
Predicting Natural Gas Production in Texas: An Application
of Nonparametric Reporting Lag Distribution Estimation

Crystal D. Linkletter1 and Randy R. Sitter2

There exists a delay between the production of natural gas by states in the U.S. and the
reporting of that production. As a result, the true volume of natural gas produced in a given
month is not known until a year or more after production. It is important to have earlier
and more accurate production estimates. In this article we apply nonparametric
reporting-lag-distribution estimation originally developed to analyze epidemiological,
insurance, and product warranty data, and demonstrate its simplicity and effectiveness in
producing better early estimates of natural gas production in Texas.
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1. Introduction

Maintaining current records of energy resources is vital for balancing supply, demand, and

cost. The United States has a particular interest in tracking natural gas production as the

U.S. and worldwide consumption of natural gas is expected to grow more rapidly than that

of any other fuel source over the next 20 years (Report #:DOE/EIA-0484, 2005). With this

growth in demand will come added pressure on natural gas supplies, increasing the

importance of maintaining accurate estimates of production.

The Energy Information Administration (EIA) is the agency of the U.S. Department of

Energy responsible for the collection, analysis, and reporting of energy-related data.

Traditionally, the EIA collects data on natural gas production from each state through a

survey completed by state agencies. The rates reported shortly after production are known

to underestimate the true monthly production rates. The EIA’s problem of interest is

finding a way to get early, yet more accurate, estimates of production rates.

The agency which reports Texas natural gas production, the Railroad Commission

of Texas (RCT), maintains particularly good records. Within one month of each

production month, the RCT reports an initial production rate for that month. This rate,

however, is subsequently revised monthly until there are no further changes reported

q Statistics Sweden

1 Simon Fraser University, Department of Statistics and Actuarial Science, 8888 University Drive, Burnaby,
BC V5A 1S6, Canada. Email: cdlinkle@stat.sfu.ca
2 Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
Email: sitter@stat.sfu.ca
Acknowledgments: This research was funded by a grant from the Natural Science and Engineering Research
Council of Canada. The authors thank the members of the ASA Advisory Committee to the Energy Information
Administration for comments, in particular Jay Briedt, Nick Hentgartner, and Moshe Feder. The authors also
thank John Wood for his critique. Special thanks to John Vetter of EIA for his comments and helpful suggestions.

Journal of Official Statistics, Vol. 23, No. 2, 2007, pp. 239–251



and it is assumed that the true production rate for the month is known. Generally a

month’s true production rate is not known until approximately a year after production.

Initial attempts by the EIA to deterministically calibrate early reported rates to the

final reported rates showed some promise, but were complex and ad hoc (see

Linkletter 2002). Straightforward parametric modelling with time-variant parameters

was also tried, but lacked motivation, involved overly complicated updating and did

not perform as well (see Linkletter 2002). Through further exploration of the monthly

data and subsequent discussions with the EIA, we consider adjustments to initial

values as reflecting a distribution of plausible delays in reporting to the RCT. This

would rationalize the observed pattern of updated production totals. As a result, the

purpose of this article is to present natural gas production prediction as an important

new application of reporting-delay-adjustment methodologies.

The notion of adjusting for reporting delays to more accurately monitor an event has

already been studied in detail for epidemiological, insurance, and product warranty

applications. Examples include delays in general practitioners’ reporting AIDS cases to

central collecting agencies (e.g., Harris 1990; Zeger, See, and Diggle 1989), delays

between infection with the AIDS virus and the onset of clinical AIDS (Lagakos, Barraj,

and De Gruttola 1988), incubation times between blood transfusions and AIDS infection

(Kalbfleish and Lawless 1989), lag times between repair claims and the entry of claims

into a product warranty database (Kalbfleish, Lawless, and Robinson 1991), and the delays

in reporting of liability claims in casualty insurance (Kaminsky 1987).

In this study, we apply versions of these ideas to the Texas natural gas production data.

Unlike what is the case in many related applications, the individual observed responses are

unavailable; only the cumulative reported total over time is available. But the performance

of the methods appears to be satisfactory for many purposes. The value of this work is

three-fold: first, the method has been implemented at EIA for the past year with good

performance; second, the implication of reporting delays in Texas combined with the even

poorer data from other producing states has prompted the EIA to work toward a more

direct monthly natural gas survey of producers instead of the current procedure of using

data reported by the state, which should eventually yield richer data with individual

producer-level reporting times from which to adjust for lags, as well as more direct control

over the frame, selection procedures and estimation; and third, it is quite possible that

other government agencies which rely on reporting procedures for collecting information

may also benefit from the methodology.

An outline of this article is as follows. In Section 2, we present the Texas natural gas

production data in more detail, highlighting trends observed in reporting. To better predict

natural gas production that has occurred but has not yet been reported, we focus on using a

nonparametric estimate of the reporting lag distribution (e.g., Lagakos, Barraj, and De

Gruttola 1988; Brookmeyer and Liao 1990; Lawless 1994). This methodology is reviewed

in Section 3 within our context of predicting Texas natural gas production. Specifically, we

show that it yields reasonably accurate estimates of production rates within three months

of production and is simple to implement. In addition, a method for constructing pointwise

prediction intervals is presented. Finally, we conclude in Section 4 by discussing some of

the interesting features of the Texas data that do not perfectly fit into the nonparametric

reporting lag estimation framework and that suggest room for future research.
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2. Texas Natural Gas Production

For this study, monthly production data collected by the RCT is available for the

production months January 1994 (t ¼ 0) to October 2001 (t ¼ 93). For each production

month t ¼ 0; 1; : : :, a report of the month t production rate is given at lags (in months)

x ¼ 1; 2; : : : ; T 2 t, where T is the month in which the study ends. Here, T ¼ 94, i.e., one

initial reported rate is available for October 2001, while 94 reports are available for

January 1994. Let Ytx denote the cumulative rate of month t production reported by month

t þ x, where by “month t þ x” we mean x months after t. Production rates are reported in

units of billion cubic feet per day (Bcf/d). Owing to the nature of the data collection, the

rate Ytx that is reported may in fact be an estimated amount. We will return to this point

later. In this notation, the last reported cumulative production rate for month t is Ytð942tÞ for

this data set, or YtðT2tÞ in general. It is immediately obvious that the data is right-truncated,

since Ytx is only observed for x # T 2 t, i.e., the available data, {Ytx}, can be arrayed in a

triangular pattern where 1 # t þ x # T . An excerpt from the data is given in Table 1.

As previously mentioned, relatively few revisions occur beyond a year after production

(see Figure 1). However, not knowing production rates until a year after production runs

counter to the EIA mandate of maintaining current records. It is desired to have instead a

good estimate of production rates by three months after production at the latest. Figure 1

shows the rates reported 1, 2, 3, and 12 months after productions (Yt1, Yt2, Yt3, Yt12)

relative to Ytð942tÞ over the study period. We note here that in the following we deal with

missing reports by imputing an average. This is meant to be a quick solution that could be

Fig. 1. Ytx for x ¼ 1; 2, and 3 with Ytð942tÞ for production months January 1994 to November 2000
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Table 1. Cumulative rates, Ytx, reported in the last year of the study

x ¼ 1 2 3 4 5 6 7 8 9 10 11 12

Nov-00 14.60 15.11 15.31 15.40 15.46 15.51 15.59 15.62 15.63 15.65 15.66 15.66
Dec-00 14.15 15.11 15.37 15.51 15.58 15.68 15.74 15.75 15.78 15.78 15.78
Jan-01 14.54 15.21 15.39 15.58 15.64 15.69 15.73 15.78 15.79 15.79
Feb-01 14.66 15.17 15.46 15.53 15.58 15.70 15.77 15.78 15.81
Mar-01 14.52 15.15 15.39 15.50 15.62 15.73 15.75 15.77
Apr-01 14.68 15.23 15.43 15.56 15.69 15.74 15.79
May-01 14.54 15.14 15.36 15.58 15.65 15.71
Jun-01 14.08 14.62 15.34 15.46 15.56
Jul-01 13.95 15.17 15.35 15.44
Aug-01 14.60 14.97 15.25
Sep-01 14.32 14.95
Oct-01 14.33
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refined. It is clear that early reports underestimate true production rates, although the

general production trends over time are captured quite well within three months of

production. Table 2 gives the pointwise average percent relative bias and MSE between

Ytx and Ytð942tÞ for x ¼ 1; 2; 3, and 12. The challenge is to find a reasonable way to shift or

adjust the early reported rates to obtain predictions that are still early, but more accurate.

Evidence of a reporting delay distribution can be seen in Figure 2, which shows two

years of revisions for production months in the calendar year 1999. The horizontal axis

represents the lag at which each revised production rate was given. It can be seen here that

the revision pattern for each month is very similar to that of any other month (and although

not displayed here, this pattern is seen for all calendar years). Knowing that the state

estimated totals for each month are derived from lower-level data suggests interpreting

this pattern as resulting from reporting lags of individual producers. Estimating this

reporting lag distribution and using it to adjust early reports might correct the reporting

underestimation problem. This can be done without individual values. Figure 2 also shows

that the cumulative reported rates Ytx are generally increasing with the reporting lag x,

since most new reports are of more production. The fact that the reported rates are not

strictly increasing over time is likely due to the fact that reported rates are actually

estimates, and subject to error, though the method of estimation is hidden from the EIA. In

the following, we do not make special considerations for this feature of the data. We will

consider some of the implications of this in the final discussion.

3. Adjusting for the Reporting Lag Distribution

Although there are several unique approaches to adjusting for reporting delays in the

literature (Lagakos et al. 1988; Zeger et al. 1989; Harris 1990), we focus on the

nonparametric reporting lag distribution estimation as outlined in Lawless (1994).

Advantages of this approach include that it can be implemented very easily and it allows

for the calculation of pointwise prediction intervals. A subtlety in adapting the method to

the present context is that the approach was originally developed to predict counts of

events (e.g., AIDS cases or warranty claims) that have occurred but have not yet been

reported. For simplicity, however, we view the current problem of predicting natural gas

production as discrete by calling an event the production of one cubic foot of gas per day,

for example.

3.1. Nonparametric Estimation of the Reporting Delay Distribution

In this section, we briefly describe a general method for estimating the reporting lag

distribution and using it to make predictions. Given that reporting ends in month T,

Table 2. Summary of bias and error between Ytx and Ytð942tÞ for

x ¼ 1; 2; 3 and 12 using reported rates made for production months

January 1994 to November 2000

x ¼ 1 x ¼ 2 x ¼ 3 x ¼ 12

Bias (%) 25.5 22.4 21.4 20.2
MSE (Bcf/d)2 0.828 0.181 0.062 0.004
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the overall goal is to predict the production rate for a month t that will be reported by

some month T* . T . For illustration, suppose the latest available revised rate for

month t is Yt3, i.e., the study ended at T ¼ t þ 3. Then, one might wish to predict

what rate would be reported by time T* ¼ t þ 12. Following Lawless (1994), let

FtðxÞ be the cumulative probability that natural gas produced in month t is reported

by month t þ x. To predict YtðT*2tÞ from YtðT2tÞ, Brookmeyer and Liao (1990) and

Lawless (1994) suggest using

ŶtðT* 2 tÞ ¼ YtðT2tÞ

F̂tðT* 2 tÞ

F̂tðT 2 tÞ
ð1Þ

provided the necessary estimates F̂tðxÞ are available. The nonparametric estimation of

FtðxÞ used by Lagakos et al. (1988) and Lawless (1994) proceeds as follows.

Let ytx be the month t rate of natural gas production reported in month t þ x, i.e.,

reported in the interval ðt þ x2 1; t þ xÞ. The amount ytx can be easily found for the Texas

production data by letting yt1 ¼ Yt1 and ytx ¼ Ytx 2 Ytðx21Þ for x . 1. Let f tðxÞ be the

probability that production occurring in month t is reported in month t þ x. Note that

FtðxÞ ¼
Px

r¼0 f tðrÞ.

Fig. 2. Ytx over two years of lag, x ¼ 1; : : : ; 24 for production months in 1999
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Neither f tðxÞ nor FtðxÞ are observable from the data, so consider the conditional

probability

gtx ¼ f tðxÞ=FtðxÞ

Lawless (1994) notes the following properties of gtx. First, gt1 ¼ 1 for all t. Also, for any

d such that 0 , x , d

FtðxÞ

FtðdÞ
¼

Yd
r¼x

{1 2 gtr} ð2Þ

This can be seen by noting that {1 2 gtr} ¼ Ftðr 2 1Þ=FtðrÞ. The probabilities gtx are

observable for x # T 2 t, but interest lies in estimating

F̂tðT* 2 tÞ

F̂tðT 2 tÞ
¼

YT*2t

x¼T2tþ1

{1 2 ĝtx}

which requires estimates of gtx for x . T 2 t. Brookmeyer and Liao (1990) note that this is

similar to the Kaplan-Meier estimator used in standard survival analysis, which turns out

to be a useful point for variance estimation.

To obtain the necessary estimates, a relationship among the gtx over time must be

assumed so that information from past production months can be used. As does Lawless

(1994), assume the gtx are stationary over the last m time periods and into the future, i.e.,

gtx ¼ gx for t þ x $ T 2 mþ 1 ð3Þ

This assumption allows the gtx to vary over time, but through appropriate choice of m

minimizes the dependence on production months far in the past. To obtain maximum

likelihood estimates of gtx for x . T 2 t, use only data {ytx} collected in the last m months

along with the final cumulative reports YtðT2tÞ. Assume that, given YtðT2tÞ, the amounts ytx
for a particular month t, with x ranging from max{T 2 mþ 1 2 t; 1} to T 2 t, follow a

multinomial distribution with probabilities f tðxÞ=FtðT 2 tÞ. Then, the appropriate

conditional likelihood for month t is

Lt /
YT2t

x¼max{T2mþ12t;1}

f tðxÞ

FtðT 2 tÞ

� �ytx

¼
YT2t

x¼max{T2mþ12t;1}

gytxtx {1 2 gtx}
Ytx2ytx

The final step above can be seen by noting that

f tðxÞ

FtðT 2 tÞ
¼

f tðxÞ

FtðxÞ

FtðxÞ

FtðT 2 tÞ
¼ gtx

YT2t

r¼xþ1

{1 2 gtr}

using the property of gtx given in (2). Incorporating two additional assumptions yields

the required estimates of gtx for x . T 2 t. First, include the stationarity assumption given

in (3). Second, assume that the reporting delays for different production months are
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independent. Thus, the likelihood function over all production months is

L ¼
YT
t¼0

Lt /
YT
x¼1

gy:xx {1 2 gx}
Y :x2y:x

where

y:x ¼
XT2x

t¼max{T2mþ12x;0}

ytx and Y :x ¼
XT2x

t¼max{T2mþ12x;0}

Ytx

Using this likelihood (which is a product of binomials), the maximum likelihood estimates

for gx are simply

ĝx ¼ y:x=Y :x; x ¼ 1; : : : ; T

Recalling (1), predictions for T* # T þ t can be made for a production month t using

ŶtðT*2tÞ ¼
YtðT2tÞQT*2t

x¼T2tþ1 {1 2 ĝx}
ð4Þ

We emphasize that predictions can only be made for T* # T þ t. This is sensible for the

following reasons. First, it is risky to assume stationarity into the future, but the

assumption is milder if predictions are not made too far into the future, i.e., if T* is not

much larger than T. Second, it implies that in order to make a prediction for lag x ¼ 12, for

example, one must go back in time until at least one previous month has had production

reported at x ¼ 12.

In the next section we show how this simple reporting-delay adjusted prediction

methodology can be successfully tailored to the natural gas problem.

3.2. Predicting Natural Gas Production

In the natural gas problem, suppose that for a production month t reported rates are given

until T ¼ t þ i, for i ¼ 1; 2; or 3. The aim is to predict the cumulative rate that will be

reported by T* ¼ t þ 12. First, given the data {Ytx} for 1 # t þ x # 94, obtain the

incremental reports ytx. Then, under the stationarity assumption given in (3), the

conditional probabilities gx, x ¼ iþ 1; : : : ; 12, can be estimated by

ĝx ¼

Xtþi2x

j¼max {tþi2mþ12x;0}
yjxXtþi2x

j¼max {tþi2mþ12x;0}
Yjx

¼

Xtþi2x

j¼max {tþi2mþ12x;0}
yjxXtþi2x

j¼max {tþi2mþ12x;0}

Xx

r¼1
yjr

ð5Þ

and the desired predictions using

Ŷt12 ¼
YtiQ12

x¼iþ1 {1 2 ĝx}
ð6Þ

Various values of m can be tried to see which is the most reasonable stationarity

assumption for the data and yields the best predictions. We found m ¼ 6 to m ¼ 9

performed best.
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Although the expression given in (5) appears complicated, the predictions can be

calculated easily. Figure 3 illustrates the data, {ytx}, required to obtain the estimate ĝ4 for

November 2000 when m ¼ 9; ĝ4 is merely the ratio of the sum of cells in the more darkly

shaded box over the sum of all shaded cells.

The performance of the method when applied to the natural gas production data is

demonstrated in Figure 4. In Figure 4(a), the initial reported rate, Yt1, is shown along with

the predictions Ŷt12 found by adjusting Yt1 for the reporting delay using (6) with i ¼ 1, for

several production months. For comparison, Ytð942tÞ is also shown. Figure 4(b) shows the

same using the rates reported three months after production. Clearly, the method reduces

the underestimation problem. Figure 4 also reveals, however, that the poorest predictions

are made in late summer to early fall in 1996. This is a byproduct of the nonparametric

estimation procedure and the size of the assumed window of stationarity. The point

predictions during this time are influenced by the lower production rates in the preceding

6–9 month window. This demonstrates the need to be aware when choosing a window

size. The 6–9 month window we chose performed best overall, though it is not ideal at

every prediction point.

In Table 3 the pointwise average percent relative bias and MSE are given between Ŷt12

and Ytð942tÞ when predictions are made at 1, 2, and 3 months after production (using m ¼ 6

and m ¼ 9). The values with no adjustment (UN in Table 3) are repeated from Table 2 to

aid comparison. These results are averaged over the number of production months for

which predictions were made. The number of months varied slightly depending on the

amount of previous data required for each calculation. Clearly, choosing how many

months after production to wait before making predictions depends on the preferred trade-

off between speed and accuracy. In practice it would be ideal to continuously update

predictions as more reports become available. This can be done easily, and has been

implemented at EIA.

3.3. Variance Estimation and Prediction Intervals

An advantage to making predictions by assuming a probability distribution for the

reporting lag as described in the previous sections is that it yields a simple way to obtain

pointwise prediction intervals for YtðT*2tÞ. From Lawless (1994), an estimate of the

Fig. 3. The data required to calculate ĝ4 for November 2000 when m ¼ 9. Summing over the whole shaded

rectangle gives Y :4 and summing the boxed column gives y:4. The value ĝ4 is y:4=Y :4. The height of the rectangle

is m ¼ 9
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Fig. 4. Predictions Ŷt12 using m ¼ 9 along with Ytð942tÞ for a range of production months
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asymptotic covariance matrix for ĝ ¼ ðĝ1; : : : ; ĝT Þ using multinomial large sample theory

is the T £ T matrix

V̂ĝ ¼ diagðĝx{1 2 ĝx}=Y :xÞ ð7Þ

For ease of notation, let

Ŵt ¼
YT*2t

x¼T2tþ1

{1 2 ĝx}

Then, using (7), the variance of Ŵt can be approximated by

V̂Wt ¼ Ŵ
2

t

XT*2t

x¼T2tþ1

ĝx

Y :x{1 2 ĝx}

� �

which is essentially equivalent to Greenwood’s formula for the variance of the product

limit estimator used in survival analysis (Kaplan and Meier 1958).

The prediction interval calculation given in Lawless (1994) proceeds as follows.

Consider

Zt ¼ YtðT*2tÞ 2 ŶtðT*2tÞ

Using the predictor ŶtðT*2tÞ given by (4), the variance of Zt can be approximated by

V̂Zt
¼

Y2
tðT2tÞ

Ŵ
4

t

V̂Wt

assuming that the totals YtðT*2tÞ and YtðT2tÞ are fixed (not random) amounts. An

approximate 1 2 2a prediction interval for YtðT*2tÞ is then given by

ŶtðT*2tÞ ^ zaV̂
1=2

Zt
ð9Þ

where za is the standard normal 1 2 a quantile.

To illustrate with the Texas production data, if a prediction for month t production, Ŷt12,

was made at t þ 3, the interval of interest would be Ŷt12 ^ zaV̂
1=2

Zt
, with

V̂Zt
¼ {Y2

t3=Ŵ
4

t }V̂Wt. Figure 5 shows the predictions Ŷt12 made at t þ 3 (using m ¼ 9)

for several production months, along with the latest reported totals Ytð942tÞ and the

corresponding pointwise 90% prediction intervals. Only the final production rates for July,

August, and September 1996 fall outside their prediction interval (recall this was the

period with poor predictions).

We caution that the variance estimation and prediction interval calculation described

here is only appropriate for one production month at a time. See Lawless (1994) for a

discussion on constructing simultaneous prediction intervals for a block of predictions.

Table 3. Summary of bias and error for predictions found at t þ i, and unadjusted (UN)

i ¼ 1 i ¼ 2 i ¼ 3

m ¼ 6 m ¼ 9 UN m ¼ 6 m ¼ 9 UN m ¼ 6 m ¼ 9 UN

Bias (%) 2 .27 2 .35 25.5 0.026 0.025 0.18 0.012 0.011 0.06
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4. Discussion

The goal is to find a method for making early yet accurate predictions of natural gas

production. By hypothesizing the existence of individual reporting lags, we are able

to do so using a straightforward reporting-delay-adjustment methodology. In return,

we were able to present an important new application for the methodology. It is

hoped that other government agencies which encounter similar problems may also

benefit.

Although the nonparametric delay-distribution estimation procedure is easy to use and

quite powerful, it is important to point out existing weaknesses and potential areas for

future investigation. As previously mentioned, reported rates are estimated, and as a result

sequential revisions are not strictly increasing as would be expected. Consequently

incremental reports ytx can be negative, and therefore estimates of the conditional

probabilities gx can be slightly less than zero. Allowing the negative estimates or

truncating them to zero are simple solutions, but slightly less than desirable. An alternative

approach may be to assume a parametric form for the delay distribution. As noted by

Kaminsky (1987), one reasonable assumption might be that the conditional reporting lag

distribution is exponential, since reporting is highest in the first few reporting periods and

then gradually tapers off. This would also eliminate the need to discretize the problem, and

may make it easier to incorporate possible serial correlation over time so as to provide a

mechanism for creating tighter prediction intervals.

Fig. 5. 90% prediction intervals for Ŷt12 (found using m ¼ 9) along with Yt3 and Ytð942tÞ
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We also note that the nonparametric distribution estimation does depend on having

monthly revisions. Most states do not currently maintain that level of detailed records,

although the results in this article suggest there are many benefits to doing so. In the end,

our main motivation for using the nonparametric approach despite the concerns that may

exist is the fact that it does work quite well and, most importantly, is extremely easy to

implement and has been implemented by the EIA for the past two years.

Finally, in part, the process and results of this study motivated the EIA to implement a

direct monthly survey of producers. This survey returned its first preliminary results

recently and verified the hypothesized individual reporting lags. As this richer data set

develops over time, more sophisticated methods of correcting for potential lagged

reporting may be possible.
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