about 3% of the

observations as potential outliers. The contaminated normal model downweights extreme

observations so that their weights are close to the lower bound l. Thus, in Figure 5, the

potential outliers appear at the lower end of the histogram. On the other hand, outlying

observations will have large posterior probabilities of contamination and are found in the

upper tail of the histogram in Figure 6. Figure 7 and 8 show the distribution of the posterior

probabilities and weights, respectively, for only those observations identified as outliers by

wc and d c.

Fig. 3. Marginal distributions of body-measurement variables: SM5 ¼ survey-reported height,

HT ¼ standing height, SITHT ¼ sitting height, RECUM ¼ recumbent length, HEADC ¼ head

circumference, WAIST ¼ waist circumference and BUTTO ¼ buttocks circumference
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Fig. 4. Scatterplots of body-measurement variables: SM5 ¼ survey-reported height, HT ¼ standing height,

SITHT ¼ sitting height, RECUM ¼ recumbent length, HEADC ¼ head circumference, WAIST ¼ waist

circumference and BUTTO ¼ buttocks circumference

Fig. 5. Histogram of w*
i for all observations
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A select few potential outliers and their suggested edits are shown in Table 3. The first

column gives an unidentifiable sample observation number, while the second column

specifies the Mahalanobis distance for that observation before any variables are removed.

The third column Df indicates the number of observed variables while the column labelled

Edits lists the likely outlying values. For example, Case 38 has a Df of 7, which means that

all seven variables in this example were observed. The corresponding d2
i of 23.0 produces

a significant p-value of .002, with a suggested edit of SITHT. The p-value increases to a

nonsignificant value of .07 after SITHT is deleted. Therefore, it would appear that SITHT

was indeed erroneous. Now consider observations 53 and 72, which are equidistant from

the center with the same number of observed values. The former seems to have more than

one erroneous value because the p-value is still smaller than .05 after removing HT, while

the latter has only one influential variable BUTTO. Another example is case 436, with

very little change in its d2
i upon editing. It is most likely that this observation has several

outlying variables, therefore further edits should be considered.

Table 1. Distribution of the number of outliers with d ¼

Proportion of contamination and l ¼ Variance inflation factor

l d

.01 .04 .10

.50 38 42 57

.25 42 51 67

.01 36 39 41

Table 2. Parameter estimates from EM algorithm for contaminated multivariate normal distribution with

d ¼ :04 and l ¼ :5

Means

sm5 ht sitht recum headc waist butto
35.3 94.7 52.9 95.7 49.2 48.8 51.8

Standard deviations

sm5 ht sitht recum headc waist butto
4.67 6.08 2.93 6.05 2.04 3.85 4.07

Correlation matrix

sm5 ht sitht recum headc waist butto
1.0 .526 .480 .517 .247 .258 .351

1.0 .787 .979 .352 .447 .535
1.0 .797 .366 .479 .572

1.0 .353 .464 .549
1.0 .269 .273

1.0 .689
1.0
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Fig. 6. Histogram of d*i for all observations

Fig. 7. Histogram of w*
i for potential outliers only
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Computations were done in an S-Plus environment with calls to Fortran using simple

modifications of code developed by Schafer (1997). Schafer’s software for incomplete

multivariate normal data may be downloaded from the website http://www.stat.psu.edu/

~jls. The routines used in this article are available from the author upon request.

3.4. Sensitivity to d and l

The known parameters, d and l, of the contaminated normal distribution may affect

determinations about outliers, and therefore require careful selection. Preliminary

exploration of the data can suggest very sensible values of d and l (Section 3.2). We also

explored the sensitivity of the results as we changed the values of d and l over a wide

range. We set d equal to .01, .04 and .10, and l equal to .50, .25 and .01. The first two

values of d are likely contenders while .10 (or 10% contamination) seems too high for this

dataset. Thus, it should flag a disproportionate number of regular observations as outliers.

Similarly, the first two values of l are within the range of plausibility while .01 is

implausible because the variance of the contaminated population is not 100 times that of

the uncontaminated population according to Figure 4. Repeated runs of EM were

Fig. 8. Histogram of d*i for potential outliers only

Table 3. A few suggested deletes for NHANES III Preliminary Phase I Data

Case d2
i Df p-value Edits New d2

i p-value

38 23.0 7 1.72 £ 1023 Delete sitht 11.7 6.96 £ 1022

53 81.4 6 1.89 £ 10215 Delete ht 25.9 9.18 £ 1025

72 83.5 6 6.66 £ 10216 Delete butto 0.6 9.86 £ 1021

279 418.8 7 0.0 £ 100 Delete headc 9.1 1.68 £ 1021

436 48.3 7 3.06 £ 1028 Delete butto 39.3 6.38 £ 1027
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performed for the nine possible combinations of d and l. The number of outliers (Table 1)

and the number of suggested edits from each run were printed out. Then graphical displays

were created using the identify() function in S-Plus for l of .5 and d of .01, .04 and .10

(Figure 9). Similar displays can be produced for different combinations of these

parameters.

We found that reasonable combinations of d and l produced almost identical results.

For example, we expected that (l; dÞ ¼ ð:5; :04Þ and ðl; dÞ ¼ ð:25; :01Þ would produce

similar values. That is, if the outliers have a larger variance (i.e., smaller value of l), then

we would expect a lower proportion of observations to be outliers. Running the algorithm

with these two pairs of values identified 42 observations as outliers. However, upon closer

inspection, we found that (l; dÞ ¼ ð:25; :01Þ missed a few of the observations outside the

point cloud, so that the variance inflation factor should be larger than .25. When the

variance inflation factor was set to .5, the d values of .01 and .04 identified all of the gross

outliers. Less appropriate combinations such as (l; dÞ ¼ ð:25; :10Þ flagged a larger number

of observations ðn ¼ 67Þ but the additional observations were part of the regular data

cloud, and not surprisingly looked fine upon inspection. In general, a combination of d and

l that flags too many points is not advisable because it requires unnecessary inspection of

nonoutlying cases, thus wasting valuable resources.

Having settled on l ¼ :5 as being a reasonable choice, we explored the effect of varying

d in Figure 9. We can see that the gross outliers were identified by all three values of d. As

expected, higher values of d flagged a larger number of observations as potential outliers,

but the additional cases were often on the periphery of the cloud and hard to distinguish as

Fig. 9. Identifying outliers for l ¼ :5 and d ¼ :01; :04; :10
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outliers. For observations that are not clearly outliers, a conservative approach to data

editing would advocate that the original data be left alone to retain all the important

features of the data. In summary, we found that the values l ¼ :5 and d ¼ :04 flagged all

of the outlying values, but similar reasonable values worked just as well. Thus, the method

was robust to the choices of d and l.

4. Discussion

The proposed outlier detection method is a simple and efficient approach to outlier

detection that performs well for datasets with gross errors. Further, it works as a data

editing tool, generating recommended edits on a case-by-case basis. However, decisions

about what should be done with the potential outliers are deferred to subject-matter experts

intimately familiar with the data, requiring resources and good judgement. For simplicity,

we have assumed a multivariate contaminated normal to model the gross reporting and

recording errors in the data. The contaminated normal model assumes that the

observations are drawn from a mixture of two normal distributions, with the outliers being

drawn from the one with larger variance, thus throwing off the covariance matrix for the

entire vector of observations, xi ¼ ðxi1; : : : ; xipÞ. Our experience with the NHANES III

suggests that extreme observations usually result from gross errors in one or more of the

variables rather than all of the measured variables. Thus, one important and immediate

extension of this method would be to model variables individually (Ghosh-Dastidar and

Schafer 2003).

Further, there are alternative candidates for the data model, such as the multivariate t,

that may be more suitable for other applications. While the contaminated normal assumes

that the outliers arise from a distribution with larger variance than the regular observations,

the multivariate t suggests that the data with errors arise from a heavy-tailed distribution.

Both the contaminated normal and multivariate t are appropriate for continuous data alone.

It is conceivable to extend this approach to other types of data (e.g., categorical) using

categorical models such as the log-linear. An important limitation of the contaminated

normal model is its lack of appropriateness for asymmetric or skewed data. While it is

possible to transform the data and conduct outlier detection on the transformed scale,

further simulations should be conducted to look at the behavior of this method when the

data deviate from normality.

This algorithm requires the user to provide values for the mixing proportion and ratio of

variances in the contamination model, which are estimated from the data. A sensitivity

analysis conducted with different candidate values suggested that the method is robust to

parameter assumptions, provided the values of l and d are reasonable. However, there are

two suggestions for the practitioner when selecting a l. When l is close to 1, the

covariances of the two populations are essentially equal so that it is hard to distinguish

between the two. Therefore, we recommend that l be set to .5 or less to allow for

separation between the uncontaminated and contaminated populations. Also, combi-

nations of d and l that flag too many points are not advisable because it requires

unnecessary inspection of nonoutlying cases, thus wasting valuable resources.

Finally, survey data often originate from complex sample designs. Therefore,

sample estimates should be weighted using the inverse sampling probabilities in order
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to make population-level inferences. However, this outlier detection method does not

attempt to produce estimates generalizable to the population. It is simply a data-driven

editing tool that facilitates the identification of potential outliers and erroneous values

in multivariate data. While we do not include sampling weights in our EM

computations to derive the parameter estimates of the mean and covariance matrix,

the contaminated normal automatically downweights influential observations to

decrease their undue influence to produce robust estimates. However, we could easily

incorporate the design effects within the EM algorithm to produce parameter estimates

that are generalizable to the population.
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