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Penalized Spline Model-Based Estimation
of the Finite Populations Total from
Probability-Proportional-to-Size Samples

Hui Zheng" and Roderick J.A. Little*

The Horvitz-Thompson (HT) estimator is a simple design-unbiased estimator of the finite
population total for sample designs with unequal probabilities of inclusion. Viewed from a
modeling perspective, the HT estimator performs well when the ratios of the outcome values
y; and the selection probabilities m; are approximately exchangeable. When this assumption
is far from met, the Horvitz-Thompson estimator can be very inefficient. We consider
alternatives to the HT estimator that posit a smoothly-varying relationship between y; (or a
function of y;) and the inclusion probability 7; (or a function of ;), and that model this
relationship using penalized splines. The methods are intended for situations with
probability-proportional-to-size (PPS) sampling and continuous survey outcomes. Simulation
studies are conducted to compare the spline-based predictive estimators and parametric
alternatives with the HT estimator and extensions such as the generalized regression (GR)
estimator. These studies show that the p-spline model-based estimators are generally more
efficient than the HT and GR estimators in terms of the root mean squared error. In situations
that most favor the HT or GR estimators, the p-spline model-based estimators have
comparable efficiency.

The p-spline model-based estimators and the Horvitz-Thompson estimator are compared on
a Block Statistics data set from a U.S. census.

Key words: Horvitz-Thompson estimator; spline regression; linear mixed model; bias
calibration; design consistency.

1. Introduction

We consider probability sampling designs where a random sample S with elements
Y1»...,¥, 1s drawn from the finite population according to the inclusion probabilities ;,
i=1,...,N. Of main interest is statistical inference for the total T of an outcome Y for
the finite population P with N elements. In probability-proportional-to-size sampling,
the values of ; are proportional to the values x; of size variable X and are usually known
for the whole population before S is drawn. In these cases m;’s are considered fixed.
The Horvitz-Thompson (HT) estimator (Horvitz and Thompson 1952) is a standard
design-unbiased linear estimator of 7', and weights cases by the inverse of their inclusion
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probabilities. However, the predictive estimator for a good statistical model relating the
outcomes y; and ; is potentially more efficient than the HT estimator. The HT estimator
itself can be regarded as a model-based estimator for the following linear model relating y;
to m;:

yi = Bm; + mig; (D
or equivalently,
Z=ylm=B+¢ (2

where ¢; in Equations (1) and (2) are assumed to be i.i.d. normally distributed with
mean zero and variance o°. Regressions for (1) and (2) both lead to 8 = n! Siesyilm
where 7 is the sample size. The corresponding projective estimator for 7,

= 5o 5= ! (i) = S i S
i€P i€P i€ES i€S

equals the HT estimator, since Y ;< p 7; = n. The predictive estimator based on model (1),
namely

fpredZZYi‘FZ)A’i:Z)’i‘i‘% Z%XZ WiZZYi'F(l—”_IZWi)fprq/

ies iEs ies ies™ igs ies ies
4)

differs from the HT estimator by a quantity that tends to zero with the sampling
fraction n/N.

Models other than (1) can also yield estimates with design consistency. Model-assisted
methods (Deville and Siarndal 1992; Sérndal et al. 1992) improve efficiency of estimation
via modeling and achieve design-consistency by bias calibration. For example, assisted by
a statistical model, the sum of a projective estimator Tpro; = > e p i and its correspond-
ing bias calibration ) ;e l/m;(y; — 9;) is design-consistent. A predictive estimator
Torep = > iesyi+ D iep_s i has the bias calibration >, c s(1/7; — 1)(y; — 9;). In Firth
and Bennett (1998), parametric and nonparametric regression models such as simple linear
regression models of y; on a function of =; (e.g., 1/7;) are shown to have the ‘‘internally
bias calibrated’” (IBC) property. With this property, bias calibration terms vanish in the
GR estimators, hence the predictive or projective estimators are design-consistent. In
Little (1983) and Elliot and Little (2000), the population is divided into subclasses accord-
ing to 7; and the subclass means are treated as random effects. The model-based estimators
are shown to outperform design-based estimation in terms of root mean squared error
(RMSE) if the model is reasonable.

On the other hand, model-based methods may yield biased estimates when the under-
lying regression model is misspecified, motivating consideration of more flexible mean
structures for E(Y;| 7;). In Dorfman (1992), finite population totals are estimated by the
nonparametric model-based method using an auxiliary variable. In Chambers, Dorfman,
and Wehrly (1993), nonparametric model-based estimation using kernel smoothing is
proposed for estimating finite population quantities. In this article, we consider using
the unequal probabilities of inclusion =; as the independent variable in the nonparametric
model. For example, the relationship between an outcome and some population size
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variable used in PPS sampling (such as the areas of counties) may often be considered
nonlinear, and not fit well using standard polynomial models. We seek flexible mean struc-
tures E(Y;| ;) that are more robust to misspecification than parametric models and still
provide more efficient estimation of 7 than the HT estimator.

Nonparametric regression using splines has undergone extensive development in recent
years. Smoothing splines (Eubank 1988; Wahba 1990) use a knot at each distinct value
(except the boundary values) of the X-variable and control overfitting by applying a rough-
ness penalty. Penalized splines (p-splines), formally introduced by Eilers and Marx
(1996), are in general computationally inexpensive and allow flexible knot selection,
yet yield sound performance. P-splines are also easy to implement: there is a close rela-
tionship between p-spline regression models and mixed-effects models, which implies
that they can be fitted using widely-available statistical software such as SAS Proc Mixed
(SAS 1992) and S-Plus (Pinheiro and Bates 2000) function Ime ( ).

In this article, we model the conditional mean E(Y;|7;) for a continuous outcome Y;
given the selection probabilities by penalized splines. Model-based prediction of T is
then based on the predictions from the spline regression. Simulation studies based on
probability-proportional-to-size (PPS) sampling are conducted on a variety of smoothly-
varying mean structures. Our simulations suggest that for estimation of the finite popula-
tion total, p-spline model-based predictive estimators are in general more efficient than the
HT estimator and the generalized regression (GR) estimator, a common design-based
modification of the HT estimator used to improve its precision. In situations that favor
the HT estimator, the nonparametric model-based estimators are only slightly less effi-
cient. P-spline models relating the outcome to 7;’s lead to many model-based estimators
that are IBC and hence design-consistent.

2. Nonparametric Model-based Estimation
2.1.  P-spline model

We consider the following general model:
yi =f(m,B) + &, & ~iid N0, 77*0?) (5)

where N( -, -) denotes the normal distribution, and f is a function of ; that is continuous
to the (p — 1)th derivative with unknown parameters (3. The exponent k (usually taking
values 0, 1/2, or 1) models error heteroscedasticity; for simplicity we assume here k is
known, although simultaneous estimation of this parameter is also possible. The special
case of (5) where f(m;) = Bm; and k = 1 coincides with Model (1), leading to the HT
estimator (3) or (4).

The function f is estimated by splines, which are piecewise polynomial functions that
are smooth to a certain degree. For example, a cubic spline function is a piecewise cubic
polynomial that is continuous in its second derivative. The splines can be expressed as a
linear combination of a set of basis functions defined with respect to a set of knots. In
Eilers and Marx (1996), a set of B-splines is used as the basis function. In Ruppert and
Carroll (2000), truncated polynomials are used. Although theoretically equivalent to
truncated polynomials, B-splines are more ‘‘balanced’’ and are numerically more stable
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in some extreme cases. In this article, we are more interested in the cumulative (sum over a
population) performance of the estimator than in the pointwise performance of regression
curves. We choose to use truncated polynomials because of their simplicity although other
methods may have better numerical properties.

Specifically, the function f is estimated by the p-spline written as a linear combination
of truncated polynomials:

N P . m
f@nB) =B+ > Bim + > Byp(mi—x)l,i=1,....,N
j=1 =1 (6)
2
Bl+p;;1N(O,T pi=1,....m

where the constants k; < ... < k,, are selected fixed knots and ()} = u”I(u = 0). The
truncated polynomial is continuous to the (p — 1)th derivative and has a change of p!
in the pth derivative at the corresponding knot. The coefficients 8, ;,..., 8, are sim-
ply proportional to the amount of discontinuity by the regression function in the pth
derivative. The effect of treating {3,,/=p+1,..., p+ m} as normal random effects
is to add a penalty term Z{’:pﬁl 3,2/72 to the sum of squares that is minimized in a least
squares fit, thus smoothing their estimates towards zero.

In Eilers and Marx (1996), the penalty on roughness can be applied to an order different
from that of the basis functions. Here we do not include those variants because simulations
show they do not have a big impact in the estimation of population totals.

The variance 72 is an additional parameter estimated from the data. Models (5) and (6)
can be written in the matrix form

Y =xB8Y + 28?9 + ¢ @)
where ¥ = (y1,...,5)" B = By,....8) 7' = (xl,..., ) I=1....p
B =(BpstreeBrpm) ~ N0, 7°L,),

e=(gg,..., sn)T ~ N,(0, JzDiag(rlzk, ey 71'31‘))

1 = ... 71'{)
1 p (7F1—K1)i (Tl_Km)-I:-
T 7l'2
X= N Z:
P (7rn - Kl)-[f- (7rn - Km)-[i-
1 m ... w,

and N, (u,X) denotes the multivariate normal distribution with mean vector p and
covariance matrix X.

Assuming constant error variance (i.e., k = 0), the ML estimate of the regression
parameters conditional on « = o’ir? is (30, .. .,ﬁmﬂ,)T =M"O+ D)"Y, where
I=[X Z] and the ith row of Il is I, = (I, m;,..., @', (m; — k)Y, ..o, (m — k)0)
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and the matrix D is diagonal with the first p + 1 elements equal to O and the remaining m
elements equal to o = o’ A widely used approach to estimate « is through the mini-
mization of the generalized cross validation (GCV) statistic. A simple alternative is to cal-
culate 52 and #° using restricted maximum likelihood (REML) algorithms with standard
software such as SAS Proc Mixed (SAS 1992) and the S-plus function Ime ( ) (Pinheiro
and Bates 2000). For the scenarios simulated in this study, we found the numerical
difference between the GCV criterion and the REML method to be small and only report
the results from the REML method.

When assuming error variances are 7r,-2k 02, k # 0, Models (5) and (6) are fitted
by replacing matrices Y, Z and , I=1,...,p by Y* = w2y, z*=w"z
and 7'* =W"x!, 1=1,..., p respectively, where W = diag(w;>*, w3, ..., m,%).
Conditional on « = o%/7%, the estimates (3, .. .,6m+p)T =M+ p) ' ly* =
MW + D) "I Wy, where IT* = W'I1.

Assuming that the 7;’s are known for the whole population, the model-based predictive
estimator is given by Tppep = S0 y; + S0 .1 E(Y;| 7;), where

EYi|m) =f(m. B)=Bo+Bimi+ ...+ Bl + > B p(m — &)}

=1

An important modeling issue here is the number and positioning of the knots. In our simu-
lation study, we deliberately choose simple approaches that avoid subjective choices based
on prior knowledge or looks at the data. We choose two fixed numbers of knots (5 or 15),
and place knots at the m evenly spaced sample percentiles, that is, 100j(m + nt,
j=1,...,m, of the sample distribution of ;. This choice of knots works well for our
simulated populations. Alternative choices such as equally spaced knots may be better
for some datasets. The number of knots can be chosen subjectively according to the com-
plexity of the observed relationship between the outcome and the selection probabilities.
Also, in cases with severe spatial inhomogeneity one may consider more sophisticated
methods of knot placement, such as stepwise knot selection (Friedman and Silverman
1989; Friedman 1991; Stone et al. 1997) or Bayesian knot selection using reversible
jump Markov Chain Monte Carlo methods (Green 1995; Denison, Mallick, and Smith
1998). Ruppert and Carroll (2000) suggest applying different roughness penalties at dif-
ferent knots to adapt to the spatial heterogeneity. Such methods are harder to assess by
simulation and are not considered here.

2.2. Design Consistency of the P-spline Model-based Estimators

The p-spline model can be chosen to yield estimators that have desirable design-based
properties. The reason for this is that fitted p-splines based on Equations (5) and (6)
have the following property (denoted as property A):

> yilwi =Y ilwf for =2k —p), Qk—p+1).....2k

ieSs ieSs

Proof for k = 0: It suffices to show that X’ (Y — ¥) =0, where ¥ = (§,....9,)".
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From Section 2.1, we have (BO, e, 6m+,,)T ="+ D) '1ITy. It follows that
n’(y -y =1’y -1p
=’y -uma’n+n)'n’y
=@’ -n'nu’u+op'a’Hy
=" -@'n+p)@'0+p)'0" + pA I+ D) 'Y
=p'n+p)y'u’y
=D
=(0,...,0,aB, 1, @By )’

where the first p + 1 entries of the vector are zeros. Since II =[X Z], we have
xX'y-v=o0.

The proof for the case where k is nonzero follows when replacing Y, X and Z with
Y* = w"y, x* = WX and Z* = W"?Z, respectively.

Property A can be utilized to prove that some p-spline estimators are IBC, and hence
design-consistent (Firth and Bennett 1998). For example, assuming k = 1/2 and p =1,
we have > ;e yi/mi = iesVi/mi, and > ;es5yi = Y ics Pi- Hence the predictive
estimator  Tprep = Soro 1 yi 4+ S0 ,.19 is IBC, because the calibration term
> ies(Um; — D(y; — 9;) equals zero for all possible S.

Similarly, the p-spline for a model with 1/; as the X — variable and a constant variance
is also IBC, and hence design-consistent. Since IBC p-spline models are far from unique,
we can choose one that fits the data best. On the other hand, the simulations in the next
section indicate that bias for p-spline models that do not have the IBC property is minor,
so design consistency may not be of paramount importance.

3. Simulation Study

3.1. Design of the simulation study

Simulation studies are conducted to study the performance of the predictive estimator
based on spline models compared with the HT estimator for a variety of populations.
We compare seven estimators:

1. HT, the projective HT estimator, Equation (3).
2. HT PRED, the predictive HT estimator, Equation (4).
3. PO_S, the p-spline model-based estimator with p =1 and k=0 and using 5

knots.

4. PO_15, the p-spline model-based estimator with p =1 and k =0 and using 15
knots.

5. P1_5, the p-spline model-based estimator with p =1 and k=1 and using 5
knots.

6. P1_15, the p-spline model-based estimator with p = 1 and k = 1 and using 15 knots.
7. GR, the generalized regression estimator Tgp = > ;epdi+ Doies (Vi — 9w
where y; = E(Y;| ;) based on a simple linear regression of y; on ;.
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8. PROJ2, fPROJZ =Y iesdi/m;, where $; = E(Y;|w;) based on the p-spline model,
assuming k = 0 and using 15 knots. This extension to the projective estimator
only requires that 7;’s are known for the sampled units and can be used when ;
are not known for the whole population.

For estimation of finite population totals, simulations suggest linear splines perform as
well as (if not better than) higher order ones such as quadratic or cubic splines. Here
we only report the results from linear p-splines (p = 1). We would like to point out
that higher order splines may have better pointwise performance in regression, which is
not of our primary interest here.

First, we simulate finite populations with different mean structures E(Y;| ;) and con-
stant error variance structure. Random probability-proportional-to-size samples are then
drawn from the finite populations with inclusion probabilities 7; « x;. The values x; of
the size variable X vary so that the maximum inclusion probability is approximately 30
times as large as the minimum. The PPS samples are drawn systematically from a
randomly ordered list.

We simulated three different population sizes, 300, 1,000, and 2,000, with sample sizes
30, 100, and 200 respectively. For population size 300, X takes the consecutive integer
values 11, 12, ..., 310. For population size 1,000, X takes the values 35, 36, ..., 1,034.
For sample size 2,000, X takes the values 71, 72, ..., 2,070. The corresponding inclusion
probabilities have a ratio of about 30 between the maximum and the minimum.

For each population and sample size combination, 500 samples are obtained and the
eight above-mentioned estimators are compared.

For each population and sample size, six different mean structures are simulated for
f(m;) = E(Y;| 7;): constant function (NULL) f(m;) = 0.30, linearly increasing function
with zero intercept (LINUP) f(w;) = 3w, linearly decreasing function with positive
intercept (LINDOWN) f(m;) = 0.58 — 37;, exponentially increasing function (EXP)
f(m;) = exp(—4.64 + 26m;), sine function (SINE) f(m;) = sin(35.697;), and the ‘S’
shaped function (ESS) y; = 0.6logit ' (50 % 7, — 5 + &), ; %N(O, 1). Of these, LINUP
most favors the HT estimator. For the first five populations, independent random errors
(with constant variances and zero mean) are added to the mean structure. For population
ESS, the independent errors are added inside the inverse logit to simulate the situations
where there are lower and upper limits for the values of Y. The constants in the above func-
tions are chosen so that 7 = 90 for N=300, T = 300 for N=1,000 and T = 600 for
N =2,000.

To compare normal and skewed error distributions, we simulate both normal and
lognormal errors for all but the ESS populations, which already have non-normal errors.
Lognormal errors are generated according to the expression g4/ 64/151 * (exp(6;) — 13/8),
0; ;;N (0, 1), so that the errors have mean zero and variance o2, The error variances for
populations NULL, LINUP, LINDOWN, EXP and SINE are all 0.04. Figures 1 and 2
give the plot of the populations with N = 300.

We fit Model (6) with p = 1, k = 1, and both 5 and 15 equally spaced percentiles as
knots, using an REML algorithm. Results on bias are shown in Tables 1 through 3 and
on root mean squared error (RMSE) are shown in Tables 4 through 6.

We then change the sampling rate for a fixed population size N = 1,000 with normal
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Fig. 1. Six simulated populations (N = 300) X-axis: pi(i); Y-axis: y(i) with normal errors
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Table 7.  Empirical RMSE x10 of five estimators for N = 1,000, n = 50 (Minimum RMSE for each population is
in bold print)

Population PO_15 P1_15 HT HT PRED GR

NULL 314 362 485 465 328
LINUP 392 452 454 438 432
LINDOWN 359 385 837 809 386
SINE 994 1,002 1,849 1,796 1,395
EXP 422 444 529 522 815
ESS 176 160 181 178 189

errors. In addition to the 10% sampling rate, we simulate 5% and 20% sampling rates for
the six mean structures. The comparisons among the RMSE of PO_15, P1_15, HT, HT
PRED and GR are shown in Tables 7 and 8.

Finally we simulate data with heteroscedastic independent errors with variances 7r,20
where ¢ = 1 for mean structures NULL, LINUP, LINDOWN, SINE, and EXP with
population size 1,000 and sample size 100. PPS samples are obtained the same way as
described before. Comparisons are made among five estimators:

2

Constant variance p-spline model-based estimator PO_15;

Nonconstant variance p-spline model-based estimator P1_15;

The Horvitz-Thompson estimator HT;

The predictive HT estimator HT PRED;

5. The generalized regression estimator Tgp = > icp i + Yies (v — Y.

N

Table 9 gives the simulation results for this case.

3.2.  Results

HT PRED is generally quite similar to HT in these simulations, with slightly larger
empirical bias and slightly smaller root mean squared error. From Tables 1-3, we see
that the p-spline based estimators PO_5, PO_15, P1_5 and P1_15 are slightly more biased
than the GR estimator in general. However, Tables 4—6 suggest that in terms of root mean
squared error, the p-spline model-based estimators PO_S5, PO_15, P1_5, P1_15 outperform
the HT estimator when the mean structure is not linearly increasing or with nonzero
intercept and perform about as well as the HT and GR estimators when the mean is linearly
increasing without intercept (e.g., population LINUP). GR performs well when the mean
structure is linear with or without intercept (e.g., populations NULL, LINUP, and
LINDOWN). GR has larger RMSE than the spline model-based estimators when the

Table 8. Empirical RMSE Xx10 of five estimators for N = 1,000, n = 200 (Minimum RMSE for each population
is in bold print)

PO_15 P1_15 HT HT PRED GR
Population 117 129 244 262 134
LINUP 173 178 174 152 180
LINDOWN 214 223 518 545 208
SINE 210 184 865 1,003 449
EXP 165 200 221 254 394

ESS 61 59 81 88 72
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mean structure is not linear (populations SINE, EXP, and ESS). The above comparison
holds for the populations simulated with normal or lognormal errors.

Despite assuming the wrong variance structure, P1_5 and P1_15 also outperform HT
and HT PRED in populations NULL, LINDOWN, SINE, EXP, and ESS.

The PROJ2 estimator, which does not make use of the selection probabilities of non-
sampled units, is comparable in performance to the HT estimator; hence gains in efficiency
of the spline methods require knowledge of the selection probabilities for non-sampled
units.

In Table 9, HT is seen to perform the best in the population LINUP, which is generated
using the Horvitz-Thompson Model (1). The next best method is P1_15, which is nearly as
good as HT in RMSE. In all other cases the spline estimates are much better than HT. The
p-spline model with the correct variance structure (i.e., P1_15) outperforms the p-spline
model with incorrectly specified variance structure (i.e., PO_15) in populations LINUP,
LINDOWN, and SINE.

4. A Real Dataset

We demonstrate the p-spline model-based estimation on a dataset in Kish (1965). The
data is a list of the 270 blocks in Ward 1 of Fall River, MA, from its volume of Block
Statistics of the 1950 U.S. Census. Let variable Z; represent the number of dwellings in
block i and variable Y; represent the number of dwellings occupied by renters in that
block. We want to estimate the total number of dwellings occupied by renters in the
270 blocks.

We use the size variable X; = ranking of Z; among the blocks so that a larger value of Z;
corresponds to a larger value of X;.

The following scatter plot shows the distribution of Y; vs. X;:
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Table 9. Empirical RMSE x10 of five estimators for data with heteroscedastic errors N = 1,000, n = 100
(Minimum RMSE for each population is in bold print)

Population PO_15 P1_15 HT HT PRED GR
NULL 81 88 284 275 91
LINUP 74 67 63 64 72
LINDOWN 120 98 565 546 103
SINE 408 270 1,311 1,267 838
EXP 106 108 208 217 504

Clearly the relationship between outcome values and inclusion probabilities is not
linear.

Five hundred repeated systematic samples of size 27 are drawn without replacement
from random lists.

We apply the HT estimator and the PO_10 and P1_10 estimators on these samples
(PO_10 assumes constant variance and P1_10 assumes variance proportional to 7r,«2, both
using 10 knots).

The true value of T is 4,559. The empirical biases of the three estimators are HT: 14.38,
PO_10: -60.48 and P1_10: —34.48. The empirical root mean squared errors are: HT:
534.64, PO_10: 274.84 and P1_10: 285.31.

The advantage of using p-spline model-based estimators is obvious. The spline model-
based estimators have small p-biases while having smaller root mean squared errors than
the HT or parametric model-assisted estimator GR.

5. Discussion

Survey samplers are hesitant to use model-based prediction because of potential lack of
robustness to modeling assumptions. However, prediction methods based on p-splines
make relatively weak ‘‘nonparametric’’ assumptions, and are becoming more accessible,
being readily fitted using widely available software packages. Our simulations show that
such methods can yield large gains in mean squared error over the design-unbiased HT
estimator when the data mean structure violates the Model (1) implied by the HT
estimator, with little loss in efficiency when conditions favor the HT estimator. In general
the p-spline nonparametric model fits the mean structure E(Y;| 7;) more flexibly than para-
metric models such as Model (1), and parametric models assumed when using generalized
regression estimators. As shown in the simulation study, for moderate population sizes and
moderate sampling rates, the gain in precision more than offsets the slight increase in
design bias in the simulated populations NULL, LINDOWN, EXP, SINE, and ESS.

A plot of sampled y; vs m; can aid in choosing estimators of 7. If the plot shows a
no-intercept linear relationship, the HT estimator works well. If the relationship is non-
linear, we believe that spline-based estimators are more appropriate. The p-spline
estimates in our simulations worked well using simple untailored methods of knot
placement, but their performance might be further enhanced by a more careful choice
of the number and placement of knots.

An interesting finding from our simulations is that the gains of the model-based predic-
tion estimators were not realized by the model-based projection estimator PROJ2, which
performed very much like the HT estimator. This finding suggests that gains from
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modeling require prediction for the nonsampled cases, and hence knowledge of the selec-
tion probabilities for these cases. The selection probabilities of nonsampled cases are
known for systematic PPS design under study, but they are often not included as part of
the data file for estimation. Hence transmission of this information to the data user is
important if the gains in efficiency of modeling are to be realized.

An important issue not discussed here is inference. That is, variance estimation and
coverage of confidence intervals for the population total. Such issues are discussed in
Zheng and Little (2002). Simulations show that the p-spline estimators with their
variances estimated using jackknife techniques yield better design-based inference
than alternatives based on the HT estimator. In a future study we plan to make exten-
sions of p-spline methods to be applied for nonnormal or binary outcomes, and exten-
sions to multistage designs involving nonconstant sampling probabilities at more than
one stage of selection.
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