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Abstract: In demography, model life tables
have played an increasingly important role in
indirect estimation, population projections,
simulations and for other purposes where
there is a need for a model of mortality at all
ages. In actuarial science, model life tables
have played a subdued role because laws of
mortality, i.e., parametric functions that give
a good fit to empirical mortality curves, are a
better means of graduation than discrete mor-
tality representations. Most laws of mortality
are partial in the sense that they apply only to
a broad age group and not to all ages. This
paper focuses on three laws of mortality that
apply to all ages. Two of them were developed
by the actuaries Thiele and Wittstein in the

1. Introduction

Since the first half of the 18th century, laws of
mortality, i.e., parametric functions that can
be used to model empirical mortality curves,
have developed into an established research
topic among actuaries, demographers, and
others interested in the statistical study of
human mortality.

In this paper, I study three laws of mortality
that are intended to model mortality at all

! Coordinator, National Census Program, Office of
Planning and Statistics, Federated States of Micronesia,
P.O. Box 538, Kolonia, Pohnpei, Eastern Caroline
Islands 96941. The author wishes to extend his sincere
thanks to Jan M. Hoem and Ingrid Lyberg for their
comments on an earlier draft of this paper as well as to
two anonymous referees for their constructive views.
Sincere thanks are also extended to Viorica
Diaconescu for drawing the graphs.

late 19th century. The third, developed by
Heligman and Pollard, is of recent origin. The
three laws are discussed with references to
Scandinavian mortality data. The results
suggest that the most recently proposed law
can be used for generation of model life
tables, for making population projections,
simulations, and other statistical work where
there is a need for a realistic model of human
mortality.

Key words: Laws of mortality; model life
tables; indirect estimation; normal places;
least squares minimization; population pro-
jections.

ages. I focus on work by Thiele (1871 and
1872), Wittstein (1883) and Heligman and
Pollard (1980). Because the attention is
limited to mortality representations by differ-
entiable parametric functions, traditional
model life tables, i.e., tabular representations
of the age pattern of mortality are not discussed.

It will appear that these three laws were
developed from the same principles and, in
particular, the Heligman and Pollard’s law
from 1980 is an enhanced version of Thiele’s
law from the 1870s. The results presented in
this paper suggest that Heligman and Pollard’s
law possibly is the best existing demographic
model of mortality at all ages and is an effi-
cient means of generating model life tables,
e.g., for use with population projections.
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Actual generation of model life tables, how-
ever, is not attempted in this paper.

The paper begins with a presentation of the
necessary statistical definitions, notation, and
the three models under consideration. Section
2 focuses on estimation of the parameters,
Section 3 on an application of Thiele’s model,
Section 4 on a comparison of Thiele’s law with
Wittstein’s, and Section 5 is devoted to a
discussion of Heligman and Pollard’s model
and its potential uses. This discussion is based
on Swedish mortality data from the period
1900-1970. Section 6 summarizes the results
of the paper.

In the discussion that follows, I use standard
demographic and statistical notation, i.e., the
survival function s is such that for continuous
x, s(x) is the probability of survival from birth
until age x. The probability for a person aged x
to survive to age x + 1 is

P =s(x + 1)/s(x). (1.1

The probability that a person aged x dies
before reaching age x + 1is g, = 1 - p,, which
is commonly known as the (life table) mortali-
ty rate. The force of mortality is

u(x) = =s'(x)/s(x), (1.2)
which is also known as the mortality intensity.

The intensity and the survival functions are
connected by the well-known relation

s(x) = exp{~ f; w(D)dt}, (1.3)
whereby
~inp, =/ w@yde. (1.4)

Throughout In denotes the natural logarith-
mic function.

Historically, laws of mortality date back to
about 1725 when de Moivre suggested that the
probability of survival from birth until age x
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could be expressed as a linear function of age,
i.e., as

s(x) =1-x/w, (1.5)
where w is the highest attainable age. De
Moivre knew that his model did not give a
realistic representation of empirical survival
functions, and he proposed it merely to make
various actuarial calculations (Hooker and
Longley-Cook (1953, p. 161)).

Perhaps the most well-known law of mortal-
ity is the one introduced by Gompertzin 1825,
namely

w(x) = Bc* (1.6)
(see, e.g., Smith and Keyfitz (1977, pp. 279-
282)). Whereas this law in many cases gives a
surprisingly good fit to adult and old age
mortality, it rarely gives a good fit to child-
hood and middle life mortality. Because there
is usually little numerical difference between
the estimated mortality intensity and the
estimated (life table) mortality rate, (1.6) can
be used to model either of the functions.

Elston (1923) has given an account of the
most noteworthy laws of mortality in the 19th
century actuarial literature. Most of these
laws are partial in the sense that they only give
good fits to sections of the mortality curve
and, hence, fail in representing the mortality
curve at all ages. In fact, it is a basic character-
istic of laws of mortality that they fail in repre-
senting childhood and, especially, the accident
hump at young adult ages.

Thiele, therefore, made actuarial and
demographic history when in 1872 he published
a paper on modeling mortality at all ages in the
Journal of the Institute of Actuaries (JIA)
(1872, Vol. 16, pp. 313-329). In terms of the
mortality intensity, Thiele proposed the com-
position

w(x) = m(x) + wax) + us(x) .7
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with
w(x) = ajexp{—bx}, (1.8)
hax) = aexp{— $by(x-c)?), (1.9)
and
uz(x) = asexp(bsx) (1.10)

where the seven parameters a;, b; (i=1,3) and
¢ are positive. The hypothesis underlying
Thiele’s law is that the causes of death
naturally fall into three classes; those affecting
childhood, middle life, and adult ages. To
model childhood mortality, Thiele chose the
Gompertz law (1.8) which makes w, vanish for
adult ages. In order to capture the characteris-
tic accident hump at young adult ages he chose
(1.9) which, apart from a scale factor, is the
normal probability density function. It will be
seen that y, is likely to give small values for
childhood and old ages. Finally, adult and old
age mortality is modeled by the Gompertz law
(1.10) which ensures that p; vanishes for child-
hood and middle life ages. Jointly, the three
functions give a model of mortality at all ages.

Even though Thiele was a professor of
astronomy in Copenhagen from 1875 to 1907,
he made lasting contributions to mathematical
statistics and actuarial science. Regrettably
some of his most important actuarial work was
never published, but he did publish his laws of
mortality which became well-known among
contemporary actuaries (Hoem (1983, pp.
215-217)).

About 10 years after Thiele had published
his law (1.7) in the JIA, Wittstein (1883) pub-
lished in the same journal his law

g=La (mx)" § (M), (1.11)
which models g, between ages 0 and M, where
M is the highest attainable age. It may have
been Wittstein’s hypothesis that the causes of

death naturally divide into childhood and adult
age components.

Wittstein (1883) reached (1.11) on the basis
of an elegant generalization of de Moivre’s
law (1.5), and mentions that he is the first to
consider the problem of constructing a (realis-
tic) law of mortality for all ages. Evidently
Wittstein cannot have been familiar with
Thiele’s work that was published in the JIA
about ten years earlier. A language barrier,
perhaps, accounts for this circumstance.
Thiele’s paper in JIA was a translation made
by Sprague from an original paper written in
Danish (Thiele (1871)). By the same token,
Wittstein’s paper in JIA was a translation
made by Bumsted from the original paper
written in German.

Wittstein’s law appears to have received
somewhat more attention in the literature
than Thiele’s (see e.g., Henderson (1915, pp.
31-32), Wolfenden (1942, p. 85)). As a
curiosity, I also mention that Wittstein’s law
has been used by Statistics Sweden for
smoothing the death rates at advanced ages.

Recently, Heligman and Pollard (1980)
have proposed the eight-parameter model

4./ p. = ACHB)C
+ D exp{-E(In x - In F)*} + G H",

(1.12)

with positive parameters A, ... , H. Because
(1.12) is defined for x > 0 only, it requires a
slight modification to define it at age 0. A
study of Heligman and Pollard’s paper (1980)
suggests that at age 0 they let

a0/ po=AB€ 1 G, (1.13)

which one will see is lim (g, / p,).
x—0

With the modification (1.13), (1.12) has
been applied to a range of Australian mortali-



22

ty experiences with promising results (Helig-
man and Pollard (1980)). In a working paper
(Hartmann (1983)) of which the present paper
is a condensed version, it is demonstrated that
(1.12) gives an equally good representation of
Swedish mortality between 1900 and 1970.

It is now appropriate to turn to a discussion
of how to estimate the parameters in the
models under discussion.

2. Fitting a Law of Mortality

2.1.
mortality intensity

Estimating the mortality rate and the

If E, is the number of persons exposed to risk
at exact age x, and if D, is the corresponding
number of persons who die before reaching
age x + 1, the mortality rate is estimated by

g.=D,/E,. (2.1)

In practice, when vital registration data are
used, E, cannot always be directly observed.
Nevertheless, with ordinary observational
plans E, can be accurately estimated. In the
sequel, it is assumed that E, and D, are
accurate quantities. The variance of g, can be
estimated by

0*(dx) = P! Ex, 2.2)
where p, = 1-¢,.

Assuming that the mortality intensity is
piecewise constant, it is estimated by

ﬁ'(x) = _lni)x? (23)
which is in accordance with the result of (1.4).
It is also made clear from (2.2) and (2.3) and
by using a standard approximation (see e.g.,
Cramer (1963)) that an estimate of the variance
of p(x) is

(X)) = g/ p.E.. 24
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2.2.  The method of least squares

If u(x; a), with parameter vector a = (ay, ...,
a,), is a model of the mortality intensity, and
estimated intensities w(x;) for the ages x;,...,xy
are given, the model is fitted to these esti-
mates by the method of least squares by mini-
mizing

Ew,{(x) - ulx; a)}? 2.5)

with respect to a. Here w, is a weight that
applies to the single year age group beginning
at age x and which should preferably be pro-
portional to the reciprocal of the estimated
variance (2.4).

Having estimated a by a, one represents the
intensity function by

w*(x) = p(x; a).

Analogically, one fits a model of mortality
rates g(x; a) by g*(x) = g(x; a).

Clearly, if u(x;a) is given by (1.7), minimiz-
ing (2.5) gives nonlinear normal equations
that are difficult to solve unless one makes use
of a computer and a sub-routine for fitting
nonlinear least squares.

Although Thiele (1872, p. 319) was known
as a computational wizard (Hoem (1983, p.
217)), he too found it prohibitively laborious
to estimate the parameters in his law by the
method of least squares. Actually, according
to Jorgensen (1913, p. 116) "Thiele postulierte
gewohnlich, dass der grosste Vorteil, welchen
man durch Studium der Methode der Kleinsten
Quadrate erreichen konnte, darin bestunde,
dass man dadurch entdeckte, wie man die
Verwendung vermeiden kénnte.”?

2 In the present author’s translation: Thiele often
stated that the advantage of applying the method of
least-squares is that it gives to hand why it should be
rejected.
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2.3.  The method of normal places

Thiele favored the method of normal places
of which he has given a detailed account
in his Theory of Observations (1903, pp.
105-110). To explain this method, let
w(x;a), a = (ay,...,a,), be a model of the
mortality intensity. Furthermore, let {i(x;) be
estimates of the piecewise constant intensities
at ages xy,..., xy where N = r. These can be
grouped into r adjacent groups, i.e., into as
many groups as there are parameters. For
each of these groups one may calculate a
running average. Let #, denote the running
average of the observed intensities in group k
and z;, the age to which ¢, corresponds. The
points (z,, t;) are called normal places. The
normal places, then, are smoothed intensities
and the ages to which they correspond.
To estimate a, one solves the r equations

hi-wza) =0k=1,..,r

with respect to a.

The idea behind this method is that the
application of a running average to the
observed statistic produces a more accurate
statistic. If one creates as many normal places
as there are parameters in the model, the fitted
model will agree with these normal places.
Consequently, if the model is well suited for
its purpose, it provides a means of reliable
interpolation between normal places.

Here it is in place to digress for a moment
and note that the method of normal places,
which originates in astronomy (Thiele (1903,
p. 106)), certainly is commonly used. How-
ever, it seems no longer to answer to the name
once given to it. Those familiar with the Brass
logit model will see that it is a simple version of
the method of normal places which Brass re-
commends for fitting his model to an observed
survival function (Brass (1971, p. 84)).

3. Fitting Thiele’s Law to a Male Experience
from About 1870

To illustrate his law, Thiele chose a set of data

collected by Oppermann who was the founding
father of actuarial science in Denmark (Hoem
(1983, p. 215), Thiele (1871 and 1872)). This
experience is based on 48 470 life-insured
male Danes between the ages 5 and 85 years,
giving E, and D,, so that the mortality rates
and the intensities are readily estimated from
(2.1) and (2.3).

For reasons already given, Thiele used a
normal place method to estimate the param-
eters. To see how close he came to achieving
an optimal fit in the sense of weighted least
squares, I have minimized (2.5) with p(x;a)
given by (1.7) and the weight w, given by the
reciprocal of (2.4) for the ages 5,...,23, 26,
28,...,79. (Because D, = 0 for x = 24, 25 and
27 for the data used by Thiele, these ages have
been excluded when minimizing the sum of
weighted least squares.) The minimization
was accomplished using the NAG-Library
routine EO4FDF which does not require
explicitly given partial derivatives.

The squared standardized residual

Rx = [Dx - Exq(xyﬁ)]z/Exp (x,é)q(x,ﬁ) 5

with g(x;a) = 1 -exp{-u(x+0.5;a)}, indicates
the goodness of fit. For the least squares fit,
the sum of squared standardized residuals for
the above ages is asymptotically Chi-square
distributed with 65 degrees of freedom because
there are 72 observed (asymptotically) inde-
pendent and normally distributed intensities
and seven parameters.

Using u*(x)" and u*(x)* to denote the fitted
intensity given by Thiele and the one obtained
by the method of weighted least squares
respectively, I have shown (Fig. 1) the curves
resulting from plotting 10 In(10°%u*(x)7),
101n(10°w*(x)*) and 10 In(10°(x)) against age
x. This transformation of the intensity func-
tion is particularly useful when one wishes to
inspect to quality of the fit. The estimated
parameters for w*(x)” and u*(x)* as well as the
sum of squared residuals for the two fits are
given in Table 1.
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Fig. 1. Observed and fitted mortality intensities using a Danish late 19th century experience and
Thiele’s law of mortality

Table 1. Estimated parameters and goodness of fit for Thiele’s law of mortality

Method a, b, a, b, c a, by
Normal

places 0.02474 0.17028 0.00483 0.08238 31.709 0.0002699 0.07990!
Weighted

least

squares 0.68689 0.75540 0.00413 0.05898 27.197 0.0003140 0.07683

Goodness of fit?

All ages 5-19 20-39 40-79
Normal
places 76.68 26.43 14.87 35.38
Weighted
least
squares 69.33 16.98 14.95 37.40

! In Thiele’s paper in the JIA (1872, p. 323), but not in the original Danish paper (Thiele (1871)), this parameter is
given incorrectly as 0.7990.
Sum of squared standardized residuals; x2,_7 .05 = 84.8.
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It will be seen (Fig. 1) that relative to the
normal place method, the method of weighted
least squares gives a substantially closer fit for
childhood ages. On the other hand, it will also
be seen that for middle life and adult ages,
Thiele’s fit is slightly better than the least
squares one. From a practical point of view,
Thiele was probably more interested in
knowing if his formula gave a good fit to ages
of actuarial interest than to childhood ages. If
so, it must be concluded that Thiele, for all
practical purposes, achieved something very
close to an optimal fit to the Danish experience.

It should be noted that for both fits the total
sum of squared residuals is well below the
critical value for a test on the 5 percent level,
say, which is X’ = 84.8. This suggests that
both fits could be seen as a graduation of the
experience. That is, the fitted deaths are sta-
tistically commensurate with the observed
ones. In further support of this, it will be seen
(Fig. 1) that the sign changes between ob-

served and fitted intensities vary in a non-
systematic manner. In effect, Thiele’s applica-
tion of his law to the Danish experience was a
successful actuarial experiment.

4. Comparing the Laws of Thiele and Witt-
stein

Since Wittstein’s law (1.11) does not contain a
term for middle life mortality, it cannot model
the accident hump. To show how it models the
mortality curve in toto, it has been fitted to the
Swedish female experience for the period
1961-1970 by means of the (unweighted)
method of least squares (Fig. 2). The minimi-
zation was done for the ages 1, ... , 75 using the
previously mentioned NAG routine. The esti-
mated parameters for Wittstein’s law are
m = 22.6039, a = 1.8731, n = 0.6043 and
M = 88.6056.

101n (105 ) 1034
X

904 .
i E 50

80+ =
1 - 20
70T =~ 10
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— 0.2

t
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Fig. 2.
Wittstein’s law of mortality

Observed and fitted mortality rates using the Swedish female experience for 196170 and
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Fig. 3. Observed and fitted mortality intensities using the Swedish female experience for 1961 - 70

and Thiele’s law of mortality

Applying Thiele’s law (2.5) to the same
experience and the analogical (unweighted)
method of least squares (Fig. 3), the estimated
parameters become d; = 0.00307, b, = 0.00493,
4, = 0.00129, b, = 0.0904, ¢ = 53.801,
G, = 0.00307 and by = 0.129%.

Comparing Figs. 2 and 3 we see that although
both fits are somewhat mediocre, Thiele’s law
provides a closer fit to the experience than
Wittstein’s law. Generally speaking, the
superiority of Thiele’s trident law over Witt-
stein’s is obviously that it contains a ligament
that binds childhood and adult mortality by
the means of a middle life mortality compo-
nent. It is the middle life mortality component
that can reproduce the accident hump. How-
ever, when the method of least squares is used

3 Because the numerical difference is marginal be-
tween estimates of g, and {1, the two fitted curves are
very close to each other. For this reason the results
have been given in separate diagrams.

to fit Thiele’s law it occasionally happens that
the middle life component (1.9) is fitted to the
wrong part of the mortality curve. This is seen
in the case of Fig. 3 (¢ = 53.801) which yields a
“false” accident hump situated much above
the real accident hump in the underlying
experience. (Clearly, when this happens, the
fit to adult mortality is very close.) In my
computations (Hartmann (1983)), this hap-
pened when there was a more or less pro-
nounced concavity in the adult part of the
mortality curve (Fig. 3). This, of course,
would not happen if one used a normal place
method of estimation. The normal place
method predetermines the placement of the
center of the accident hump in the fitted curve.
Thiele’s dislike for the method of least squares
is well justified by these results.

In conclusion, we see that Wittstein’s law,
even though it is based on an ingenious deriva-
tion of de Moivre’s law (1.5), does not compete
well with Thiele’s dynamic mortality model.
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Interestingly enough, Heligman and Pol-
lard’s law may also result in a false accident
hump situated much above the location of the
real accident hump (Heligman and Pollard
(1980, p. 59)). Computations made using both
models (Hartmann (1983)) suggest, however,
that Heligman and Pollard’s law is much less
likely to produce a false accident hump than
Thiele’s law. Consequently, it would seem
that the “lognormal” nature of their middle
life mortality component fits empirical expe-
riences better than the “normal density” com-
ponent used by Thiele. I now turn to a discus-
sion of Heligman and Pollard’s law.

5. Heligman and Pollard’s Law of Mortality

5.1.  Its source and origin

It would appear that Thiele’s law (1.7) is the
fons et origo of (1.12). The modus operandi is
the same, i.e., childhood, middle life, and
adult mortality are modeled separately and
then put together in a joint expression. How-
ever, rather than relying on the Gompertz law
to model childhood mortality, a more compli-
cated expression

gulp. = AGTBC, (5.1)
is used. To model the accident hump, a log-
normal expression is used instead of the
normal one used by Thiele. In the case of adult
and old age mortality, both laws make use of
the Gompertz law.

5.2.  Estimation of the parameters

Letting Q(x,e) denote the right-hand side of
(1.12), it is reasonable to expect that the
parameters can be estimated by minimizing
the (unweighted) sum of squares

3 (4pe- Q(xse)),

with respect to e = (A, ..., H), for some range

of ages xi, ... , x,, where x; is 0 or 1 and X,
about 75 years. Yet, computations made using
Swedish mortality data for the seven decades
between 1900 and 1970 frequently resulted in
negative estimates of B, (Hartmann (1983))
which is not permitted.

To estimate the parameters, it is important
to follow the procedure given by Heligman
and Pollard (1980, p. 51), i.e., to minimize the
sum of squares

2(q(x;e)/q,~ 1.0)%, (5.2)

with respect to e. Here g(x;e) is the model rate
given by (1.12). With this procedure, accept-
able estimates of e were always obtained.

5.3.  Goodness of fit

If one fits (1.12) to an empirical experience for
which the exact number of person-years is
known, one can compute squared standard-
ized residuals so that one can see if the re-
corded deaths are statistically commensurate
with the ones estimated from the model.
When the number of person-years is very
large, as in the case of the Swedish life tables,
most model curves deviate significantly (in a
statistical sense) from the observed curves
because the variances of the estimated inten-
sities are virtually zero. Despite this, a visual
inspection of the fit may convince one that the
fit is “very good” or, at least, “good enough”
for practical work.

Heligman and Pollard’s law gives a close fit
to the 14 Swedish life tables for males and
females between 1900 and 1970. Because
these experiences and graphs have been given
elsewhere (Hartmann (1983)), and because
the graphs shown in this paper are representa-
tive, in terms of goodness of fit, of all the
Swedish life tables, it is sufficient to limit the
discussion to four graphs.

Figs. 4 and 5 show the female experiences
for the periods 1901-10 and 1941-50 and
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Figs. 6 and 7 the male experiences for the
periods 1921-30 and 1961-70. Hence, the
four figures give four entirely different age
patterns of mortality.

Here, 10 In(10°¢*(x;e)) and 10 In(10° g,)
have been shown because this transformation
is particularly useful for inspecting the good-
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ness of fit to childhood mortality and to the
accident hump.

The parameters were estimated by minimiz-
ing the (unweighted) sum of squares (5.2) for
the ages0, ..., 75. Tables 2 and 3 give the esti-
mated parameters and their correlations. The
reason for studying the correlations between

Table 2.  Estimated parameters in Heligman and Pollard’s law using Swedish life tables for the

period 1901-1970

Sex and Estimated Parameters

Period A B C D E'=1E" F G H
Males

1901-10 0.0208178  0.0682159  0.197297  0.004161  4.64780  24.5130  0.0002788  1.07592
1911-20 0.0151257  0.0444645  0.167090  0.006081  4.71095  24.9939  0.0001853 1.08234
1921-30 0.0086684  0.0230977  0.152850  0.003322  4.49795 24.0662  0.0001408  1.08556
1931-40 0.0054870  0.0126087  0.131521  0.002191 5.45556  23.0064  0.0001268  1.08735
1941-50 0.0029210  0.0063421  0.102907  0.001591  8.20958  22.7692  0.0000716  1.09507
1951-60 0.0017749  0.0065336  0.097249  0.000763  7.59628  22.1301  0.0000388 1.10447
1961-70 0.0010330 0.0014763  0.076796  0.000673  8.29704  22.1441  0.0000359  1.10553
Females

1901-10 0.0213801  0.115998 0.200894  0.005283 1.18497  32.0410  0.0000237  1.11154
1911-20 0.0153350  0.080996 0.169448  0.005614  1.89881  28.3678  0.0000364  1.10537
1921-30 0.0084117  0.044496 0.157024  0.003326  2.09221  26.4537  0.0000628  1.09639
1931-40 0.0049230  0.025717 0.137691 . 0.002155  3.18337  24.4423  0.0000768  1.09397
1941-50 0.0025565  0.019385 0.118634  0.001143  3.52734  25.4410  0.0000392  1.10239
1951-60 0.0014459  0.015960 0.109559  0.000315  2.09850  30.1329  0.0000190  1.11172
1961-70 0.0007562  0.001956 0.076678  0.000164  6.68444  21.7992  0.0000236  1.10446

Source: Life tables for the periods 1901-10, 1911-20, 1921-30, 1931-40, 1941-50, 1951-60, and 1961-70.

Statistics Sweden, Stockholm, Sweden.

! Notice that it is E'=1/E that gives the dispersion of the accident hump in (1.12).

Table 3. Correlations between parameters in Heligman and Pollard’s law using Swedish life

tables for the period 1901-1970

A B C D E'=1/E F G H

Males

A 1.000 0.995 0.963 0.865 -0.805 0.909 0.980 -0.906
B 1.000 0.942 0.819 -0.758 0.866 0.967 -0.866
C 1.000 0.865 -0.912 0.926 0.977 -0.967
D 1.000 -0.828 0.979 0.818 -0.852
E' 1.000 -0.876 -0.839 0.896
F 1.000 0.882 -0.912
G 1.000 -0.954
H 1.000
Females

A 1.000 0.996 0.937 0.950 —0.665 0.674 -0.085 0.291
B 1.000 0.942 0.935 -0.709 0.732 -0.125 0.344
C 1.000 0.934 -0.831 0.704 0.166 0.095
D 1.000 -0.675 0.555 0.118 0.074
E' 1.000 -0.872 -0.093 -0.219
F 1.000 -0.378 0.657
G 1.000 -0.938
H 1.000
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Fig. 4. Observed and fitted mortality rates using the Swedish female experience for 190110 and

Heligman and Pollard’s law of mortality
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Fig.5. Observed and fitted mortality rates using the Swedish female experience for 194150 and

Heligman and Pollard’s law of mortality
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Fig. 6. Observed and fitted mortality rates using the Swedish male experience for 1921-30 and
Heligman and Pollard’s law of mortality
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the parameters will become clear as we
proceed.

It is quite obvious (see Figs. 4—7) that no
existing model life table system could give
equally good fits. It is, in fact, surprising that
even though (1.12) has eight parameters, the
modeled curve virtually coincides with the
estimated probabilities between birth and age
75. I now turn to a discussion of how to inter-
pret the parameters in (1.12).

5.4. Interpretation of the childhood param-
eters

Heligman and Pollard (1980) have interpreted
the parameters in (1.12) to the effect that A
nearly equals g;, B is a measure of the differ-
ence between g, and gq;, and C is a measure of
how rapidly the child adjusts to the environ-
ment. Parameter D is a measure of the level of
middle life mortality, and E and Findicate the
dispersion and location, respectively, of the
accident hump. Finally, G and H are measures

of the level, and increase with age, respectively,
of old age mortality. Because the interpreta-
tions of the parameters D, E, F, G and H are
fairly straightforward, the main focus is on the
childhood parameters A, B and C.

For childhood ages, it is the partial law (5.1)
that determines the quality of the fit given by
(1.12) to empirical experiences. Consequent-
ly, if one wishes to study the behavior of the
parameters A, B and Cin (1.12), itis sufficient
to fit (5.1) to a range of childhood experiences.
Here it is appropriate to note that there have
been relatively few attempts to model child-
hood mortality. For this reason itis interesting
in its own right to fit (5.1) to childhood
experiences. Estimates of A, B and C when
fitting (5.1), by means of (5.2), to the above-
mentioned Swedish data, for the ages0, ... , 10,
are given in Table 4. To see how these esti-
mates relate to one another, the correlations
between A, B, C, qy, 1, 41/4o and go—q, have
been given in Table 5.

Table 4.  Estimated parameters for the childhood component in Heligman and Pollard’s law
using Swedish life tables for the period 1901—-1970

Sex and Estimated Parameters

Period A B 9 90 9 91/90 9091
Males

1901-10 0.019128 0.039499 0.17101 0.09255 0.02277 0.24603 0.06978
1911-20 0.014047 0.024262 0.14491 0.07643 0.01734 0.22687 0.05909
1921-30 0.007891 0.009406 0.12766 0.06472 0.01139 0.17599 0.05333
1931-40 0.005130 0.004496 0.10891 0.05080 0.00679 0.13366 0.04401
1941-50 0.002875 0.002745 0.08888 0.03034 0.00298 0.09822 0.02736
1951-60 0.001666 0.001369 0.07581 0.02022 0.00163 0.08061 0.01859
1961-70 0.000980 0.000079 0.05383 0.01529 0.00095 0.06213 0.01434
Females

1901-10 0.018098 0.053980 0.16322 0.07598 0.02121 0.27915 0.05477
1911-20 0.013506 0.040001 0.14181 0.06112 0.01598 0.26145 0.04514
1921-30 0.007137 0.014142 0.12269 0.05052 0.00969 0.19181 0.04083
1931-40 0.004313 0.007402 0.10782 0.03878 0.00565 0.14569 0.03313
1941-50 0.002409 0.008551 0.10049 0.02329 0.00240 0.10305 0.02089
1951-60 0.001375 0.007667 0.09474 0.01546 0.00140 0.09056 0.01406
1961-70 0.000721 0.000589 0.06524 0.01151 0.00073 0.06342 0.01078

Source: Life tables for the periods 1901-1910, 1911-1920, 1921-1930, 1931-1940, 1941-1950, 19511960, and

1961-1970. Statistics Sweden, Stockholm, Sweden.
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Table 5. Correlations between parameters for the childhood component in Heligman and Pol-
lard’s law using Swedish life tables for the period 19011970

A B c 90 9 4/90 90—
Males
A 1.000 0.986 0.959 0.960 0.995 0.973 0.936
B 1.000 0.910 0.905 0.967 0.922 0.870
C 1.000 0.991 0.972 0.985 0.988
90 1.000 0.980 0.991 0.997
q: 1.000 0.987 0.961
e 1.000 0.981
qo—4q 1.000
Females
A 1.000 0.982 0.950 0.965 0.997 0.974 0.936
B 1.000 0.928 0.906 0.967 0.932 0.864
C 1.000 0.966 0.955 0.968 0.958
qo 1.000 0.979 0.987 0.995
q, 1.000 0.984 0.955
q1/9 1.000 0.975
qo—q1 1.000

An inspection of the correlations (Table 5) ~ parameters, I have plotted A against q:, and
reveals that they are all very high. In order to B and C against qo (Figs. 8,9 and 10).
study the functional relationships between the

A
103 A

——t————T—t 103’é|1

Fig. 8. The empirical relationship between parameter A and q, in the childhood component of
Heligman and Pollard’s law of mortality using Swedish life tables for the period 1901-70
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Fig. 9. The empirical relationship between parameter B and q, in the childhood component of
Heligman and Pollard’s law of mortality using Swedish life tables for the period 190170
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Fig. 10. The empirical relationship between parameter C and q, in the childhood component of
Heligman and Pollard’s law of mortality using Swedish life tables for the period 190170
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Itisseenin Fig. 8 that there is a strong linear
relationship between A and ¢, and that A at all
levels is nearly the same as ¢;. The linear
relationship is virtually the same for the two
sexes. From an empirical point of view, this
also means that A can be considered a linear
function of infant mortality ¢,. Consequently,
one can interpret A as an index of the level of
childhood mortality.

The role of B is to position g(0,e) appropri-
ately above ¢(1,e). More specifically, if B=0
then for any positive A and C, ¢(0,e) = 0.5.
Hence, B is an index of where g(0,e) is posi-
tioned in the interval between g(1,e) and 0.50.
(Only in exceptional cases would infant
mortality exceed g, = 0.5.) At ages above one
year, B is of no significance to g(x,e). Based
on this, it would seem that B should be highly
correlated with g,—¢q,. We see in Table 5,
however, that B has a higher correlation with
the ratio ¢,/q, than with g,—g;. One could
interpret B as an infant mortality shape
parameter.

C is decisive for the level as well as for the
shape of the model age pattern of mortality. It
will be seen (Fig. 10) that C, as a function of
gy, behaves in a fairly linear manner that is
somewhat different for the two sexes. As such
it can be interpreted more as a level than as a
shape parameter of childhood mortality.

In passing, one will notice in Table 4 that
the estimates of A and C change monotonical-
ly with the level of infant mortality. Because B
also is decisive for the shape of the curve
below age 1, it does not always decrease with
decreasing levels of infant mortality. Never-
theless, from a general point of view, esti-
mates of A, B and C decline with declining
level of childhood mortality.

5.5. The numerical behavior of the adult
parameters

It will be noted (Table 2) that the parameter
estimates for the complete model (1.12)
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behave just as nicely as the ones for the child-
hood component (5.1). As the level of
mortality decreases, estimates of the param-
eters A and C decrease monotonically (albeit
with slightly different values than shown in
Table 4). The estimates of B decline with
declining levels of g, except for males for the
period 1951-1960.

With respect to estimates of the remaining
parameters D, E, F, G, and H, it is clear that
even though they do not always change
monotonically with changing levels of mortali-
ty, they follow a numerical pattern which
agrees very well with their interpretations.

For both males and females, the estimates
of D behave similarly, i.e., they change
smoothly as the level of middle life mortality
changes. (The increase in D relative to the
period 1901-1910 can most likely be ascribed
to the influenza pandemic that took place
about 1915.)

The dispersion of the accident hump, as
measured by E’ = 1/E, increases as the size of
the hump decreases. This is also what we
would expect; for the more pronounced the
accident hump, the smaller is its dispersion.

With respect to the location of the hump, as
measured by F, it falls relatively slowly for
males. For females the location of the hump
has changed quite a bit over the decades and,
as in the case of males, it falls over time.

The level of adult and late adult mortality,
as measured by G, decreases monotonically
with the level of mortality for males but dis-
plays no such trend for females.

The Gompertz parameter H is almost con-
stant (H = 1.1) for all life tables but actually
increases steadily with increasing life expec-
tancy for males. (In the literature, the
Gompertz parameter is sometimes referred to
as demographically invariant.)

It will be seen that there is somewhat more
regularity in the numerical behavior of the
estimated parameters for males than for
females. This is also reflected by the correla-
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tions between the parameters (Table 3).
Notice that, on the whole, the parameter cor-
relations are smaller for females than for
males.

This finding is confirmed by earlier studies
(Hartmann (1981, pp. 59-82)). When studying
how middle life mortality was related to child-
hood and adult mortality in a large number of
empirical life tables, it was found that, espe-
cially for females, there was a very weak rela-
tionship between middle life mortality (ages
15 to 35) and mortality outside this age range.
A similar weak relationship between middle
life mortality and mortality outside this age
range (especially for females) can be observed
for the Swedish life tables. The correlations in
Table 3 show that the parameters A, ... , H
reflect this common feature of mortality. It is
perhaps fitting to note that the magnitudes of
the correlations (Table 3) also reflect the con-
fidence one should attach to model life tables
as tools for indirect estimation of mortality.

5.6. The potential uses of Heligman and Pol-
lard’s model

The well behaved nature of the parameter
estimates (Table 2 and Table 4), paired with
the fact that (1.12) gives unusually good fits to
time-series of Australian and Swedish life
tables suggests that it is an ideal and useful
model for making population projections and
for making demographic simulations where
there is a need for a model of mortality at all
ages. Although actual construction of model
mortality curves is outside the scope of the
present paper, itis clear that (1.12) is a flexible
and highly useful continuous parametric
model that could be used for modeling mortal-
ity curves. Model curves generated by (1.12)
would have several obvious advantages. They
are (1) easy to input, (2) smooth, (3) accom-
modate for changing age patterns of mortality
as the level of mortality changes, (4) allow for
investigating how improvements in given
parts of the mortality curve would affect the

age distribution of survivors, and the remaining
life expectancy at given ages, and, in my view,
(5) can be tailored to represent any given
timeseries of national or regional life tables.
There is no existing life table system that
has these properties. Typically, existing mo-
del life tables (United Nations (1955 and
1982), Brass (1971), Carrier and Hobcraft
(1971), Ledermann (1969), Coale and Deme-
ny (1966), Zaba (1979), Ewbank et al. (1983))
are (1) discrete representations of mortality,
(2) time consuming to work with, (3) intract-
able to modify so as to allow for experiments
where parts of the model survival tabulations
are changed, and (4) they cannot be selected
so that they are truly representative of a
national age pattern of mortality (they are
averages of several national age patterns of
mortality). The Brass logit life table system,
and its four-parameter modifications (although
much more flexible than traditional model life
tables), by and large, share these inadequacies.

6. Conclusions

Attempts to model mortality curves can be
traced back to about 1870 when the Danish
statistician and actuary Thiele proposed a law
of mortality for all ages. It is based on the
assumption that deaths naturally fall into
three distinct categories, namely those of
childhood, middle life, and adult life. Witt-
stein, a German statistician and actuary, pro-
posed a similar law about 1883. It was his
assumption that deaths could be divided into
just two categories; childhood and adult ages.
Wittstein’s law, however, does not give fits to
mortality curves that are competitive with
those obtained from Thiele’s. Over the years,
the pioneering works of Thiele and Wittstein
have received little more than marginal atten-
tion in demographic circles.

Recently, however, Heligman and Pollard
have proposed a new law of mortality that
reflects the ideas of Thiele. This model gives
unusually close fits to empirical mortality
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curves. The parameters, which can be demo-
graphically interpreted, change relatively
smoothly from one age pattern of mortality to
another. For this reason it is an ideal demo-
graphic model for generating model curves for
use with population projections and in other
work where there is a need for a continuous
model of mortality at all ages.
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The Earliest Statistical Tables in China

Mu Zhu'

Abstract: This paper discusses the embryonic
forms, the compilations, and the evolution of
statistical tables from Shang Dynasty (1 600—
1700 B.C.) to West Han Dynasty (206-8
B.C.) in China. This paper emphasizes the
work of the Chinese historian Sima Qian who
compiled ten chronological tables in 91 B.C.,
the earliest statistical tables ever known in
China. These tables consist of a combination
of words and figures and provide basic infor-
mation about the Dukedoms under the reign
of Han Dynasty emperors. Sima Qian laid
down explicitly the basic forms of statistical
tables including headings, item titles, units of
measurement, sequence of events, shape of

Statistical tables are an important element in
the presentation and analysis of statistical data.
These tables are widely used for collecting,
processing, analyzing, storaging and trans-
mitting data. Statistical tables make it possible
to use large amounts of figures in scientific
research and economic management.

In this paper I will try to give some facts con-
cerning the embryonic forms and the evolution
of statistical tables in China.

' Chief, Teaching and Research Section, First Branch
College of the Chinese People’s University, Beijing,
China.

table, and the name of the indicator. There
seems to be little difference between these
tables and the modern ones as far as the form
is concerned. Sima Qian also put forward
some theories about statistical tables. The
theories and techniques of statistical tabula-
tion created by Sima Qian have had a great
influence on the development of science and
culture in China.

Key words: Statistical tables, statistical data;
Book of History; Records of History; chrono-
logical table, Sima Qian; tortoise shell inscrip-
tion; tax rating.

1. Embryonic Forms of Statistical Tables in
China

In China, rudiments of statistical tabulation
can be traced back to the Shang Dynasty (16th
—17th century B.C.). Among the tortoise shell
inscriptions of that period unearthed in 1899
near Anyang, Henan Province, there was a
record of sacrificial livestock used by the king
as offerings.?

? Compilation of the First Part of the Engraved
Writings Unearthed in the Yin Xuins, Vol. 3, Chap. 6,
p. 23.
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During the Warring States Period (475-221

It

Journal of Official Statistics

The original inscription, its transcription in-
to modern Chinese characters and its English

translation are provided below.

- 50 pigs 50 sheep 50 dogs
< v v 3 | 2020 ;n 30 pigs 30 sheep 30 dogs
% g ? # ¥R 20 pigs 20 sheep 20 dogs
K 15 pigs 15 sheep 15 dogs

ET{RY

s

Divination of the Shang King,

Year of Ding-You
It can be seen that, in this record, attention
was paid to the classified arrangement of the

data.

B.C.), there were two texts referring to the

use of statistical tables, namely, Zhifangshi
and Yu Gong. The former was a chapter of
Rites of the Zhou Dynasty, where it was written
that “the zhifangshi was an official in charge of
charts and household registration and must be
well informed on the country’s figures about
land, mountains, rivers, cities and towns,
population, finances, grain, and livestock; he
must let everybody know where the advantages
and disadvantages were, so that all the nine-
state country might strive for common bene-
fit.”®> The charts referred to here were primi-
tive statistical tables.

In Zhifangshi, some general information
was provided about the nine states in ancient
China: their mountains, cities, rivers, lakes,
products, population, livestock and crops.
The eight categories mentioned above were
displayed one by one in the sequence of the
nine states. Of special interest is the sex ratio
of the population in the nine states. The
following figures are provided:

3 See note 62 of “Zhifangshi”, Rites of the Zhiu
Dynasty, Vol. 8.

State Sex ratio State Sex ratio
(male: (male:
female) female)

Yang 2:5 Yong 3:2

Jing 1:2 You 1:3

Yu 2:3 Ji 5:3

Qing 2:2 Bin 2:3

Yan 2:3

Yu Gong* is an article in the Book of History,
which is said to have been written by a Qin
writer in the Warring States Period. It
describes how matters stood in China in the
period when Yu (the sovereign of the country
who lived about the 21st century B.C.) fought
the floods. The text also divides the country
into nine states during the Xia Dynasty. The
descriptions are similar to those in Zhifangshi.
What is unique about this book is its classifica-
tion of the farm land according to its fertility,
as well as the taxes imposed on different states.
Nine classes of land and taxes are identified.
Though statistical tables are not used in the
below two texts, their expositions and their
method of putting data together represent un-

4 “The Taxes During Emperor Yu’s Reign”, in the
Book of History.
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State Land fertility rating Tax rating

Ji upper upper upper upper and middle upper

Yan lower middle lower middle

Qing upper upper upper middle

Xu middle upper middle middle

Yang upper lower middle lower

Jing middle lower lower upper

Yu upper middle upper and middle upper

Liang upper lower upper lower, middle lower, and lower lower
Yong upper upper lower middle

doubtedly the first step toward the develop-
ment of tables later on.

2. The First Statistical Tables Compiled in
China by Sima Qian in 91 B.C.

In his Records of History, completed in 91
B.C., Sima Qian (145-90 B.C.) of the Han
Dynasty provided ten statistical tables: a
genealogical table of the Three Ancient
Dynasties (Xia, Shang and Zhou), a chrono-
logical table of 12 dukes and princes, a
chronological table of six states (dukedoms), a
month-by-month table of events between the
Qin and Chu States, a chronological table of
dukes since the founding of the Han Dynasty,
a chronological table of loyal ministers having
rendered distinguished service, one of dukes
during the period of Emperor Gaozu of the
Han Dynasty, a chronological table of dukes
of the Xiaohui-Xiaojing period, a chronolog-
ical table of dukes since the Jianyuan period
(one of the periods of reign of Emperor Wu of
the Han Dynasty), a chronological table of
princes of the same period, and a chronological
table of noted generals and ministers since the
founding of the Han Dynasty’. These are the
earliest tables of statistics known in China and
preserved up to our days. In the Appendix on
page 43 we present one of the chronological

% Sima Qian, Records of History, China Publishing
House, Vol. 19, p. 978.

tables in its original form and Table 1 on the
following page shows it in English version.

Let us have a look at the state of Bian. The
Prince of Changsha had rendered distinguished
service to the Dynasty. His son Wu Qian,
therefore, was granted the title of Duke of
Bian and enfeoffed with 2 000 households. He
ruled the dukedom for 37 years (194-157
B.C.), namely, seven years during the reign of
Emperor Xiaohui, the eight years of that of
Emperor Gao, and 22 years during that of
Emperor Xiaowen). He was succeeded by his
son Wu Xin, who ruled the dukedom for six
years and was succeeded in his turn by Wu
Guangzhi, who was duke for 39 years. Wu
Qiangiu, the great grandson of Wu Qian,
ruled the dukedom for less than one year. His
state was abolished because he had no son.
The dukedom existed for a total of 82 years.

If we list only the number of households
given to the dukes and the number of years
their dukedoms existed, we will get the follow-
ing table:

State* Number of house- Number of years
holds given by the the state
emperor existed

Bian 2 000 82

Dai 700 83

Pingdu 1 000 48

Wu 500 69

Zhongyi 600 43

Leping 600 49

Chengtao 500 19

Liling 600 8

Yangxin 2 000 28

Zhi 10 000 40

* Here only ten of the 93 dukedoms are taken for
example.
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Table 1. Chronological Table of Dukes of the Xiaohui-Xiaojing Period

State Bian Dai Pingdu

Merits for enfeoff- Prince of Changsha, Chancellor of Changsha, Former general of the Qi

ment enfeoffed with 2 000 enfeoffed with 700 house- State, having passed over to
households holds the Han Dynasty and being

enfeoffed with 1 000 house-
holds

Reign of Emperor
Xiaohui, 7 years
(194-188B.C.)

Sept., the Ist year,
Wu Qian was granted
the title of duke

April, the 2nd year, Lichang
was granted the title of duke

June, the Sthyear, Liu Dao
was granted the title of duke

(140-105B.C.)

duly the sacrificial
costs. The dukedom
was abolished be-
cause he had no son.

7* 6 2
Reign of Emperor 8 2 8
Gao, 8years (187— The 3rd year, Xi was granted
180B.C.) the title of duke
Reign of Emperor 22 15 2
Xiaowen, 23 years The last 7th year, The 16th year, Pengzu was The 3rd year, Cheng was
(179-157B.C.) Xing was granted granted the title of duke granted the title of duke
the title of duke
1 8 22
Reign of Emperor 5 16 14
Xiaojing, 16 years The 6th year, The last 2nd year, duke
(156-141B.C.) Guangzhi was Cheng committed crimes
granted the title and his dukedom was abol-
of duke ished
11
From the Jianyuan 29 30
period to the 6th The 5thyear of the The 1st year of the Yuanfeng
year of the Yuanfeng | Yuanding period, period, duke Zhi, governor
period, 36 years Qiangiuhad notpaid | of Donghai, was guilty of

mobilizing troops without

authorization, and had his
head cut off. His dukedom
was abolished.

After the Taichu
period (104-B.C.-)

* The figures listed in the upper and lower right corner of each square show the length of the reign of the
respective dukes during the period.

The Chronological Table of Dukes of the

first year of Emperor Xiaohui’s reign and the

Xiaohui-Xiaojing Period is the seventh of the
ten tables compiled by Sima Qian. It describes
the basic events and conditions of the 93 duke-
doms created during the period between the

6th year of the Yuanfeng period of Emperor
Wu’s reign. Here only three of the 93 duke-
doms are given as examples.



Zhu: The Earliest Statistical Tables in China

The tables made by Sima Qian already had
the basic features of modern statistics. Sima
Qian laid down explicitly the basic forms of
statistical tables including headings, item
titles, units of measurement, sequence of
events, shape of the tables and the name of the
indicators, etc. The tables are enclosed with
thick lines on the margin, and thin lines are
used inside. Top and bottom lines combined
with horizontal and vertical ones inside make
up a rectangular form. The old Chinese
writing system follows the rule “from the top
to the bottom, from the right to the left,” and
this is also the way the words and figures are
written in the tables. The heading is written to
the right side of the table, and the item titles of
the vertical and horizontal columns are written
between the first two horizontal lines and the
first two vertical lines, respectively, The
objects being observed are classified according
to their different nature, and they are listed
under different titles, such as name of the
state, number of households given to the
duke, number of years of the duke’s reign, and
the years of establishment and abolition of the
state. Following this format, and following a
certain sequence, the basic conditions and
events of each state are recorded in the tables.
In some of these tables, the names of the states
are given in vertical columns, each state occu-
pying one column. The number of households
and the rise and fall of the states are also
recorded. The time of the events is given in the
horizontal columns, each period occupying a
column. After having looked at the tables,
you have an idea of the changes that took
place in all these states.

3. The Theory About Statistical Tables Put
Forward by Sima Qian

Sima Qian also put forward his theory about
statistical tables. He said: “Confucians used to
quote out of contexts, and persuasive talkers
often indulged in exaggeration. They did not
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seek to study the whole story comprehensively.

Almanac writers only studied the years and

the months, astrologers stressed predestina-

tion and fate, and heraldry specialists only
made records of posthumous titles of emperors
of different generations. All these records
were simple and one-sided, making it difficult

to view various important historical facts in a

comprehensive way. For this reason, I have

worked out a chronological table of 12 dukes
starting from the Gonghe period of the Zhou

Dynasty up to the Confucian period. I drew up

tables of general information concerning the

rise and fall of the states, events which had
been used as allegory by scholars in the Spring
and Autumn Annals and Conversations from
the States. In this work, I avoided superfluous
wording and tried to present the essentials,
and I offered it as reference for those who
engaged in academic research and political ad-
ministration.”®

“I therefore followed the historical record
of the Qin Dynasty and the example of the

Spring and Autumn Annals. Starting from

King Yuan of the Zhou Dynasty, I recorded

all the events that happened in the six states up

to the reign of the Second Emperor of the Qin

Dynasty, covering a period of 270 years in

total. The causes for the rise and fall of the

states are explained. This record is left to
future scholars for reference.”’

Here Sima Qian pointed out that statistical
tables are useful for:

1) avoiding superfluous wording and depicting
what is essential in a concise way;

2) organizing systematically and arranging
rationally different important data, in
order to make it easier to observe and
compare them, and

% Sima Qian, Records of History, China Publishing
House, Vol. 14, p. 511.
7 Sima Qian, Records of History, China Publishing
House, Vol. 19, p. 978.
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3) facilitating the comprehensive study of the
whole process of the march of events from
the beginning to the end, as well as the laws
governing its development.

Sima Qian’s purpose in drawing up his tables
was to provide general information about the
rise and fall of the states as well as the manage-
ment of state affairs. Such a theoretical view is
still of importance today.

The theory and techniques of statistical
tabulation created by Sima Qian have had a
great influence on the development of science
and arts in China, and have enabled a good
many of Chinas famous scholars and practical
workers to make important contributions in
their academic and scientific research and
state administrative activities.

4. Some Evaluation Concerning the Statisti-
cal Tables Drawn Up by Sima Qian

Scholars of the past spoke highly of the statis-
tical tables drawn up by Sima Qian. Liu Zhiji,
a historian of the Tang Dynasty, said: “Looking
at the tables drawn up by Sima Qian, I can see
what happened throughout thousands of miles
and nine generations of sovereigns, all con-
densed in an orderly way in a small table of a
few square inches. Have a look at the tables,
and you will know exactly what you want to
know.”®

Zheng Qiao, another noted historian of the
Song Dynasty, said: “In drawing up these
tables, Sima Qian made use of only six of the
60 combined pairs of the ten Heavenly Stems
and the twelve Earthly Branches, beginning

% Liu Zhiji, Notes and Reflections on a Variety of

Matters. . .
9 Zheng Qiao’s illustrative plates in Comprehensive

History.

Journal of Official Statistics

from the first of the ten Heavenly Stems, to
record events chronologically. The other 54
pairs were not used. With only a few words he
managed to convey what was essential in the
events, which means that once the essential
thing is grasped, everything falls into place.”
Then he talked about the importance of statis-
tical tables. He said: “You can do without sta-
tistical tables if you just want to indulge in
empty talk. But you cannot do without them if
you really want to accomplish anything.” And
he ascribed the failure of many scholars and
politicians after the Han Dynasty to their
inability to use statistical tables.

5. Summary

In his Records of History, completed in 91
B.C., Sima Qian (145-90 B.C.) of the Han
Dynasty provided ten statistical tables. Exam-
ples are: a genealogical table of the Three
Ancient Dynasties, a chronological table of
six states, etc. These are the earliest tables of
statistics ever known in China. Sima Qian also
put forward his theory about statistical tables
in his Records of History. He pointed out that
statistical tables serve as an important means
for the presentation and analysis of statistical
data, facilitating the study of the whole pro-
cess of the march of events from the beginning
to the end, as well as the laws governing its
development.
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Appendix

A Chronological Table of Dukes in the Huijing Period in the Original Chinese
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