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Reluctance of statistical agencies and other data owners to share possibly confidential or
proprietary data with others who own related databases is a serious impediment to conducting
mutually beneficial analyses. In this article, we propose a protocol for conducting secure
regressions and similar analyses on vertically partitioned data – databases with identical
records but disjoint sets of attributes. This protocol allows data owners to estimate coefficients
and standard errors of linear regressions, and to examine regression model diagnostics,
without disclosing the values of their attributes to each other. No third parties are involved.
The protocol can be used to perform other procedures for which sample means
and covariances are sufficient statistics. The basis is an algorithm for secure matrix
multiplication, which is used by pairs of owners to compute off-diagonal blocks of the full
data covariance matrix.
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1. Introduction

In numerous contexts, immense utility can arise from statistical analyses that integrate

multiple, distributed databases. For example, statistical models can be fit using more

records or more attributes when databases are integrated than when databases are analyzed

separately. Data integration is complicated by concerns about data confidentiality,

including legal, regulatory and even physical (scale of data) barriers. These concerns can

be present even when the database owners cooperate to perform integrated analyses, and

none seeks to break the confidentiality of others’ data.

Within the statistics literature, most attention has been directed to the case of

horizontally partitioned databases comprising the same numerical attributes for disjoint

sets of data subjects. For example, several state or local educational agencies might want

to combine their students’ data to improve the precision of analyses of the general student
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population. Analyses based on sufficient statistics that are additive across the databases

can be performed using secure summation (Benaloh 1987) to calculate these statistics.

Examples include linear regression (Karr et al. 2004, 2005a, b), secure construction of

contingency tables (Karr et al. 2007), data integration (Karr et al. 2007), maximum

likelihood estimation for exponential families (Karr et al. 2007), secure EM algorithms

(Reiter et al. 2004) and adaptive regression splines (Ghosh et al. 2007).

Less attention has been directed to vertically partitioned databases comprising the same

data subjects but containing different sets of attributes. For example, one government

agency might have employment information, another health data, and a third information

about education, all for the same individuals or establishments. Linear regression for

vertically partitioned data is treated in Sanil et al. (2004), but under the highly restrictive

assumption that the response attribute is shared among all the owners.

In the computer science literature, privacy-preserving data mining (PPDM) has emerged as

a promising approach in a variety of contexts (Agrawal and Srikant 2000; Clifton et al. 2003b;

Lindell and Pinkas 2000; Vaidya and Clifton 2004). One root of PPDM is secure multi-party

computation (SMPC) (Yao 1982), of which secure summation is a special case. Algorithms

for horizontally partitioned data have been developed for data mining with association rules

(Evfimievski et al. 2004; Kantarcioglu and Clifton 2002) and model-based clustering (Lin

et al. 2004). For vertically partitioned data, secure analysis methods exist for association rule

mining (Vaidya and Clifton 2002),K-means clustering (Vaidya and Clifton 2003), and linear

discriminant analysis (Du et al. 2004). Some of these techniques are incomplete from a

statistical perspective: for example, estimators are calculated but standard errors and other

quantities that statisticians would regard as integral parts of analyses are not.

Other approaches, some of which have been studied by both statisticians and computer

scientists, include data distortion and randomization. The field of statistical disclosure

limitation is concerned with balancing protection of confidential data values with

dissemination of useful information derived from the data. Examples include protecting

categorical data underlying large contingency tables (Dobra et al. 2002, 2003), servers that

disseminate the results of analyses rather than data (Gomatam et al. 2005a) and data

swapping (Gomatam et al. 2005b). Underlying these methods are quantified measures of

data utility and disclosure risk (for individual records) (Karr et al. 2006a).

The techniques presented in this article are designed to enable the database owners to

perform analyses that none can perform individually because none has access to all the

attributes. They protect the database owners from one another in the sense that only

aggregated information is exchanged. Specifically, we show how to perform regression

and related analyses on vertically partitioned data using an alternative approach to those of

Du et al. (2004) and Sanil et al. (2004).

We assume the database owners will not share data values but are willing to share

sample means and covariances of their individual databases. Our main focus is on

computation of the full data covariance matrix (Section 2), whose computation requires

that the owners surrender some dimensions of their data to each other.

It is important to note that the loss of protection discussed in this article applies only to

the database owners vis-à-vis one another, and only in an aggregated sense of the span of

their databases. Indeed, this is true in general for PPDM. The measure LP defined by (6)

below does not address threats to the confidentiality of data records or the privacy of
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individual data subjects, the traditional focus of statistical disclosure limitation (Doyle

et al. 2001; Willenborg and de Waal 2001), arising from either computation of the full data

covariance matrix or use of it to perform analyses such as regressions. One exception to

this, whereby an agency could learn exact data values held by another agency for one

subject, is discussed in Section 2.4.

From shared means and the securely computed full data covariance matrix, the owners

can perform richer sets of analyses than estimating regression coefficients. These analyses

include inference for the coefficients, model diagnostics and model selection. We note that

the approach of Du et al. (2004) can be modified to share sample covariance matrices,

although the protocol presented in Section 2.1 holds advantages over it. The approach of

Sanil et al. (2004) cannot be so modified.

The article is organized as follows. In Section 2, we provide a description of our method

for computing the full data covariance matrix, under which lies a linear-algebra-based

protocol for computing secure matrix products. Once this matrix has been calculated, it is

possible, as shown in Section 3, to conduct secure linear regressions on arbitrary subsets of

attributes, with proper attention to items such as model diagnostics. This section also

describes extensions to other analyses. Conclusions appear in Section 4.

2. Computation of the Full Data Covariance Matrix

We label the data owners as Agency A, Agency B, : : : , Agency V, even though they

might be private companies or other data holders. The “global” database X, illustrated for

three agencies in Figure 1, is partitioned vertically among the agencies:

X ¼ ½XAXB: : :XV� ð1Þ

Let n be the number of records in the global database, suppose that agency a has pa
attributes, and let p ¼ pA þ · · · þ pV.

A number of issues, some subtle and possibly difficult, underlie the process. First, the

agencies must have a privacy-protecting method of determining which data subjects are

common to all of their databases. The most straightforward way to do this is by means of a

common primary key, such as social security numbers. In some instances, however, it

might be necessary to use record linkage methods (Fellegi and Sunter 1969), or privacy-

preserving versions (Clifton et al. 2003a; Schadow et al. 2002). Second, we assume that X

comprises only complete records. (Methods for addressing systematically missing values

are discussed in Karr et al. (2007) and Reiter et al. (2004).) Third, we assume that the

agencies have aligned their common data subjects in the same order. Finally, we assume

that the sets of attributes in the Xa are disjoint; if not, the agencies coordinate so that each

common attribute is included in only one agency’s data.

Data quality problems (Karr et al. 2006b) may be present but are ignored. For instance,

two agencies may have the same attribute but different values for it. This problem is

detectable (for instance, using a secure dot product), but fixable only using external

domain knowledge. Similarly, the possibility that the agencies’ databases pertain to the

same subjects but not at the same time (e.g., health data are from one year and economic

data from another) can only be dealt with “off-line.”
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We further assume that the agencies are semi-honest: they adhere strictly to protocols

designed to preserve privacy, and perform calculations using their real data. We believe

the semi-honesty assumption is realistic for many data integration settings, including

government agencies seeking to perform combined analyses using their data. Furthermore,

Fig. 2. Pictorial representation of the full data covariance matrix XTX for three agencies

Fig. 1. Pictorial representation of vertically partitioned data. The blocks represent the data values held by three

agencies
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we assume that the agencies do not collude with each other; some implications of this are

discussed in Section 2.3.

The statistical analyses discussed in Section 3 are all based on the ( p £ p)-dimensional

full data covariance matrix XTX, which is shown pictorially, also for three agencies, in

Figure 2. The goal of the agencies is to compute and share XTX in a way that minimizes

the information each reveals to the others about its data values. As that figure shows, XTX

consists of:

On-diagonal blocks of the form (Xa)TXa. Each of these must be computed by one

agency and shared with the others.

Off-diagonal blocks of the form (Xa)TXb, where a – b. Each of these must be

computed by two agencies, and the result shared with the others.

Section 2.1 describes a protocol for computation of the (Xa)TXb using secure matrix

multiplication.

2.1. A Secure Protocol for Computing Matrix Products

Here we use a form of secure matrix multiplication to compute off-diagonal blocks

(Xa)TXb of the full data covariance matrix XTX. For simplicity, consider Agencies A and

B. We write the data of Agency A as

XA ¼ XA
1 X

A
2 : : :X

A
pA

h i

This is an unconventional representation in the sense that the XA
i are columns in Agency

A’s data matrix – each belongs to Rn. Similarly, we write Agency B’s data as

XB ¼ XB
1X

B
2 : : :X

B
pB

h i

We assume that XA and XB are of full rank; if not, each agency removes any linearly

dependent columns.

Agency A and Agency B wish to compute securely the ( pA £ pB)-dimensional matrix

(XA)TXB, and share it with the other agencies. We first describe a generic protocol for

computing (XA)TXB, and then show how it can be applied in such a way that the

information exchanged between the two agencies is symmetric. Our protocol is as follows:

Step 1: Agency A generates a set of g n-dimensional vectors {Z1Z2; : : : ; Zg} such that

ZT
i X

A
j ¼ 0 for all i and j ð2Þ

and sends to Agency B the (n £ g)-dimensional matrix

Z ¼ ½Z1Z2: : : Zg�

A method for generating Z is presented in the Appendix, which yields Zi that are

orthonormal. The choice of g is discussed in Section 2.2.

Step 2: Agency B computes

W ¼ ðI2 ZZT ÞXB ð3Þ

where I is an (n £ n)-dimensional identity matrix, and sends W to Agency A.
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Step 3: Agency A calculates

ðXAÞTW ¼ ðXAÞT ðI2 ZZT ÞXB ¼ ðXAÞTXB

where the second equality holds since ðXAÞTZ ¼ 0, and shares the value of (XA)TXB with

the other agencies.

In view of Step 2, Agency A could instead send the n £ n-dimensional matrix ZZT to

Agency B. On the face of it, this is safer, but in fact the loss of protection discussed in

Section 2.2 does not change.

2.2. Loss of Protection

The absolute and relative protection that the protocol in Section 2.1 provides to Agencies

A and B depends on the parameter g in Step 1. First, consider two extreme cases:

. g ¼ 0: In this case, in (3), W ¼ XB, so agency A has learned agency B’s data exactly.

. g ¼ n2 p: In this case, Agency B knows exactly the orthogonal complement of XA

in Rn. While this does not specify XA exactly, Agency B does know the span of XA.

Neither of these makes sense in general. Note also that the extreme cases are not precisely

symmetric.

A principled method for choosing g is to consider the loss of protection incurred by the

agencies, which we denote by LP(a) for Agency a. We measure loss of protection to one

agency by the number of (linearly independent) constraints the other agency has on its

data. Thus, for Agency A,

LPðAÞ ¼ pApB þ pAg ð4Þ

The first term in (4) represents B’s knowledge of the pA:B entries of (XA)TXB at the end

of the process. The second term reflects that B knows both Z and that ðXAÞTZ ¼ 0 – that

is, (2), which contains pA £ g constraints. One can also view LP(A) relative to the total

“degrees of freedom” in XA, which is n £ pA. Similarly,

LPðBÞ ¼ pApB þ pBðn2 gÞ ð5Þ

The first term is the same as in (4) and the second term reflects that A knows that

rankðWÞ ¼ n2 g

(Indeed, this is why Agency A cannot invert W to obtain XB). The total loss of protection,

as a function of g, is then

LPðgÞ ¼ LPðAÞ þ LPðBÞ ¼ 2pApB þ npB þ ð pA 2 pBÞg ð6Þ

Note that when pA ¼ pB, LPðgÞ ¼ 2pApB þ npB, no matter what the value of g. Harking

back to the two extreme cases, when pA ¼ pB, the total loss of protection is constant, and g

affects only how that loss is distributed between Agency A and Agency B.
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In general, it seems desirable that the loss of protection should be shared equally by the

two agencies. To measure this, we introduce the inequity

IðgÞ ¼ jLPðAÞ2 LPðBÞj ¼ jð pA þ pBÞg2 npAj ð7Þ

Setting I(g) to its minimal value of zero yields the optimal choice of g:

g* ¼
pA

pA þ pB

n ð8Þ

The value of g* in (8) has a natural interpretation: Agencies A and B together possess

pA þ pB attributes, so pA=ð pA þ pBÞ is Agency A’s share of those attributes. When A has a

larger share of attributes, it must surrender more information to B than vice versa.

2.3. Other Equity Issues

The optimal value g* in (7) applies only to computation of (XA)TXB. This is not the only

equity issue associated with computation of XTX.

When the agencies have different numbers of attributes, perhaps the most glaring

inequity is associated with the on-diagonal blocks of (Xa)TXa of XTX. The dimensions of

(Xa)TXa are pa £ pa, and is as shown in Figure 2, these blocks may differ substantially

in size. Without even considering off-diagonal blocks, each agency a is surrendering p2
a

constraints on its data Xa.

Also, the loss of privacy LP(A) in (4) is what Agency A loses to Agency B in the course

of computing (XA)TXB. None of this is fully given up to any other agencies when

(XA)TXB is shared, because no agency other than B knows XB. Other agencies, however,

know different constraints on XB, and second-order computations may be possible.

But Agency A must engage in calculation of (XA)TXb with every other Agency b, which

does increase loss of privacy. However, under the assumption that agencies do not collude,

the loss does not increase. Even if agencies do collude, Agency A can mitigate the effects

by making the Z matrices it sends to other agencies subsets of one matrix. This means that

the agency B for which g* in (8) is largest learns the most about XA, and what any other

agency learns is a subset of this.

2.4. Other Threats to Privacy

The protocol in Section 2.1 is not immune to breaches of privacy. For instance, if the

matrix Z in Step 1 of the protocol is such that ðI2 ZZT Þ contains a column with all zeros

except for a nonzero constant in one row, then Agency A learns from (XA)TW the value of

Agency B’s data for the data subject in that row. Of course, this problem is detectable by

Agency B, which could then simply not respond.

Even when the agencies are semi-honest, disclosures might be generated because of the

values of the attributes themselves. Note that these issues are the result of computation of

XTX by any method, and are neither caused nor alleviated by use of the protocol in

Section 2.1.
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As a simple example, suppose XA includes an attribute that equals zero for all but one of

the data subjects. Even with a legitimate Z, then (XA)TXB will reveal that subject’s value

of XB.

Similar problems arise if XA is sparse and there is reliable prior information on the

locations of nonzero entries. In this case, the effective number of degrees of freedom in XA

is less – perhaps much less – than n £ pA.

Still other issues can occur. For instance, attributes might satisfy constraints of the form

“Gross income $ net income plus federal tax plus state tax,” which have effectively

unpreventable potential to reveal information. Similarly, if one record in XA contains a

dominant attribute value (Willenborg and de Waal 2001), for instance to the extent that it

exceeds 90% of the sum of all values of that attribute, then that value is revealed

approximately in all of the (XA)TXB.

The implications of our methods in settings where data change over time (for example,

longitudinal studies by official statistics agencies) have not been worked out. Clearly

repeated application of our protocol to evolving databases reveals more and more

information.

Finally, there may be problems that are revealed only when analyses are conducted. For

example, Agency A can perform a regression of every other attribute on its attributes.

Should one of those regressions have a high coefficient of determination, then A knows

that it has in its own data a good predictor of that attribute, even if it is owned by another

agency.

One way in which agencies might attempt to deal with such issues would be to share

only some of their attributes. How this would work and whether it would be effective in

preserving privacy are subjects for future research.

2.5. Other Protocols for Secure Matrix Multiplication

The protocol in Section 2.1 is not the only protocol available for secure matrix

multiplication. It differs from other protocols, however, in two important respects. The

first of these is the use of the inequity in (7) as a means of determining the value of g, using

(8). The second is that our protocol has extremely low communication overhead.

The technique introduced in Du and Atallah (2001) utilizes the “1 of out N” oblivious

transfer protocol. While it is arguably more secure, there is an extremely high

communication cost. In this approach, for computation of (XA)TXB, Agencies A and B

agree on two numbers k and m such that k m is very big. The protocol repeats m times, each

involving k transfers of a pA £ n matrix and “1 out of k” transfer of a matrix of size

pA £ pB. Our approach involves only the transfer of the matrices Z and W, and is

substantially more efficient.

Du et al. (2004) proposed a secure matrix product protocol that is more similar to ours.

In their approach, the two agencies generate an invertible matrix M jointly. Then A passes

ðXAÞTMleft to B and B passes ðXBÞTM21
top to A. Here M left is the left half of the M matrix

and M21
top is the top half of M21. By doing so Agencies A and B achieve roughly the same

loss of protection (see Section 2.2) value as we obtain. There are, though, several

advantages to our approach. In particular, the invertible matrix M needs to be agreed on by

both parties, which entails substantial communication cost when n is large. By contrast, in
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our protocol, Z is simply generated by Agency A. Second and more important, inequity as

operationalized by (7) provides a principled way of choosing g.

3. Performing Statistical Analyses

Once the full data covariance matrix has been calculated as described in Section 2, it is

possible securely to conduct linear regression analyses, as well as stepwise regression,

ridge regression and model diagnostics. We show how to do so in this section.

Note that any one specific analysis (for example, a linear regression involving one

response and only a subset of the predictors) may require only a (square) submatrix of the

full covariance matrix. The same is true of a prespecified small set of regressions. If this

were the case, the agencies would both increase protection and save computation as well as

communication overhead by computing only an appropriate submatrix of XTX.

3.1. Secure Linear Regression

For clarity, we now write the (n £ p)-dimensional data matrix X of (1) as

X ¼ ½X1: : :Xp� ð9Þ

where each Xi has dimension n £ 1, and belongs to exactly one of the Xa. To account for

intercepts in regressions, we assume the first column of X in (9) consists entirely of ones

(and is owned by Agency A, although that is not material). For simplicity assume that all

other attribute means are zero; this is not restrictive, since if the agencies are willing to

share the on-diagonal blocks of the covariance matrix, they would certainly be willing to

share means.

Assume that XTX is calculated using the method described in Section 2. Following that

computation, some checking may be necessary. For instance, it is possible that two

agencies hold perfectly correlated attributes without knowing it. Simple issues of this sort

are detectable from XTX, and readily addressed. More complex issues (for instance,

complex multi-agency multi-collinearity) are more problematic.

A regression model of a response attribute Xresp [ {X1; : : : ;Xp} on a set of predictors

Xpred # {X0; : : : ;Xp}={Xresp} is of the form

Xresp ¼ Xpredbþ 1 ð10Þ

where 1 , Nð0;s2Þ. The maximum likelihood estimates of b and s2, as well as the

standard errors of the estimated coefficients, can be easily obtained from XTX, for

example using the sweep algorithm (Beaton 1964; Schafer 1997). Indeed, only the

restriction of XTX to Xpred < {Xresp} is needed.

3.2. Model Diagnostics

Estimated regression coefficients are of limited value when a regression model such as

(10) does not describe the data adequately. Hence, model diagnostics are essential. The

types of diagnostic measures available in vertically partitioned data settings depend on

what additional information the agencies are willing to share. Diagnostics based on

Karr, Lin, Sanil, and Reiter: Analysis of Vertically Partitioned Data 133



residuals require the predicted values

dXrespXresp ¼ Xpredb̂ ¼ Xpred XT
predXpred

h i21

XT
predXresp ð11Þ

These can be calculated using the secure matrix multiplication protocol of Section 2.1.

Alternatively, since each agency can calculate b̂ from XTX, each can compute that portion

of Xpredb̂ associated with its attributes, and these vectors can be summed across agencies

using secure summation (Benaloh 1987).

Once the predicted values are known, the agency owning the response attribute Xresp can

calculate the residuals Xresp 2 Xpredb̂. If that agency is willing to share these with the other

agencies, each agency can perform plots of residuals and report the nature of any lack of fit

to the other agencies. Sharing residuals Xresp 2 Xpredb̂ also enables all agencies to obtain

Cook’s distance measures (Cook and Weisberg 1982), since these are solely a function of

the residuals and the diagonal elements of the hat matrix H ¼ Xpred XT
predXpred

h i21

XT
pred.

We note that the diagonal elements of H can be used as well to generate standardized and

Studentized residuals. Additionally, the agency with Xresp can make a plot of the residuals

versus predicted values, and a normal quantile plot of the residuals, and report any

evidence of model violations to the other agencies. The number of residuals exceeding

certain thresholds, i.e., outliers, can also be reported.

3.3. Other Analyses

The approach outlined in Sections 3.1 and 3.2 extends readily to other classes of statistical

analyses, although the issues raised in Sections 2.3 and 2.4 need to be considered in detail

in each instance.

A simple example is weighted least squares regression. If T is the n £ n (diagonal)

matrix of weights, then each agency premultiplies its attributes by T1/2, and the analysis

proceeds as described in Sections 3.1 and 3.2.

To run semi-automatic model selection procedures such as stepwise regression, the

agencies can calculate covariance matrices securely, then select models based on criteria

that are functions of the full covariance matrix XTX, such as the F-statistic or the Akaike

Information Criterion.

It is also possible to perform ridge regression (Hoerl and Kennard 1970) securely. Ridge

regression shrinks estimated regression coefficients away from the maximum likelihood

estimates by imposing a penalty on their magnitude. Written in matrix form, ridge

regression seeks b̂ that minimizes

Ridgeðb; lÞ ¼ Xresp 2 Xpredb
� �T

Xresp 2 Xpredb
� �

þ lbTb ð12Þ

where l is a specified constant. The ridge regression estimate of the coefficients is

b̂Ridge ¼ XT
predXpred þ lI

� �21

XT
predXresp ð13Þ

Once XT
predXpred and XT

predXresp have been calculated securely, each agency can perform

the calculation in (13).
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4. Conclusion

Using our linear algebra-based approach, it is possible for statistical agencies and other

data holders to obtain matrix products in vertically partitioned data settings. This enables

agencies with vertically partitioned data to perform linear regressions without sharing their

data values. We anticipate that the secure matrix protocol will be useful for other

techniques that depend on sample covariance matrices, such as some forms of cluster and

discriminant analysis. Future research areas include protocols for sharing nonlinear

analyses securely, the potential of data encryption in vertically partitioned data, methods

for matching records securely, and assessing disclosure risk to data subjects.

Appendix

Generating Z from XA

Step 1 of the secure matrix product protocol of Section 2.1 requires vectors {Z1, Z2,: : : Zg :

Zi [ Rn} such that Z T
i X A

j ¼ 0 for all i and j. These can be generated using the QR-

decomposition of XA, which––recall that XA is (n £ pA)-dimensional––is given by

XA ¼ QR

where Q is an (n £ n) orthonormal matrix and R is an (n £ p) upper-triangular matrix. See

Golub and Van Loan (1996) and Press et al. (1992) for details on properties of and

algorithms for the QR-decomposition. The calculation is both fast and numerically

accurate. To construct Z, partition Q columnwise as

Q ¼ ½Q1Q2�

where Q1 consists of the leftmost pA columns of Q. Then, with ran(M) denoting the range

of a matrix M,

ranðXAÞ ¼ ranðQ1Þ

and

ranðXAÞ’ ¼ ranðQ2Þ

Hence Z can be easily obtained by selecting (randomly or informatively) g columns

of Q2.

While it may seem that orthonormality of the Zi poses a risk to Agency A, this is not so,

since Agency B can always calculate a set of orthonormal vectors with the same span,

using the Graham-Schmidt procedure.

If Agency A fears that Agency B’s knowing that a QR-decomposition was used reveals

extra information, it can permute the columns of XA before doing the decomposition, and

permute the columns of Z correspondingly before sending ZZT to Agency B.
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