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Poisson Mixture Sampling Combined
with Order Sampling

Hannu Kréger," Carl-Erik Siirndal?, and Ismo Teikari®

The term Poisson Mixture (PoMix) sampling refers to a family of sampling designs based on
the Permanent Random Number (PRN) technique and useful for sampling highly skewed
populations, such as those arising in many business surveys. Traditional Poisson mps
sampling is a special case of PoMix sampling, but some PoMix designs are considerably
more efficient than Poisson 7 ps. When used with common estimators, some PoMix designs
can lead to a considerably lower variance than Poisson 7 ps. PoMix sampling gives a random
sample size, regarded by some as a disadvantage. Therefore, we create in this article a family
of fixed size PoMix designs, by using the central idea in order sampling: The population units
are ordered by a ranking variable, and the sample consists of the n units with the smallest
ranking variable values. This article reports results of a Monte Carlo simulation, where fixed
size PoMix sampling is found to outperform other fixed size wps designs, and where (less
surprisingly) regression and ratio estimators outperform the Horvitz-Thompson estimator.
We show that the variance advantage of PoMix sampling is explained by a pronounced
population skewness combined with a mildly heteroscedastic variance around the linear
regression line.

Key words: Business surveys; permanent random numbers; skewed populations; fixed sample
size.

1. Poisson Mixture Sampling

Poisson Mixture (PoMix) sampling, introduced in Kroger, Sdrndal and Teikari (1999),
consists of a family of designs useful for sampling skewed populations, such as those often
encountered in business surveys. Every PoMix sampling design can be viewed as a
mixture of two traditional Poisson sampling schemes: Bernoulli sampling (defined as
Poisson sampling with a constant inclusion probably for all units) and Poisson wps
sampling (defined as Poisson sampling with inclusion probabilities strictly proportional
to a size measure x;). PoMix sampling can be carried out as Poisson sampling with a
set of inclusion probabilities defined as a mixture, or a linear combination, of constant
probabilities and probabilities proportional to size. An attractive feature of a well-chosen
PoMix design is its ability to produce considerably more precise estimates than Poisson
wps sampling, even though Poisson wps is itself highly efficient, at least in the presence
of a strongly correlated measure of size.
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PoMix sampling is based on the Permanent Random Number (PRN) technique, which
offers the survey statistician a range of possibilities for sample coordination and control of
response burden. A PRN is a uniformly distributed random number attached to a popula-
tion unit at birth. Important early references to PRN methodology are Brewer, Early, and
Joyce (1972), and Atmer, Thulin, and Bécklund (1975). Important new developments of
PRN techniques are known under the collective term of order sampling. Some recent
references are Ohlsson (1995, 1998), Saavedra (1995), Rosén (1997a, 1997b), Aires
(1999, 2000), and Holmberg and Swensson (2001).

We assume that the sampling frame lists the N units of the target population
U=1{l1,...,k,...,N}. To each unit is attached a PRN. Denote by y the variable of inter-
est and by y, its value for unit k. We wish to estimate the population y-total ¥ = >, y, on
the basis of a sample s drawn from U by a PoMix sampling design. (For any set C of units,
Cc U, > ¢ y; will be used as shorthand for " ; < ¢ y.) PoMix sampling produces a sam-
ple s of random size. Denote by n the expected size of s. The PoMix family of designs is
indexed by a continuous parameter, B, the Bernoulli width, which satisfies 0 =B =f,
where f = n/N is the predetermined expected sampling fraction. Poisson 7ps sampling
is obtained for B = 0, and Bernoulli sampling for B = f. Let x; be the positive size
measure for unit k, for example, the number of persons employed in enterprise k. Define
the relative size of k by Ay = nx;/ >y x;. We assume that A, < 1 holds for all k € U. If
the specified expected size n is too large for this to hold, we set aside large units as a
stratum of units selected with certainty, a ‘‘take-all stratum,”” up to a point where the
recomputed relative size is less than unity for all remaining units. In the expression
Ay = nxi/ >y x;, U and n will then refer, respectively, to the set of the remaining units
and the expected size of the remaining sample of units, drawn with inclusion probabilities
strictly less than unity.

As originally presented in Kroger, Sérndal, and Teikari (1999), PoMix is a random
sample size design defined as follows. Fix a value f for the desired sampling rate and a
value B for the Bernoulli width; 0 =B =<f. The choice of B is discussed later. For
k=1,..., N, define and compute

T =Prk€s) =B+ (1 — QA, (1.1)

where Q = B/f. Then carry out N independent Bernoulli experiments, one for each unit,
giving the kth unit the probability 7, = B+ (1 — Q)A; of ‘‘success’ (= selection),
k=1,...,N. The resulting sample size is then random with the expected value
> v m = n, for any value of B € [0, f]. It also follows that when B is chosen as distinctly
larger than zero, no unit will end up having an inclusion probability extremely close to
zero, with the advantage that excessively large weights 1/m; are avoided. The term
“‘Poisson Mixture’’ is appropriate considering that the inclusion probability (1.1) can
be written alternatively as the linear combination 7, = Q@ pt + (1 — Q)w,:rps, where
Q = B/f is the mixing proportion, 7 f E= f for all k € U as in Bernoulli sampling (which
is a special case of Poisson sampling), and 7" = A; = nx;/>_ y x; as in Poisson 7ps.

2. Questions Arising About PoMix Sampling

Kroger, Sédrndal, and Teikari (1999) studied the performance of several ratio type estima-
tors under PoMix sampling and found that if the PoMix parameter B in (1.1) is fixed at a
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value distinctly larger than zero, there is often a considerable variance reduction compared
to Poisson wps (B = 0). We shall refer to this as the variance advantage of PoMix sam-
pling. For the quite skewed Finnish business survey data used in the study, ratio type esti-
mators gave a variance advantage of the order of 50%, relative to B = 0, realized for a
value of B roughly equal to 0.3f. The simulation also included the Horvitz-Thompson
(HT) estimator, which is of more limited interest, because its variance is considerably
larger than that of the ratio estimators, confirming the rule stating that in order to profit
fully from the available auxiliary information, one should use it both at the sampling stage
(in the sampling design) and at the estimation stage (in the estimator formula).

It is well known that a random sample size, which is a feature of the PoMix sampling
just described, can substantially increase the variance of the HT estimator, compared to
when this estimator is used with a fixed sample size design. It is also known that there
is essentially no such penalty for the Generalized Regression (GREG) family of estima-
tors, which includes the ratio estimators. Nevertheless, some users prefer a sampling
procedure guaranteeing a fixed sample size, even though the ultimate sample size is still
unpredictable because of the nonresponse that will almost certainly affect the survey. The
study in Kroger, Sdrndal, and Teikari (1999) generated some new issues. The recent work
on ordered sampling designs by Ohlsson (1995, 1998), Rosén (1997a, 1997b) and others
suggests that it is possible to construct a fixed size variety of PoMix sampling starting from
the PoMix inclusion probabilities given by (1.1), or, putting it differently, to create an
order sampling design giving approximately the target inclusion probabilities (1.1). The
following questions arise:

(1) For a fixed size variety of PoMix sampling, will the variance advantage found for
random size PoMix be preserved? Will GREG estimators continue to improve on
the HT estimator if the latter is no longer handicapped by a random sample size?

(i) If we use a regression estimator (which presupposes a nonzero intercept) rather
than a ratio estimator (which assumes a regression through the origin), will the
variance advantage of PoMix sampling persist? Put differently, if available
information about the population size, N, is also incorporated into the estimator
formula, will the advantage persist? This is a valid question because it could be
argued that if all available information, including N, is exploited at the estimation
stage, then PoMix sampling might not offer any variance advantage.

(iii)) What is the effect of a pronounced population skewness on the efficiency of PoMix
sampling? Is it true that its variance advantage is greater for highly skewed
populations? One may suspect this to be the case because a high skewness may
cause a high incidence of very small units having extremely large sampling
weights under Poisson 7ps. A remedy would be to impose a lower bound on the
inclusion probabilities, as is done in PoMix sampling when B is distinctly larger
than 0.

Several possibilities may exist for imposing a fixed size requirement on PoMix sampling.
The device proposed in Section 4 brings in the principal idea behind order sampling, as
presented in Rosén (1997a,b) and Ohlsson (1995). We combine PoMix sampling (to
get the variance advantage) with order sampling (to get a fixed sample size). One can
safely predict that the fixed size feature will improve the efficiency of the HT estimator
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while leaving essentially unchanged the efficiency of a GREG estimator. With this point of
departure, our objective is to throw light on Questions (i) to (iii). The article is arranged as
follows: Section 3 reviews the main ideas of order sampling. Section 4 introduces fixed
size PoMix sampling. Section 5 presents the estimators used in our simulation, carried
out on six artificially generated populations described in Section 6. Simulation results
and answers to Questions (i) to (iii) are given in the concluding Section 7.

3. Order Sampling

The central idea in order sampling is to compute a ranking variable for each population
unit and then to let the sample be defined by the n smallest ranking variable values. By
definition, the sample size is then the same for all possible samples. The term order
sampling comes from Rosén (1997a, 1997b); an important special case had been consid-
ered by Ohlsson (1995). Order sampling is defined by the following three-step algorithm,
referred to also in later sections:

(1) Compute the ranking variable value for unit k, denoted &,, k= 1,..., N;
(ii) Sort the N units by the size of &, from the smallest to the largest;
(iii) Define the sample to consist of the first # units in the sorted list.

The ranking variable value for unit & is a function of its PRN and its size measure. Several
ranking variables are possible. Ohlsson (1995) used the ranking variable £, = £, where
£1x = ri/Ag; he termed the procedure Sequential Poisson sampling. Rosén (1997a,b)
proposed the ranking variable £, = £,,, where &5, = [ /(1 — rp)][A /(1 — Ak)]*1 and
termed the resulting procedure Pareto 7 ps sampling. He was led to it by minimizing an
approximation to the variance of the HT estimator. Consequently we expect the ranking
variables £, to give a smaller variance for the HT estimator than the &;,. (This result
cannot be assumed to hold for a GREG estimator, if different from the HT estimator.)
For the HT estimator, Rosén (1997b) compared Pareto 7wps with Sequential Poisson in
a variety of cases, showing that the variance reduction is insignificant for a sampling
fraction of 0.1; for a sampling fraction of 0.3, it ranged up to a few percent, but remained
modest at usually less than 3%.

The quantity A; appearing in the expressions for £, and £,; is now called the farget
inclusion probability for unit k. It differs somewhat from the realized inclusion
probability. But Rosén (1997a,b) showed that for various order sampling schemes,
including Pareto 7ps and Sequential Poisson, the realized inclusion probabilities 7 are
very close to the targeted ones, that is, 7, = A, with excellent approximation. Our simula-
tions, carried out under the extensions of the technique spelled out in Section 4 below,
leave no reason to believe otherwise. The closeness of the actual inclusion probabilities
of Pareto wps to their target values has been studied, for example, in Aires (1999), for
small and moderate sample sizes.

4. Combining PoMix Sampling and Order Sampling

In this section we define fixed size PoMix sampling, using the ranking idea in order
sampling. We define a new ranking variable £, as a function of the PRN, r;, and of the
modified relative size defined by A,oq x = B + (1 — Q)A,. Recall that A ;.4 4 is the exact
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inclusion probability of k under PoMix sampling. For fixed size PoMix, now to be defined,
A nod. . becomes the farget inclusion probability of k.

Fixed size PoMix sampling (Sequential Poisson variety) is defined as follows: Step (i) of
the three-step order sampling algorithm in Section 3 is carried out with the ranking vari-
able values £, = & noa x>, K =1,..., N; where &1 04 ¢ = 7r/Amoq. k- Steps (ii) and (iii) of
the algorithm are as before. This scheme was used for the simulations reported in Section
6. There are two special cases of interest: (1) Sequential Poisson sampling is obtained for
B = 0; (2) Simple Random Sampling Without Replacement (SRS) is obtained for B = f .

We can obtain a fixed size PoMix sampling (Pareto wps variety) by a corresponding
modification of the ranking variable for Pareto 7ps. The ranking variable is then defined
as & = &rmod.k> Where £5100. 0 = [11 /(1 — 1)][A oa, 1 /(1 —Amod,k)]_l. This alternative
was also studied in our simulations, but since there were no appreciable gains in efficiency
— and sometimes small losses — the results for this option are not shown in Section 7. The
conclusion is not surprising, considering that the advantage that Pareto 7 ps may have for
the HT estimator is not automatically transferable to a GREG estimator. Pareto 7 ps is the
special case obtained for B = 0.

Fixed size PoMix can also be carried out with an arbitrary starting point D in the unit
interval. Then, in the definitions of & 04, and &, 04,4, replace ry by r{ = r, — D if
D<ry=1andbyr{ =r,— D+ 1if 0=<r, =D. The rest of the algorithm is as before.

5. Estimators Included in the Simulation Study

Our simulation included the Horvitz-Thompson estimator,

Yyr = Z ag Yy (.1
)
with a; = 1/m;. Its main function is to provide a benchmark with which to compare the
better alternatives belonging to the GREG family of estimators, which can be written in
the general form

Yoreg = Z Wi Yk (5.2)

where wy = a,g;, with g, = 1 4+ N,x;/c, where N, = (X — Xpur) (3, apxi x4 /cp) !
and X HT = 2 A Xy, where x; is the vector of auxiliary variables whose population total
X =y x; is assumed known. The ¢, are specified constants. A standard choice is
¢y = 1 for all k; other choices have only a mild effect on the variance of IA/GREG. Equiva-
lently, (5.2) can be written in the ‘‘regression form,’’ that is, we have IA/GREG = IA/HT+
(X — Xy7)'b, where the term (X — Xp7)'b with b = (3, ap X X4 /en) ™ S apXeyi /ey
represents a regression adjustment to the HT estimator. As a result, }A’GREG has a
considerably smaller variance than IA/HT whenever the regression of y on X is strong.

In the simulations reported in Sections 6 and 7, we used a unidimensional, continuous
x-variable. The x;-vector is therefore either x; = (1, x;)’, corresponding to a regression
with intercept, or X; = x;, corresponding to a regression without intercept. In the first
case, with x;, = (1, x;) and ¢, = 1 for all k, (5.2) gives the regression estimator

Yiee = N3, + (X — N&,)b (5.3)
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with X = > x; and

D5 ar(yi — F)0g — ) | 5 = D s QX 3, = D5 Ak Vi
Seae—x)* T T a7 T Y

In the second case, letting x;, = ¢; = xi, (5.2) gives the ratio estimator

Zs Ar Yk
Zs A Xy

In the literature one can find support for other c,-weights than those just mentioned (see,
for example, the discussion in Brewer 1999 and Sdrndal 1996). The latter reference recom-
mends ¢, = 1/(1 — ay); the estimators with these weights (and x;, = (1, x;)" or X; = x; as
earlier) were also tried in the simulation, but led to no significant variance reduction
compared to (5.3) and (5.4).

b=

Yea = X (5.4)

6. Description of the Simulation

Two factors that affect the variance advantage of PoMix sampling and need to be studied
are: (i) the skewness of the population, and (ii) the residual Varlance pattern around the
regression line of y on x. We examined the three estimators, Y REG > YR 4 and Y wr, under
fixed size PoMix sampling from six artificially created populations representing different
conditions of skewness and residual variance. Each population is of size N = 1,000 and is
generated as follows. First, create 1,000 x,-values according to a specified distribution
shape. Then, for each given x;, generate y, in such a way that the regression of y on x
is linear through the origin, kK = 1,...,1,000. Two different Weibull distributions were
used, resulting in two sets of x;-values. Three different values were used for the parameter,
denoted p, that determines the heteroscedastic residual variance pattern around a linear
regression of y on x. This gave a total of 2x3 = 6 populations, each consisting of
1,000 pairs (xi, yi)-

The Weibull distribution function with parameters o >0, yv>0 is given by
F(x) =1 — exp(—yx®) forx > 0. We worked with the cases « = 1,y = 2 (an exponential
distribution, thus rather skewed) and « = 5, v = 2 (more highly skewed). The expected
value of x equals 1 5 in both cases; the skewness equals 2.0 for the exponential and 6.6
for the more highly skewed distribution. (The measure of skewness is defined as the
third central moment divided by (variance)3/2.) For each of these two cases, we used
the inverse of the distribution function to obtain 1,000 *‘systematically spaced’’ x;-values,
as x; = [— In(1 — P)/v]""* where P, = (k — 0.5)/N; k= 1,..., N = 1,000.

Next, given x;, we created the corresponding value y;, k = 1,..., 1,000, as arealization
of the Gamma (a, b) distribution with the density f(y) = [F(b)a B ! b exp(—y/a) for
y >0, where a and b are speciﬁed so that y; conditionally on x; has the expected value
Bxy and the variance ¢ x}, for a specified exponent p, and suitably chosen values of
and ¢>. For unit k, this was realized letting a = (oz/B)xk r=l b= (32/ ))c2 P because
this choice gives the desired properties E(y;|x;) = ab = Bxk and Var(yy|x;) = a’bh =
azx,f. We used the three values p =1, p = 1.5 and p = 2. We fixed 8 = 2 as a common
theoretical regression slope for all six populations, whereas the value of 0% was adjusted so
that the theoretical coefficient of correlation between x and y is always 0.90. We
thus obtained six sets of points (x, y;), k = 1,..., 1,000, which share the following
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characteristics: The mean of x is roughly %, the mean of y is roughly 1, the computed
regression line of y on x is approximately y = 2x, the correlation coefficient computed
on the 1,000 realized points (xi, y;) is close to 0.90. The six sets differ in regard to
such aspects as the variance of y and the heteroscedastic variance pattern around the
regression line.

We drew 10,000 repeated fixed size PoMix samples, for each of a number of different
values of B € [0, f]. For the exponential case (o = 1), the size of each sample was
n = 100 out of N = 1,000, for a sampling fraction of f = 0.10. For the more skewed
case (o = %), the sample size was n = 87 out of N = 987, for a sampling fraction of
f = 87/987 = 0.088, because 13 out of the original 1,000 units were set aside as a take-all
stratum, following the procedure presented in Section 1.

We examined both the Sequential Poisson and the Pareto wps variety of fixed size
PoMix, but results are reported in Section 7 only for the former variety, for reasons already
mentioned. For each realized sample we computed the three estimators Y REG> IA/R 4 and
Yyr. as given by (5.3), (5.4), and (5.1) with a; = a} where af = 1/A oa. - That is, we
trust the contention that the realized inclusion probabilities are sufficiently close to the tar-
geted ones, A 4., SO that no appreciable bias will affect the estimates; this was in fact
confirmed by our simulation. We computed various Monte Carlo performance measures
for each estimator, )A/REG, lA/RA and IA/HT. Letting Y denote one of these, we computed
MCEIA/, MCVY , that is, the Monte Carlo expectation and the Monte Carlo variance,
defined as the mean and the variance, respectively, of the 10,000 realized values of Y.
The Monte Carlo measure of the relative bias is then (MCE Y — Y)/Y. As expected, this
quantity was always very near zero, so results on the relative bias are omitted in the tables
which follow.

Although variance estimation is not the primary objective in this article, we also
computed an estimated variance XA/()A’) for each of the 10,000 estimates, as well as the
Monte Carlo expectation, MCEV(Y) defined as the mean of the 10,000 realized values
of the variance estimator V(Y) associated with ¥. We constructed the variance estimator
from the idea that the first and second order inclusion probabilities under fixed size PoMix
are in close approximation to their exactly known counterparts under random size PoMix.
That is, we acted as if 7, = A oq.x = B+ (1 — Q)A; and 7y = 7 7, for all k # €. The
variance estimator for ¥ = )A/REG and ¥ = f’R 4 1s then of the simple form

V() = ai(ai — 1(grer) (6.1)

where agf = 1/A 00, and the weights g, given in (5.2), and the regression residuals
e, =y — X; b are specific to each of the two estimators. Despite the simple construction,
this variance estimator worked well in most cases. For Y57, we used the expression

A 1 ~ O\
V) = o5 2 (1= Awea ) ( e YHT> (6.2)

For each sample, we also computed the confidence interval Y +1.96 \A/(f/), targeted for
an approximate 95% confidence level. The realized coverage rate (the percentage of the
10,000 confidence intervals that contain the true total Y) was close to the desired 95%
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rate in most cases, and for this reason, results on coverage rates are omitted in the tables
which follow.

The 10,000 repetitions were realized as follows: First, assign PRN’s (that is, 1,000
independent realizations of the Unif (0, 1) random variable) to the 1,000 units, then, using
these PRN’s, realize 100 fixed size PoMix samples (each sample replaced), then assign
new PRN’s to the 1,000 units, realize 100 more samples, and so on until 100 PRN assign-
ments have been realized, each with 100 drawn samples. The total number of repetitions is
thus 100 x 100 = 10,000. The rationale for reassigning the PRN’s is to create smoother
conditions for the Monte Carlo experiment. In the simulation, each new sample selection
was set in motion by a new start value, D, drawn at random in the unit interval and used for
computing the N ranking variable values as described at the end of Section 4.

7. Results and Conclusions

Our comments in this section on the simulation results make use of the following terms in
regard to the six generated populations: Those with p =1 and p = 1.5 are called
“‘moderately heteroscedastic’’; those with p =2 ‘‘markedly heteroscedastic’’; those
with o =1 5 “‘highly skewed’’; and those with o =1 “moderately skewed.”” By ‘‘the
variance advantage of PoMix’’ for a given estimator (YREG or YRA or YHT) we mean
the difference, if positive, between that estimator’s variance under PoMix with B =0
and the variance of the same estimator under PoMix sampling with a value of B at or in
the neighbourhood of the value that yields the smallest variance, in this case 0.02 to
0.05. The “‘relative variance advantage’’ is the difference divided by the variance realized
for B = 0. ‘‘Better than’’ means ‘‘has lower variance than.”

The simulation results for MCVY and MCE ‘A/(f/) are shown in Table 1 (for the highly
skewed population, o = %, and the three values of p), and in Table 2 (for the moderately
skewed, exponential population, o« = 1, and the three values of p). The results in both
tables refer to Sequential Poisson PoMix sampling for different Bernoulli widths B
between 0 and f, where f = 87/987 = 0.088 (for o = %), and f =0.10 (for a = 1).
Here, B = 0 represents Sequential Poisson sampling (the pure variety); and B = f repre-
sents SRS. Our results for Pareto wps PoMix are not reported, because the differences
compared to the Sequential Poisson variety were without consequence. As for the Monte
Carlo error in this simulation limited to 10,000 repetitions, examination of subsets of the
results suggested that the last decimal in the tables may not be ‘‘safe’” for the Monte Carlo
variance MCVY ; on the other hand, the Monte Carlo expected variance estimate,
MCE\A/(IA/ ), showed more stability, and the tabulated last decimal is likely to be correct.
We now comment on the results for the estimators, f/REg, Y ra and }A’HT.

7.1.  The variance advantage of PoMix for IA/REG and IA/RA

The first part of Question (i) of Section 2 is answered in the affirmative. For both
estimators, the variance advantage is considerable for the moderately heteroscedastic
populations (p = 1 and p = 1.5), but nonexistent, as expected, for the markedly hetero-
scedastic population (p = 2); see an analysis in Kroger, Sérndal and Teikari (1999).
Further, the variance advantage is greater for the highly skewed population (« = %)
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Table 1. Monte Carlo variance of point estimator, MCVYA; Monte Carlo expectation of variance estimator,

MCEV(Y). All entries in thousands. Upper table: o = % p = 1; Middle Table: o = % p = 1.5; Lower table:
1

a=3;p= 2

Width MCVY MCEV(Y)
B " " . . " -
YreG Yra Yur YreG Yra Yur
0.000 10.95 9.90 9.90 9.30 9.78 9.91
0.010 6.24 6.53 6.70 6.40 6.37 6.65
0.020 5.20 5.57 6.14 5.84 5.82 6.48
0.030 5.18 5.54 6.95 5.55 5.52 6.67
0.040 5.19 5.56 7.51 5.50 5.47 7.25
0.050 5.22 5.62 8.38 5.55 5.56 8.22
0.060 5.52 5.93 9.78 5.66 5.67 9.64
0.070 6.07 6.53 11.81 6.13 6.16 12.18
0.080 6.60 6.98 16.55 6.78 6.78 16.77
0.088 8.36 8.62 24.86 8.01 8.02 25.33
Width MCVY MCEV(Y)
B A " . . " -
YREG YRA YHT YREG YRA YHT
0.000 2.79 2.11 2.11 2.83 2.83 2.24
0.010 2.05 2.06 2.26 2.06 2.06 2.26
0.020 1.87 1.91 2.51 2.06 2.06 2.63
0.030 1.87 1.91 2.97 2.12 2.12 3.16
0.040 2.15 2.19 3.80 2.25 225 3.89
0.050 2.32 2.38 455 2.45 2.45 491
0.060 2.98 3.00 6.73 2.74 2.74 6.41
0.070 3.40 3.36 8.54 3.22 3.22 8.81
0.080 4.49 432 13.83 4.03 4.03 13.20
0.088 6.45 5.91 21.11 521 521 21.17
Width MCVY MCEV(Y)
B " n n . " -
YREG YRA YHT YREG YRA YHT
0.000 1.03 0.91 0.91 1.07 0.97 0.98
0.010 1.10 1.10 1.44 1.04 1.03 1.38
0.020 1.15 1.15 1.92 1.15 1.15 1.99
0.030 1.38 1.37 2.90 1.29 1.29 2.77
0.040 1.50 1.47 3.96 1.48 1.48 3.81
0.050 1.70 1.66 5.18 1.74 1.74 521
0.060 2.27 2.18 7.35 2.09 2.09 7.27
0.070 2.99 2.80 9.75 2.68 2.66 10.63
0.080 481 4.29 16.62 3.63 3.61 16.80
0.088 6.92 5.87 28.64 5.01 5.03 28.52

than for the less skewed population (o« = 1). When a variance advantage exists, it is great-
est for B-values in the range 0.02 to 0.05. To illustrate, for « = %, p = 1 the relative var-
iance advantage is between 40% and 50% for both estimators, while for « = 1, p = 1, it
drops to about 20%.
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Table 2. Monte Carlo variance of point estimator, MCVYA; Monte Carlo expectation of variance estimator,
MCEV(Y). All entries in thousands. Upper table: o = 1; p = 1; Middle table: o = 1; p = 1.5; Lower table:
a=1p=2

Width MCVY MCEV(Y)
B " " . . " -
YreG Yra Yur YreG Yra Yur
0.00 1.81 2.09 2.09 2.19 2.06 2.08
0.01 1.54 1.83 1.93 1.89 1.84 1.97
0.02 1.51 1.75 2.15 1.78 1.74 2.11
0.03 1.51 1.74 2.44 1.72 1.70 2.39
0.04 1.47 1.68 2.77 1.69 1.68 2.79
0.05 1.45 1.63 3.14 1.68 1.68 3.30
0.06 1.53 1.67 4.00 1.71 1.71 3.99
0.07 1.65 1.76 5.04 1.75 1.75 4.89
0.08 1.72 1.83 6.02 1.81 1.82 6.10
0.09 1.88 1.95 7.58 1.91 1.92 7.89
0.10 2.05 2.03 11.66 2.08 2.08 10.74
Width MCVY MCEV(Y)
B " - . . " -
YREG YRA YHT YREG YRA YHT
0.00 1.24 1.33 1.33 1.42 1.32 1.34
0.01 1.16 1.26 1.41 131 1.27 1.43
0.02 1.19 1.28 1.73 1.30 1.27 1.70
0.03 1.26 1.33 2.10 1.30 1.28 2.06
0.04 1.33 1.39 2.60 1.33 1.32 2.53
0.05 1.33 1.37 3.06 1.38 1.37 3.12
0.06 1.42 1.44 3.87 1.45 1.43 3.86
0.07 1.52 1.51 474 1.53 1.52 4.82
0.08 1.63 1.60 6.02 1.64 1.63 6.13
0.09 1.91 1.79 8.03 1.79 1.77 7.96
0.10 2.19 2.00 11.58 2.01 1.98 10.91
Width MCVY MCEV(Y)
B - - . . " "
YREG YRA YHT YREG YRA YHT
0.00 0.98 0.95 0.95 1.04 0.94 0.95
0.01 0.97 0.96 1.08 1.00 0.95 1.10
0.02 0.96 0.94 1.36 1.02 0.99 1.40
0.03 1.13 1.09 1.83 1.06 1.03 1.80
0.04 1.20 1.12 2.40 1.11 1.09 2.31
0.05 1.23 1.12 2.82 1.19 1.16 2.95
0.06 1.36 1.22 3.81 1.28 1.25 3.77
0.07 1.54 1.36 4.85 1.39 1.36 4.84
0.08 1.83 1.54 6.20 1.54 1.52 6.31
0.09 2.17 1.75 8.48 1.74 1.74 8.48

0.10 2.65 2.07 12.77 2.01 2.06 11.96
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7.2.  The variance advantage of PoMix for )A’HT

For f’HT a clear variance advantage of ﬁxed size PoMix exists for the least heteroscedastic
case (p = 1). It is roughly 40% for o = =1, and roughly 8% fora =1,p = 1. But
from the outset, Y, yr 18 of more limited 1nterest than YREG and YR A, because it can be taken
for granted that a use of the available auxiliary information both in the sampling design
and at the estimation stage (as done in f’REG and )A/RA) is at least as good as limiting its
use to the design stage only (as done in IA/HT). This is confirmed by our finding for all
six populations that when B is distinctly larger than 0, the variance of Y ut exceeds that
of IA/REG and IA/RA, sometimes considerably. The second part of Question (i) of Section 2
is thereby answered in the affirmative.

7.3.  Comparing f’REG with IA/RA

Question (ii) in Section 2 receives an affirmative answer from our study in that the
variance advantage for IA/RA is also present in IA/REc;. As described in Section 6, the popula-
tions were constructed to have a linear regression of y on x with a zero intercept term,
which supports an a pr10r1 belief that YREG should not realize a smaller variance than
YRA , and that instead Y, rEG May incur a slightly higher variance than Y 4 because of ‘‘over-
fitting.”” Nevertheless, our results for the moderately heteroscedastic populations (p = 1
and p = 1.5) show a small but clear variance advantage for }A’REG as compared to Y » for the
B-values 0.02 to 0.05 of particular interest. The variance advantage is around 7% for
a= % p = 1. However, for o = % and B = 0, the ‘‘normal expectation’’ holds that Y, RA
has the smaller variance. The Table 1 entries of 10.95 (upper table) and 2.79 (middle table)
may seem unduly large, but we believe that they are correct to within reasonable Monte
Carlo error limits. Likewise, for values of B in the upper range (when the sampling
approaches a selection with equal inclusion probabilities), Y, R4 Tetains a certain advantage
over IA/REG, for all six populations but one. Our result is noteworthy in that it shows that it is
possible for Y, »ec (Which is based on the idea of a nonzero intercept) to have a distinctly
smaller variance than ¥ =4 (based on a nonzero intercept) even when there is no intercept in
the population data. This supports the idea that since Y, rEG Incorporates additional auxili-
ary information (namely, the population size N), it should have lower variance than IA/RA at
least under certain conditions.

7.4. The effect on the results of the skewness

Question (iii) in Section 2 asked about the effect of high skewness on the variance
advantage of PoMix. We note that the population characteristics that seem to enhance
the variance advantage are a high skewness (a = %) and a moderate heteroscedasticity
(p = 1.5 and, to an even greater extent, p = 1). A strikingly large variance advantage
is obtained for the highly skewed case o = % When the population contains many units
with x-values just slightly larger than O, then their large sampling weights under
Sequential Poisson sampling (B = 0) will cause a large and erratic contribution to
the estimate of the population total. This effect is mitigated by taking B larger than
Zero.
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7.5.  The variance estimator

The proposed variance estimators (6.1) and (6.2) work satisfactorily. That is, MCVY and
MCEV(Y) are close in most cases; a more noticeable discrepancy is evident only for the
case of Yppg with e =4, p = 1.

7.6.  Concluding comment

This article has left unanswered the question of an optimal choice of B. Based on the
experience available, the use of a B-value in the range 0.2f to 0.5f is recommended.
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