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Prediction Theory Approach to Multistage
Sampling When Cluster Sizes Are Unknown

Elizabeth J. Kelly' and William G. Cumberland’

Abstract: A model for two-stage cluster
sampling when sample cluster sizes are
unknown is used to derive an optimal esti-
mator for the population total and to deter-
mine robust sampling strategies. In an
empirical study using a real population,
comparisons were made between the model-
based estimator and conventional estimators.
The results favored the new model-based
estimator over traditional estimators derived

1. Introduction

Model-based inference for finite popula-
tions has provided valuable insight into the
behavior of conventional estimators, and
led to the introduction of new, robust vari-
ance estimators (Royall 1976, 1986; Royall
and Cumberland 1978, 1981a, 1981b; Cum-
berland and Royall 1981). In this paper, we
use prediction theory to study two-stage
cluster sampling when cluster sizes are
unknown. A superpopulation model dis-
cussed by Royall (1986) is used to develop
criteria for evaluating sampling strategies,
i.e., sampling designs and estimators. An
empirical study, using 1970 and 1980 census
data for Los Angeles and surrounding coun-
ties, corroborates the prediction theory
results.
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from randomization theory. In the empirical
study robust sampling strategies suggested
by the theory reduced biases, improved effi-
ciency, and decreased the frequencies of
large errors.

Key words: Model-based estimation; robust
estimators; two-stage cluster sampling;
prediction; empirical study; bias.

2. Two-Stage Sampling with Unknown
Cluster Sizes

The population is divided into primary units
(or clusters) each containing M, secondary
units. The outcome variable y is measured
on the secondary units. The problem is one
of estimating the population total, T =
}:ﬁ":,Zfﬁ, y;y, from the sampled secondary
units.

In the two-stage sampling framework a
sample, s, of n clusters is taken and a sub-
sample, s;, of m; secondary units is drawn
from each sampled cluster. We assume all
sampling is without replacement. The situ-
ation considered here is commonly encoun-
tered, where the M, are known only for
the sampled clusters, but there exist related
auxiliary variables, X;, that are known for
all clusters. The total number of sampled
secondary units is m, = X, m;, while the
sample means of the y; for each cluster are
given by y, = Z;c ylmi, i=1,2,...,n
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Letting r denote the clusters that are not in
the first-stage sample, the following examples
illustrate the notational convention used for
summations of any variable: X, = X, X,

X =n'YX, X =n'Yx,
M; N |
Yi = Yijs M = Z M

J

The quantity f = n/N is the first-stage
sampling fraction and f; = m;/M; is the
second-stage sampling fraction.

3. Conventional Estimators for the
Population Total

A sampling design used by many large sur-
veys consists of selecting the clusters with
probability proportional to a size measure
(X)), and the secondary units with simple
random sampling (PPS-SRS). In this case,
the Horvitz-Thompson estimator is gener-
ally used to estimate the population total,
Ty = Nn~' 2., (M,j, X/ X;). Another com-
mon sampling strategy consists of selecting
both the clusters and the secondary units by
simple random sampling (SRS-SRS) and
then employing the ratio estimator, T, =
Nn~' 2., (M3,)X/X,. Traditionally T, and
T, have been the estimators chosen for
populations where the Y, are thought to
be approximately proportional to the X;.
When no such X; exist, then for SRS-SRS
designs the “unbiased” estimator, T}, has
been suggested (Cochran 1977): T, =
Nn~'Z,, M;j,. The Horvitz-Thompson
estimator, TP, is unbiased with respect to
a PPS-SRS plan and 7}, is unbiased with
respect to an SRS-SRS plan. The ratio esti-
mator, Tg, is biased with respect to SRS~
SRS; however, the bias has been shown to
be negligible for large n (Cochran 1977).
Although these estimators were developed
under traditional sampling theory, insight
into their behavior can be gained when they

Journal of Official Statistics

are evaluated as estimators for the popu-
lation total using prediction theory.

4. Prediction Theory Estimators

The prediction approach to finite popu-
lation sampling treats the y; as realizations
of random variables Y. In this application,
cluster sizes are not known for nonsampled
clusters; therefore, the M, are also treated as
realizations of random variables. The super-
population model proposed by Royall (1986)
describes a population where cluster size is
proportional to a previous size measure and
cluster totals are increasing linearly con-
ditionally with cluster size. The Y, are
assumed to be correlated within clusters but
independent between clusters. Denoting
conditional expectations, variances, and
covariances by E*, Var*, and Cov*, Royall’s
model was the following:

MODEL M,:
LEM) = BX, i=12,...
ii. Var(M;) = 71X,

and Cov(M;,, M;) = 0 i#j
iii. Pr(M; <2) = 0
iv. EXY;) = p j=12,..., M,
v. Var¥(Y;) = o]
vi. Cov¥*(Y;, Yy)

pio; i=k, j#I
_ {0

i #k
vil. n > 2.

Royall (1986) used this model to derive
robust estimators for the error variances
of the ratio and Horvitz-Thompson esti-
mators. We used the model to derive an
optimal model-based estimator for the popu-
lation total and an estimator of its variance.

The parameters B, p, and 1 are constants.
We consider only designs where ‘m, > 2
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and, if m;, > M,, we take m; = M,. We
assume p; is nonnegative; this is not a strong
restriction since it can be shown that p; >
—1/(M, — 1). In many of the analyses that
follow, the restrictions p, = p and 6} = ©°
are made; the model with these restrictions
is denoted M, .

After the sample is observed, the popu-
lation total can be written as the sum of the
observed and unobserved variables

Zzyy + ZZJ’U + Z Zyu

ies jes; ies jer; ier j=
where r; is the set of subunits not included in
the sample s;. The first term is known and
the problem of estimating T is equivalent
to that of predicting the total for the
unobserved y;

ORI

The best linear unbiased estimator for 7,
TyLu, is found by adding the observed total
to the BLU predictor of the unobserved
total. This technique was used by Royall
(1976) for the case where the M, were
known. The BLU predictor can be found by
exploiting a result from prediction theory,
which states that given a k + p random
vector Z with mean U and covariance X

Zp b U = UI) b

|:pr Epk

ka 2:kl«'

the best linear unbiased predictor of Z,
given Z, is

V4

z, -

U, + 2. (Z, — Uy. 4.1

We use this theorem by properly defining Z.
After conditioning on the observed sample
s, r, m;, and s; are fixed. We define Z as the
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N + 2n random vector

[l el
ool

- ((30) -

2= (2 '>)

- (ig7) v

Then, Z has covariance matrix

(Vi 0 Vi Vi ]
2 =
Vl.lll 0 Vm 0
LVI,IV 0 0 VIV |

where V, is the n x n covariance matrix of
Z,, V,y is the n x n covariance matrix of
Z, and Z;;, V,, is the N—n x N —n
covariance matrix of Z;,, etc. The expecta-
tions are given by

E(Z)) = ((uBX; — pm)) i€s
E(Z;) = ((uBX)) ier
EZy) = (mm)) ies
E(Zy) = ((BX)) ie€s.

The matrix V,; is diagonal with elements

cOv<z Y,, Y

jeri jesi

Yij> = (BX; — mi)mipiczg'
The matrix Vv is diagonal with elements

Cov(Z s >=
JET;

pt’ X,
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The matrix Vy,, is diagonal with elements

Var<z

ies;

Yij> = m[(l — pf)(’? + ml'picl;]

and V,y is diagonal with elements ©°X;.
Applying theorem (4.1) gives the predictors

Zi = (M; — m)u

m;p;c;
T BX ) et T o
X (J, —H) I€s
and
= puBX;, ier.

Let w, = mp,/[(1 — p;) + m;p;], then the
BLU estimator for T is

TBLU = Zzylj + z (M; — m)u

ies jes; ies

+ Y (BX, —

ies

mi)wi()_;xi - W

+ BrX..

Substituting M; for BX; in the third term,
gives a nonlinear estimator, T

Tw = Zzyii+Z(Mi_m)

ies jes; ies
x [wy, + (1 — wonl + BrX,.
When the parameters  and p are unknown,

they can be estimated by their BLU
estimators

B = M/‘Y and l:l = Zuiyx‘.

where

m([(1 — pi)c:z + mipio-:?]
e, mf[(1 — P:‘)(’:2 + mipio?].

i

The BLU and nonlinear estimators with j
and {1 substituted for B and p are denoted
Tyu and Ty.. With respect to M, Ty is
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also unbiased and comparing MSEs we find
E(TBLU - T)2 - E(TNL - T)2
Y. [Var(M;) — Var(BX))]

x wi[Var(j,) — Var(p)].

The sum is nonnegative, therefore, Ty, has
smaller MSE than Ty, ;. Deriving this result
takes some effort. The details are supplied in
Cohen (1984). We concentrate on Ty, since
it has smaller MSE than Ty, y.

The estimator Ty, depends on , and w,,
which depend on p,;c? and (1 — p,)o?, and
are generally unknown. For the case p;, =
and o] = o7, Rustagi (1978) notes that M,
is ‘equivalent to a one-way random effects
model: y;, = 0 + o, + g5, i =1,2,...,n,
j=1,2,..., m; where po® = Var(a,) =
o; and (1 — p)o® = Varg;) = o..
Unbiased estimators for 67 and o2 are

(yy — 7,7

~2 L Ny T Ts)

% = né,& (m; — 1)
and

. (¥ — 7,7

2 _ y i

% = némg(m—ﬂ
where

2 _

Sb - n _ l)é(ys,

y = ;;y\,

These are the unweighted sum of squares
estimators (USS) from random effects
analysis. In the following discussion, the
USS estimators are substituted for (I — p)oc’
and po? in Ty, and the resulting estimator
for the population total is denoted T .

5. Model-Based Analysis

5.1. Biases under model M,

When expectation is taken with respect to
M,, T, and Ty are unbiased and thé model-
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based estimator Ty, is asymptotically
unbiased (m; and n large). The “unbiased”
estimator T, is biased

E(T, — T) = NBuX, — X).

5.2.  Model failure — misspecified
expectation

The superpopulation model is a working
model that describes the gross structure of
many real populations. Deviations from this
or any other model are to be expected. An
important part of the prediction approach
to estimation is to evaluate estimators under
model failure and determine strategies that
are robust to such deviations.

In the case of single-stage sampling
(Royall and Cumberland 1981a, 1981b;
Cumberland and Royall 1981) and two-
stage sampling when cluster size is known
(Royall 1976), certain model failures caused
conditional biases. Valliant (1987) showed
that the use of stratification and reasonably
large samples was not necessarily sufficient
to remove these conditional biases. It is not
surprising then to find that conditional
biases exist for certain failures of the
assumptions regarding M,. For example,
when cluster size is not proportional to the
previous size measure, but can be described
by a polynomial with an intercept and quad-
ratic term

EM) = By + B X + BX’

then, under the remaining assumptions of
M, the conditional biases are

E(T, — T) = NuB[(X '), X — 1]
+ NuB,[XX, — ()]

X - X’]
X
X, — )?,.(F)]
X,

E(T, - T) = Nuﬁo[

+ Nuﬁz[
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E(f, — T) = NuB[X, — X]
+ NuB,[(X?), — (X?)]

and

. X - X
E(Ty — T) =~ NuB, T

XX, - XX
+NuB2[( ).X/ ( )]

s

(Note that E(Ty, — T) is an asymptotic
result except when p and o? are known.)
These biases depend on sample characteris-
tics and the theory indicates that the esti-
mators can be protected from such biases if
restrictions are placed on the sampled X;.
The restrictions for T, are (X "), = 1/X
and XX, = (X?) (n-balance (Cumberland
and Royall 1981)). The restrictions for T,
T,, and Ty, are X = X, and (X?), = (X?)
(balance on the first and second moments
(Royall and Herson 1973)). These results
support previous findings from single-stage
sampling (Royall and Cumberland 1981a
and Cumberland and Royall 1981), and
indicate that sampling techniques that force
balance can protect against certain biases in
multistage sampling when cluster size is
unknown.

5.3. Variance estimators

Royall (1986) introduced robust variance
estimators based on the sum of squares of
the residuals, which are unbiased and con-
sistent under the restricted model M,/ and,
under mild conditions on how the sample
and population grow as n and N — oo and
f — 0, these variance estimators remain
consistent under the general model M, .
Royall (1986) noted that a general expres-
sion for the estimator of the population
total is T = N Z,., u, ¥;/n, where u, = X/
X, X/X, and 1 given Ty, T, and T,
respectively. Royall (1986) derived a-general
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expression for the model-based robust vari-
ance estimators

NE

ies

n|N ),

N
+ =Y uM(l

ies

N
+ <Z X? —
i=1

where 9, is an unbiased estimate of Var(Y;)
based on the sum of squares of the residuals,
¥, — (TINX)X,, 0, is an unbiased estimate
of po?,and 87 = %, (y, — 7,Vlom — D).
Substituting the appropriate values of u;
gives the model-based variance estimators
vy, vy, and v, for Ty, T,, and T,. The
variance estimator for Ty, is derived from
the MSE of Ty, under the model M. If
m; = m, then

— S

ies

N
— Z uiXi2> 0,

E(TNL - T)2 = Z (M; — m)2

x [w] Var(3,) + (1 — w}) Var(fy)]
+ (Var(B) + B*) Var() X7
+ (M, — m)a; + 3 (M; — m,)o,

ies

+ BX, 02 + [T°X, + B*(X?),]os

-2 [Z (M, — m)*w,cl

ies

+ 2 (M —m) (M, — m)(1 — w,-)ci]
+ 2M, — m)BX,c;[m
+ p2X, X Var(B).

The variance estimator, vy, is found by
substituting the following unbiased esti-
mators for the unknown parameters

(yy — 3.
A2 i \,
6. = —E E

’ n:ex/rs\l (m - ])
~2 2 l 2

6, = S, — —06,
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S§=———Z(yi, =-Zy,

ies ies

W, = m&,[(m&, + &7)

Var(B) = Z:,(M,- - GX,.)z/<X3 — ZX,-2>

ies

Var(j,) = —Z(y‘, -’
Var(i) = 1/n Var(7,)

7 = X, Var(B)

B — Var(®) and
— 2 — Var(d).

) )
I

6. Empirical Study

The goal of the empirical study was to test
the theoretical results against a real data
set that could not be described exactly by
a model. Such an investigation provides
further insight into the problems of multi-
stage sampling and estimation, and tests the
robustness of the model-based theoretical
results in situations where the model failure
is more complex than that described in
Section 5.2.

In this study, we repeatedly drew two-
stage samples from block statistics for out-
lying areas of Los Angeles County, and all
of Ventura and Orange Counties using the
1970 and 1980 census data. Primary units
were census tracts with previous size
measures, X;, taken from the 1970 counts of
the numbers of blocks in each tract, and
current size measures, M,, taken from the
1980 counts. The outcome measure, y;, was
the 1980 block population. If a census tract
had fewer than twenty blocks in the 1970
census, then it was combined with its nearest
neighbor. This process continued until the
resulting tract had twenty or more blocks.
After this adjustment, there were 420 census
tracts. There were 23,001 blocks ih 1970;
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Fig. 1.

The current size measures, 1980 Blocks per Tract (M;), are plotted against the

previous size measures, 1970 Blocks per Tract (X;). This plot supports the assumption that

the M, are increasing linearly with the X;.

29,102 in 1980, and the total population in
1980 was 4,045,074. Figure 1 is a plot of the
current size measure, 1980 blocks per tract
(M), versus the previous size measure, 1970
blocks per tracts (X;), and supports the
assumption that M, was increasing linearly
with X,. Finding a data set that would
demonstrate this condition was the motiv-
ation for choosing the rapidly growing Los
Angeles suburbs, and Orange and Ventura
Counties. Figure 2 is a plot of the 1980
population per tract, Y;, versus M, and
supports the assumption that Y; increased
linearly with M,. These plots indicate that
the model provides a reasonable description
of this population. However, the model is
not perfect. Although a test for curvature

was not significant, Figure 2 indicates that
there may be some upward curvature in the
data. Figure 1 appears to have an intercept
term and many of the small clusters show
tremendous growth. It is these departures
from the straight line through the origin
assumptions that necessitate robust sam-
pling strategies (5.2).

6.1. Sampling strategies

We took 450 replications for each of five
two-stage sampling plans. Forty-two first-
stage clusters were drawn using simple
random sampling (SRS), approximately
balanced SRS (b-SRS), basket sampling
(Wallenius 1973), probability proportional
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(M;). This plot supports the assumption that the Y, are increasing linearly with the M.

to size (PPS) sampling, and approximately
PPS balanced sampling (b-PPS). For each
first-stage sample, twenty second-stage units
were selected by simple random sampling.
The balance definitions were those given
in Section 5.2. The approximate balance
requirements were such that 5% of the sam-
ples were accepted. The PPS plan consisted
of a random permutation of the first-stage
units followed by a random start systematic
sample with probabilities proportional to
size (X;). Basket sampling (Wallenius 1973)
consisted of forming 10 groups of 42 pri-
mary units having minimum differences
between the sums of the group size measures
(X;) and selecting one of the groups ran-
domly. The resulting samples were extremely

well balanced having sample moments close
to population moments.

6.2. Results

Under PPS sampling (as would be expected
when the data deviate from the model
assumptions) T, T,, and Ty performed
poorly, demonstrating large biases and
MSEs. The estimator T, was equally bad
with SRS or basket sampling, therefore, these
sampling strategies were not considered.
The estimator T}, as the theory predicted
and practice has shown, performed poorly,
having extremely large conditional biases
under SRS sampling. Since T, was equiv-
alent to T under balanced sampling plans,
this estimator was not considered further.



Kelly and Cumberland: Prediction Theory Approach to Multistage Sampling

445

ERROR DISTRIBUTIONS

1.0
> —0o— Tp (PPS-SRS)
5 --=- T, (SRS-SRS)
= o751 .
™)
o
&
& os
=
'—
<
S 025
20
5
O
0.0 .- ! 1 1 1 e ! !
120 -80 -40 0 40 80 120 160
ERRORS * 10000

Fig. 3. The cumulative error distributions for T, (PPS-SRS), T, (SRS-SRS), and T),
(SRS-SRS) show that T\, (SRS-SRS) performed best on the real data — less variability and

less likely to have large errors.

Figure 3 shows the cumulative distribu-
tions of the errors for T, under PPS-SRS,
and T, and Ty, under SRS-SRS. The esti-
mator Ty, had smaller errors and less vari-
ability than the conventional estimators.
For example, the frequency of errors less
than — 500,000 and greater than 600,000
was 30% for T, 18% for Ty, and 10% for
Ty . The relative efficiencies of Tp and T to
T\, (ratio of MSEs) were 0.56 and 0.74,
respectively. Note that T, with SRS-SRS
sampling performed better than 7, with
PPS-SRS sampling. The relative efficiency
of T, to T, was 0.69. The error distributions
of all of the estimators were positively
skewed.

In Figures 4, 5, and 6; bias, (MSE)'?, and
model-based variance estimators (v,)"?,
(vr)"?, (vn)'"? (Section 5.3) were plotted as
functions of sample characteristics. For Ty,
and T, the 450 replications were ordered
according to increasing X, and divided into
10 groups of 45 samples. For each group
bias, (MSE)'?, and (v)'”* were calculated
and plotted versus the group average of the

X.. For Tp_the same procedure was followed
except (X '), was used instead of X,. The
plots demonstrated the conditional biases of
these estimators predicted by the theory
when the model was misspecified (Section
5.2). Similar biases were seen for the ratio
and Horvitz-Thompson estimators in single
stage sampling (Royall and Cumberland
1981a; Cumberland and Royall 1981) and
the combined ratio estimator with stratified
SRS (Valliant 1987). The estimator 7,
had the most severe biases, ranging from
—200,000 to 300,000.

The theory predicted that balanced sam-
pling would reduce or eliminate these biases
for certain types of model failure. To inves-
tigate this result, T and Ty, with b-SRS and
basket sampling, and T, with b-PPS sam-
pling were studied. The results showed that
approximately balanced samples did indeed
reduce conditional biases. For T and Ty,
basket sampling gave the greatest improve-
ment. Figure 7 shows the cumulative distri-
bution of the errors for Ty and Ty, with
basket sampling and 7, with b-PPS safnpling.
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Fig. 4. Bias, (MSE)'”?, and (v,)'" are plotted as functions of (X~'),. The bias plot shows
the linear dependency of conditional biases on (X ~'),, which was predicted by the theory
under certain types of model failure. The (MSE)'? and (v, )'” plots show that the robust

variance estimator developed by Royall tracks the actual (MSE)

marks the n-balance point.

Balanced sampling reduced variability and
the probability of large errors as well as the
conditional biases. Again, Ty, looked good,
having no errors greater than 750,000 or less
than — 450,000, while T had 11% and T,
had 22% outside these bounds. The relative
efficiencies of Ty and T, to Ty, were 0.51
and 0.36, respectively. Again T, was superior
to T. The relative efficiency of T, to T, was
0.7. The error distributions of all three esti-
mators again skewed positively.

The variance estimators were plotted as
functions of sample characteristics X,
(X "), in Figures 4, 5, and 6. Conventional
variance estimators for 7, and T, (Cochran

12

fairly well. The arrow

1977) did not differ significantly from the
model-based estimators for this population.
Therefore, only the results of the model-
based estimators are presented. The esti-
mators, (v,)'?2, (vg)"?, and (v, )"?, tracked
the (MSE)'? quite well, however, the vari-
ance estimator for T, tended to underesti-
mate the variance unless the samples were
approximately PPS balanced.

7. Conclusions

The superpopulation model, M, led to a
nonlinear estimator for the population
total. This estimator (7, ) had theoretical
advantages and, in an empirical stl;dy, per-



Kelly and Cumberland: Prediction Theory Approach to Multistage Sampling

447

THE RATIO ESTIMATOR (%R)
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Fig. 5. Bias, (MSE)'”, and (v )'" are plotted as functions of the sample means. The bias
plot shows the linear dependency of conditional biases on X, which was predicted
by the theory under certain types of model failure. The (MSE)"”? and (vg)'” plots show that
the robust variance estimator developed by Royall tracks the actual (MSE)'? quite closely.

The arrow marks the balance point.

formed better than the conventional esti-
mators (a Horvitz-Thompson estimator,
(T); and a ratio estimator, (T%)). The esti-
mator Ty, with SRS-SRS sampling had
smaller errors and was more efficient than
T, with SRS-SRS or 7, with PPS-SRS.
The estimator T, with SRS-SRS sampling
design had smaller errors and was more
efficient than T, with PPS-SRS. First-stage
PPS designs in conjunction with 7 are com-
monly used in large surveys. This analysis
indicated that T, could have serious condi-
tional biases and large errors, and although
approximate PPS balance reduced these
biases and errors, T, with basket sampling

performed better. We found that Ty, witha
BASKET-SRS design out performed all
other strategies.

The empirical study used census data that
was reasonably described by the model.
However, all estimators showed conditional
biases. This study and others (Royall and
Cumberland 1981a; Cumberland and Royall
1981) have shown that small deviations from
the model could cause serious biases. The
theoretical results indicated that some con-
ditional biases could be reduced by balanced
sampling. The empirical study corroborated
these results and showed that first-stage
balanced sampling not only reduced con-
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plot shows the linear dependency of conditional biases on X,, which was predicted by the theory
under certain types of model failure. The (MSE)"? and (vy,)"” plots show that the model-
based estimator tracks the actual (MSE)'"? quite closely. The arrow marks the balance point.
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Fig. 7. The cumulative error distributions for T,, (b—-PPS-SRS), T, (BASKET-SRS), and
T\, (BASKET-SRS) show that Tv, (BASKET-SRS) performed best on the real data - less
variability and less likely to have large errors.




Kelly and Cumberland: Prediction Theory Approach to Multistage Sampling

ditional biases, but also reduced variability
and the probability of large errors. Basket
sampling produced extremely well-balanced
samples (sample moments close to popula-
tion moments).

The robust variance estimators suggested
by Royall for T, and T tracked the actual
MSE quite well. The variance estimator for
Ty, was derived using unbiased sum of
squares estimators for unknown quantities
in the MSE. Although somewhat cumber-
some to compute, this estimator tracked the
MSE closely on the real population data.

These theoretical and empirical results
indicate that Ty, its variance estimator,
and the BASKET-SRS design deserve
further consideration for two-stage samples
with unknown cluster size when cluster size
is only approximately proportional to a
previous size measure and cluster totals are
approximate linear functions of cluster size.
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