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Many populations of interest present special challenges for traditional survey methodology
when it is difficult or impossible to obtain a traditional sampling frame. In the case of such
“hidden” populations at risk of HIV/AIDS, many researchers have resorted to chain-referral
sampling. Recent progress on the theory of chain-referral sampling has led to Respondent
Driven Sampling (RDS), a rigorous chain-referral methodwhich allows unbiased estimation of
the target population. In this article we present new probability-theoretic methods for making
estimates fromRDS data. The new estimators offer improved simplicity, analytical tractability,
and allow the estimation of continuous variables. An analytical variance estimator is proposed
in the case of estimating categorical variables. The properties of the estimator and the
associated variance estimator are explored in a simulation study, and compared to alternative
RDS estimators using data from a study of New York City jazz musicians. The new estimator
gives results consistent with alternative RDS estimators in the study of jazz musicians, and
demonstrates greater precision than alternative estimators in the simulation study.
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1. Introduction

Chain-referral sampling has emerged as a powerful method for sampling hard-to-reach or

hidden populations. Such sampling methods are favored for such populations because they

do not require the specification of a sampling frame.

The lack of a sampling frame means that the survey data from a chain-referral sample is

contingent on a number of factors outside the researcher’s control such as the social

network on which recruitment takes place. The major challenge of chain-referral sampling

has been to understand an unconventional sampling process and to base estimates on the

resulting data. In this article we draw on previous research on Respondent Driven Sampling

(RDS) (Heckathorn 1997, 2002; Salganik and Heckathorn 2004) to show that with a few

plausible assumptions about the recruitment process and the social network, it is possible to

specify selection probabilities for individuals in the target population and to apply

traditional probability theory to the problem of statistical inference.
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The estimator presented here is similar to estimators originally proposed in the RDS

literature (Heckathorn 1997, 2002; Salganik and Heckathorn 2004), although the new

estimator is based on a different theoretical foundation. The classical RDS estimator is

based largely on Markov chain theory and social network theory. Our new estimator

relies on Markov chain sampling theory (Hastings 1970; Metropolis et al. 1953) and the

theory of sampling with unequal probabilities (Hansen and Hurwitz 1943; Cochran 1977).

This article should be viewed as part of an established and growing literature on

network sampling (Sirken 1998; Sudman and Kalton 1986). Birnbaum and Sirken (1965)

were the first to consider sampling in affiliation networks, such as the networks of patients

and health-care providers. Felix-Medina and Thompson (2004), Spreen and Zwaagstra

(1994), and Rothenberg et al. (1995) have considered network sampling for hidden

populations using link-tracing3 or snowball4 designs. Frank (1978) has considered the

problem of estimating topological features of social networks given a standard random

sample from a network. Work by Frank and Snijders (1994) and Thompson (1998) has

focused on deriving unbiased estimates from snowball-type and link-tracing samples, and

in this sense is most similar to this work.

In Section 2 we review the basics of RDS methodology. In Section 3 we introduce a

new RDS estimator which offers several advantages over the traditional methods of RDS

estimation. Section 4 contains an analytical comparison of the new estimator to classical

RDS methodology. Section 5 contains a prospective variance estimator for estimating

proportions of categorical variables, and finally Section 6 presents the results of a simula-

tion study to compare the new and old estimators.

2. Respondent Driven Sampling

Respondent Driven Sampling (RDS) is a rigorous system of chain-referral sampling which

allows statistical inference of the target population by controlling for the sources of bias

usually associated with chain-referral sampling.

RDS is now being implemented in the U.S. and around the world to study hard-to-reach

or “hidden” populations. The Centers for Disease Control and Prevention has announced

that it will use RDS to track HIV-risk behavior among injectors in 25 cities in the U.S., and

Family Health International, the largest nonprofit organization in global public health, is

using it in more than a dozen countries (Lang 2004; Heckathorn et al. 2002). The main

advantage of RDS is that it does not require an ordinary sampling frame. Thus it is

effective for stigmatized, hidden, or hard-to-reach populations, for which the researcher

lacks organizational or institutional access.

Chain-referral sampling data differs from ordinary samples in that the respondents are

linked together by a chain of recruitments. In general, each respondent will have attributed

to them a coupon with a unique serial number which was given to them by another

3 Link-tracing designs are generally not respondent driven, that is, recruitment may be directed by the survey
administrator, and as such, makes no assumption about random recruitment by participants. Such designs
occasionally combine traditional cluster sampling or standard random sampling with chain-referral methods.
4 Snowball usually refers to chain-referral designs which exhaustively map out social networks by allowing
unlimited recruitments from each participant. This should be contrasted with the random-walk design considered
in the present article.
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respondent. They will also have a a limited number of coupons which they may give to

other respondents. Thus it is possible to keep track of who recruited whom. Figure 1 shows

an actual recruitment chain drawn from an RDS study of New York City jazz musicians

(Heckathorn and Jeffri 2003).

RDS begins with the selection of an initial respondent, or “seed.” Selection of the seed is

typically nonrandom, such as via public venues or health centers. The seed is given a

number of coupons to distribute to friends and acquaintances which can be redeemed by

being interviewed. When interviewed, the new respondent is in turn given coupons to

distribute, thereby perpetuating the sample chain.

Additionally, RDS requires that we keep track of the degree of each respondent. The

degree of a node in a network is the number of connections to that node, i.e., the number of

neighbors of that node. In the context of chain-referral sampling, the degree of an

individual will be defined as the number of people that that person could, in principle,

recruit. We consider undirected networks only, such that recruitment can take place in

both directions across a social network connection.

We will assume that our chain-referral samples are with-replacement, that is, any

individual may be recruited into the sample more than once. Note that with-replacement

sampling in chain-referral samples bears a subtle difference to with-replacement sampling in

design-based sampling methods. The selection of each sample unit is under the control of the

respondents themselves, thus we are not free to resample a current respondent at any time.

In practice, the condition of with-replacement sampling is rarely met. It is possible that

participation in the study may alter the acceptance rate of individuals to participate in the

study again. This could be a strong confounding factor if sampling with-replacement was

allowed. But if the sampling fraction is very small, we can safely use results based on

sampling with-replacement to use in the case of sampling without-replacement.

In the following treatment, we assume that each respondent recruits only one neighbor,

although methods have been devised to compensate for the case where respondents may

Fig. 1. Example of a recruitment chain. This recruitment chain comes from an RDS study of jazz musicians in

New York City (Heckathorn and Jeffri 2003). Arrows indicate the direction of recruitment. The colors indicate the

gender of each respondent: Black ¼ Male, White ¼ Female, Grey ¼ Missing Data
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recruit more than one neighbor. Details on this method, called demographic adjustment,

can be found in Section 4.

Further, we assume that the sampling fraction is small, such that we can apply solutions

for the sampling-with-replacement case. Refer to Table 1 for the notation used throughout

this article.

In developing our theory, we will rely on the following assumptions in addition to those

mentioned above:

1. Degree. Respondents accurately report their degree in the network.

2. Recruitment is random. When recruiting others, respondents select uniformly at

random from their personal network.

3. Reciprocity. Network connections are reciprocal. Respondents recruit those with

whom they have a preexisting relationship, such as acquaintances, friends, and

those closer than friends. Such connections are reciprocal, e.g., my friends and

acquaintances consider me to be a friend or acquaintance. Consequently, in network-

theoretic terms, the potential recruitment network is undirected, so if respondent a

can recruit b, then b can also recruit a. This is required by the reciprocity model

(Heckathorn 2002; Salganik and Heckathorn 2004) upon which the original RDS

estimator is based. This is formally known as the reciprocity hypothesis.

4. Convergence. Recruitment is modeled as a Markov process (MP), where the state of

the MP is the last individual recruited. Transition probabilities are described in

Section 3. We assume that the MP is irreducible and that each state has a finite return

time. Therefore, a unique equilibrium to the MP exists and recruitment rapidly

converges to this equilibrium. The implication is that after a modest number of steps,

the sample composition becomes independent of the initial respondents (“seeds”)

who initiated the chain-referral process.

The irreducibility condition is equivalent to the condition that the social network is well-

connected; that is to say, every node can be reached by a finite path from any other node.

Furthermore, our social networks are assumed to be finite (though very large), so the

expected return time must be finite as well.

Table 1. Notation used throughout this article

U is the set of all individuals in the population
S is the set of all individuals in the sample
A, B,: : :are disjoint sets of individuals
NX is the number of elements in a Set X
NG is the number of Subsets A, B,: : :
nX is the number of sample units from Set X
PA, PB,: : :are the population proportions of each type, A, B, etc.
~P is the vector with Elements PA, PB, etc.
RAB is the number of recruitments from Group A to Group B
RA is the total number of times people of Type A are recruited
�RA is the total number of recruitments from people of Type A
sAB is the estimated probability of someone from Set A selecting someone from Set B
di is the degree of Individual i
dX is the average degree of individuals from Set X
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On the surface, the irreducibility assumption may seem unrealistic, especially for large

populations, where it is most likely that some units will be isolated from the network as a

whole. This, however, is usually not a cause for concern. It is known from random network

theory that most networks possess a so-called giant component, a subset of nodes such that

a network path exists between any two and which occupies a nonvanishing fraction of the

network as the population size goes to infinity. The giant component usually encompasses

the vast majority of the population, so long as some basic conditions are met. For instance,

in pure random graphs, the giant component will consist of 99% of the population if nodes

have just 5 links on average. RDS studies have typically exceeded this margin

comfortably. In a study of NYC jazz musicians, respondents were found to have an

average degree of 109 (Heckathorn and Jeffri 2003), while in a study of gay Latinos,

respondents in San Francisco had an average degree of 8 and in Chicago had an average

degree of 13 (Ramirez-Valles et al. 2005). With that said, field RDS studies should

come with the caveat that statistical inference is limited to the giant component, rather

than the total population. But provided the giant component is very large, this is usually a

minor distinction.

Furthermore, research on the small-world problem (Watts 1999) has led to the

observation that almost all social networks have very short mean path length.

Consequently, there are relatively few intermediaries between any two randomly selected

individuals in most social networks. In pure random networks (Erdős and Renyi 1959;

Newman et al. 2001), path length grows logarithmically with population size. It is

therefore likely that the selection probability for any individual in the network will

stabilize after just a few recruitments, as almost anyone in the population can be reached in

a small number of steps.

Another assumption commonly called into question is that respondents recruit

uniformly at random from their network neighbors. Indeed, it is difficult or impossible to

enforce random recruitment among respondents, and in many cases respondents may have

special reasons for selecting a particular recruit. However, nonrandom recruitment, if it

occurs, will not necessarily bias our estimator. As long as recruitment is not correlated

with any variable important for estimation (e.g., the study-variable or degree), the

aggregate effect is for recruitment to appear uniform-random.

Nonrandom recruitment would most obviously be evidenced by skewed and

nonsymmetric recruitment matrices. If, for instance, respondents preferred recruiting

someone of Type A, we would expect recruitment matrices with much more weight on

Elements RXA than on Elements RAX. In fact, this is rarely observed. By now, strong

empirical evidence (Heckathorn et al. 2002) has been built up which indicates that random

recruitment holds in most cases. It is nevertheless a potential source of bias that

practitioners should watch out for.

3. New Estimators for Respondent Driven Sampling

It is often the case that it is more convenient to sample from a distribution other than the

one we wish to use for estimation. In this case, the theory of Markov chain sampling has

been developed in order to sample from arbitrary distributions. The premise is to devise a

Markov process (MP) such that the equilibrium distribution of the MP is identical to the
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distribution one wishes to sample from. It has been shown that estimators based on

Markov chain samples are asymptotically unbiased5 (Hastings 1970).

In contrast to traditional Markov chain sampling, we are not at liberty to devise the

transition probabilities between our sampling units due to the lack of a standard sampling

frame. Rather the transition probabilities are imposed on us by the nature of the chain

referral sample and the properties of the social network. Nevertheless, the chain-referral

sample will constitute a Markov chain which fits the criteria governing the application of

our theory.

In mathematical terms, a chain-referral sample is analogous to a random walk on a

network. It has been shown (Salganik and Heckathorn 2004) that a random walk on a

network is an MP, which in equilibrium occupies a node with probability proportional to

degree. We can then infer that a chain-referral sample will select individuals in the

population with probability proportional to degree.

Let E be the incidence matrix of the network. E will have elements eij where eij ¼ 1 if

nodes i and j are connected, and will equal zero otherwise. Note that the degree of node i,

di, is the i’th row sum of E,
P

jeij. If the random walk is at node i at step t, the probability

of node i choosing node j is 1=di ¼ 1=
P

j eij. Denote this transition probability s
E
ij , and let

the matrix with these transition probabilities be called s E. The random walk on the

network can therefore be considered an MP with transition probabilities s E.

The random walks we consider are irreducible and finite, so there must be a unique

equilibrium to this MP. Furthermore the MP will converge to this equilibrium. Consider

the state vector x* with elements

x*i ¼
di

j

X
dj

ð1Þ

It may be verified that x* is an equilibrium to the MP given by sE, and by our

hypotheses, must also be a unique attracting equilibrium. Now that we have established

that a chain-referral sample of the RDS type is a Markov chain sample, we may proceed to

develop estimators for our target population. Using only the fact that RDS samples

individuals with probability proportional to degree, we can develop a Hansen–Hurwitz

(HH) type estimator (Hansen and Hurwitz 1943; Cochran 1977) for ~P, the proportion of

the population in each disjoint set A, B, : : : . The derivation presented here uses a similar

argument to that presented in (Salganik and Heckathorn 2004) to estimate the average

degree in a social network from chain-referral data.

HH estimators require knowledge of the selection probabilities, pi, the probability that

individual i will be selected at any stage of the chain-referral sample. HH estimators also

assume each sample element is chosen independently of the rest of the sample – an

assumption which is, of course, violated by the MP model of recruitment. Thus the

likeness to HH estimators is only partial. Sample units will be correlated, a fact that will

5 By asymptotically unbiased we mean that any bias will be of the order 1/n. Therefore, for meaningful sample
sizes, any bias will be negligible.
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not bias the estimator but which will be taken into account in Section 5 where an estimate

of variance is derived.

Using the equilibrium Condition (1), the selection probabilities will be

pi ¼
di

NdU
ð2Þ

which we can estimate as

p̂i ¼
di

Nd̂U
ð3Þ

where d̂U is the estimate of the average degree of the total population.

The d̂X are easy to estimate. As in (Salganik and Heckathorn 2004), we note that the

average degree can be estimated as a ratio estimator of HH estimators

d̂U ¼

X
S

di=npiX
S

1=npi
¼

nX
S

d21
i

ð4Þ

and for just one group, e.g., the Subset A within the population

d̂A ¼
nAX

A>S

d21
i

ð5Þ

This is the well-known formula for the harmonic mean, the mean of a quantity which is

being sampled with probability proportional to its size.

Now let the variable yi be some real-valued variable of interest. Let Ty represent the total

value of y in the population,
P

Uyiwhere yimay represent continuous variables such as age

or income, or dichotomous variables such as HIV status.

The HH estimator of the total y in the population, T̂y is

T̂y ¼
1

n S

X yi

p̂i
¼

1

n i[S

X d̂UNyi

di
¼

d̂UN

n S

X
d21
i yi

If N is unknown, as is generally the case, we can still estimate the mean value of y as

ŷh i ¼
d̂U

n S

X
d21
i yi ð6Þ

Substituting the definition of d̂U (Equation 4), we arrive at the simple equation

ŷh i ¼

X
i[S

d21
i yiX

i[S

d21
i

ð7Þ
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We will refer to this estimator as RDS II to distinguish it from the RDS estimator

presented in Section 4. Essentially Equation 7 weights each case by the reciprocal of the

corresponding degree value.

Suppose we are interested in estimating PA, the proportion of the population of Type A.

Let yi be the indicator function IA(i ), which takes the value 1 if i [ A and 0 otherwise.

Using Equation 7 we have

P̂A ¼

X
i[A>S

d21
iX

i[S

d21
i

ð8Þ

There is an alternative form of Equation 8 worth mentioning, as it gives some intuition

of how our estimator works. With a little manipulation we get

P̂A ¼
nA

n

� � d̂U

d̂A

 !
ð9Þ

The first part of Equation 9, (nA/n), is the proportion of the sample of Type A. If

our sample were a standard random sample this would be our estimate for PA. The

second part, (dU/dA), expresses the correction due to network effects. For example, if

dU . dA we are under-sampling individuals of Type A, and consequently we inflate

our estimate.

Note that the initial recruits in a chain-referral sample (i.e., the “seeds”) will generally

be chosen nonrandomly. It is usually prudent to exclude them from the estimator

(Equation 8), as well as the estimation of average degree (Equation 5), though the

estimator will be asymptotically unbiased even if they are included. The rationale for

eliminating seeds is the same as that for using a “burn-in” period during an MCMC

sample. Any potential bias accruing from the initial seed selection will be lessened. The

recruitments made by seeds are usually included, however, in the recruitment matrix

(Section 4 below). Experimental evidence for how long a burn-in period is best is

currently lacking.

4. The Classical RDS Estimation Procedure and Its Relation to RDS II

In Heckathorn 1997, 2002 and Salganik and Heckathorn 2004, it was shown how to

convert a chain-referral sample into a probability sample of individuals in the

population and to produce unbiased estimates from chain-referral sample data. The

original RDS estimator accounted for all of the sources of bias usually associated with

chain-referral samples, such as oversampling well-connected individuals and

nonrandom mixing in the population. Here we present a brief review of this

methodology with the objective of elucidating the relationship between the new

estimator (8) and the original estimator proposed in Heckathorn 1997, 2002 and

Salganik and Heckathorn 2004.

The classical RDS estimator (henceforth referred to as RDS I) relies on the theory of

network balance between subgroups in the population. The mass of network connections
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to and from every group can be estimated up to a constant factor. This gives us a system of

balance equations for every pair of groups, which in turn can be used to solve for

the relative size of each group.

Specifically, it was observed that RAB= �RA ¼ sAB is an unbiased estimate of the

probability of someone of Type A recruiting someone of Type B. Furthermore,

the connections from Group A to Group B must be equal to those from B to A by the

reciprocity hypothesis. The number of connections from Group A to Group B will be

proportional to sABPAdA. Given NG groups, this then leads to a system of
NG

2

 !
balance

equations:

s12P1d1 ¼ s21P2d2

s13P1d1 ¼ s31P3d3

..

.

s23P2d2 ¼ s32P3d3

..

.

sðNG21ÞNG
PNG21dNG21 ¼ sNGðNG21ÞPNG

dNG

ð10Þ

This system of equations can be used to solve for ~P
^
, our estimate for the population

proportion of each group. Of course, we must also normalize our solution by usingP
xPx ¼ 1. This system of equations is over-determined for systems with more than

two groups, such that least squares regression may be used to solve for ~P
^
.

Two enhancements to RDS I were proposed in Heckathorn (2002), which dramatically

improve the precision of the estimator. The first considered adjustments for sample data in

which respondents could recruit more than one network-neighbor. In this case, it is

possible that some groups in the population may systematically recruit more than other

groups in the population, a phenomenon called differential recruitment, which can

dramatically alter the composition of the sample. However, under the assumption that such

data still provides us with an unbiased estimate of the group-to-group transition

probabilities, sAB, we can deduce what the sample composition would be in the absence of

differential recruitment.

Given the matrix of transition probabilities s with elements sAB, the theoretical

equilibrium sample composition is the vector x* which satisfies

x* ¼ x*s ð11Þ

With a theoretical equilibrium sample distribution x* and unbiased estimates of s, we

can postulate what form the recruitment matrix would take in the absence of differential

recruitment. We call this matrix ~R, which will have elements proportional to the

theoretical equilibrium composition of the recruiter-type (elements x*X from the vector in

Equation 11) times the unbiased transition probabilities. The sum of elements of ~R is equal
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to the sample size, so that ~RAB is the theoretical number of recruitments from Group A to

Group B in the absence of differential recruitment.

~RAB ¼ ðnx*AÞsAB ð12Þ

At this point, we may find that for some pairs of groups, ~RAB – ~RBA. Because RDS

randomly samples connections in the network, and the number of connections between

any two groups must be identical, ~RAB and ~RBA will be two point estimates for the same

quantity. Therefore, a more accurate estimate can be gained by averaging the values.

Averaging over all pairs of groups gives us a symmetric recruitment matrix, which we call

the data-smoothed recruitment matrix, ~RDS.

Transition probabilities can be recomputed from the data-smoothed recruitment matrix.

Furthermore, if we assume that differential recruitment does not bias the estimated

average group degrees, dX , then the RDS estimator can be recalculated. We will refer to

this estimator as RDS I/DS. Simulation studies have revealed that this estimator has

markedly different properties from RDS I, most notably similar accuracy and increased

precision. To base estimates on the data-smoothed recruitment matrix, we assume that

neither s nor the estimated dX are biased by differential recruitment. This may not always

be the case, but in practice has proven a reliable assumption. RDS I/DS estimates are also

much closer, in general, to RDS II estimates.

This review of traditional RDS theory is pertinent, as RDS II is closely related to

the classical RDS estimator, RDS I. Note that these similarities only exist when

considering categorical variables, as RDS I is not adaptable to the estimation of

continuous quantities.

Whenever the recruitment matrix is symmetric (that is, whenever RAB ¼ RBA ;A;B) the

RDS I and RDS II estimators will coincide. Consequently, basing RDS estimates on the

demographically adjusted and data-smoothed recruitment matrix will equalize these

estimators.

To put this on firmer ground, let us collect all terms in PA in the RDS I system of

Equation 10. For any group X,

PX ¼
PAdA �RXRAX

dX �RARXA

from which it follows that

X

X
PX ¼ 1 ¼ PA

dA
�RA X

XRAX
�RX

RXAdX

Neglecting initial respondents (seeds), �RX ¼ nX . That is to say, the number of

individuals of Type X recruited into the study is the same as the number of individuals in

the study of Type X. Then solving for PA we have

PA ¼
nA

dA X

XRAXnX

RXAdX

0
@

1
A

21

ð13Þ
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Note that if RAX ¼ RXA, then their ratio falls out of the equation. This is exactly

what happens with the demographically adjusted and data-smoothed recruitment matrix.

Now observe that

X

X nX

dX
¼

X

X
i[S>X

X
d21
i ¼

n

d̂U

Substituting this into Equation 13 yields Equation 9, our estimator for RDS II. Thus,

provided that RYX ¼ RXY for all groups X and Y, these two estimators will coincide.

In passing, note that a parsimonious way of expressing the demographically adjusted

RDS II estimator is the following

P̂A ¼ x*A
d̂U

d̂A

 !
ð14Þ

Referring back to Equation 9, it is clear that the only part of the RDS II estimator

that will be biased is the sample proportion of Type A, nA/n. To correct for the

bias, simply substitute the equilibrium composition x*A for the sample proportion of

Type A.

5. Variance Estimation

The complicated design of RDS creates numerous challenges for variance estimation. It is

tempting to apply the well-known variance estimator for HH estimators (Hansen and

Hurwitz 1943)

V̂HHðT̂yÞ ¼
1

N 2nðn2 1Þ S

X yi

pi
2 T̂y

� �2

ð15Þ

which when estimating the average value of y, becomes

V̂HH ŷh i
� �

¼
1

nðn2 1Þ S

X yid̂U

di
2 ŷh i

 !2

ð16Þ

But as noted, the RDS II estimator is only analogous to HH estimators which assume

that each sample unit is drawn independently, so that outside of a few special cases this

variance estimator performs quite poorly. Recall that sample units in RDS are correlated

because they are linked by a recruitment chain, something which is not considered in

standard HH estimators. Thus there are multiple sources of variance in Estimator (8).

Sampling with nonidentical selection probabilities is considered in the above variance

estimator. But additionally, an RDS sample constitutes an MCMC sample of the social

network, with transition probabilities sE. In general, it is necessary to take this correlation

into account when estimating variance. The sample units are connected in a recruitment

chain with indices 1, : : : , n; considering two sample units i and j, the distance from one to

the other within the recruitment chain will be ji 2 jj. The correlation between sample units

will decrease with distance within the recruitment chain. For categorical variables, we can

say by approximation that the probability of unit i þ 1 being Type Y given that Unit i is

Volz and Heckathorn: Theory for Respondent Driven Sampling 89



Type X is sXY, where s is the matrix of estimated transition probabilities of the simplified

Markov process as in Section 4, e.g., Pr½Unit iþ 1 [ YjUnit i [ X� is estimated as

sXY ¼ RXY= �RX . Given two Units i and j, with i of Type X, the probability that Unit j is of

Type Y is estimated by the matrix product of the transition probabilities: Pr( j [ Yji [ X)

is estimated by ðs ji2jjÞXY . The distance between sample units i and j, ji 2 jj, is the

exponent to which the matrix s is raised, which yields a square matrix with the same

dimensions as s, NG £ NG. In this context the subscript XY refers to indices corresponding

to the sets X and Y, and indicates the XYth element of matrix s ji2jj. Note that using the

matrix s ji2jj is a simplification; it is not always the case that recruitment can be modelled

as a first order Markov process with transition probabilities s, and the node-specific

transition probabilities sE are almost always unknown.

Below, we derive a variance estimator which accounts for nonuniform selection

probabilities and the MCMC structure of the sample. These equations specifically treat the

estimation of categorical variables. We conclude with the estimation of variance for P̂A

expressed in Equations 17, 18, and 19, as follows:

V̂PA
¼ V̂1 þ

P̂
2

A

n
ð12 nÞ þ

2

nA

Xn
i¼2

Xi21

j¼1

ðs i2jÞAA

 !
ð17Þ

where

V̂1 ¼
V̂ðZiÞ

n
¼

1

nðn2 1Þ S

X
ðZi 2 PAÞ

2 ð18Þ

and

Zi ¼ d̂Ud
21
i IAði Þ ð19Þ

where IA(i ) is the indicator function as in Section 3.

The derivation of Equations 17, 18, and 19 is as follows. Note that this is based on the

estimation of PA, the proportion of the population of Type A. Furthermore, this derivation

is based on the approximation that d̂U is constant.

A little rearrangement shows the form of Estimator (8) can be expressed as

ŷh i ¼ P̂A ¼
1

n S

X
Zi ð20Þ

We wish to find the variance

VðZ1 þ Z2 þ · · ·þ ZnÞ

¼ VðZ1 þ · · ·þ Zn21Þ þ 2 covðZ1 þ · · ·þ Zn21; ZnÞ þ VðZnÞ

¼ VðZ1 þ · · ·þ Zn22Þ þ 2 covðZ1 þ · · ·þ Zn22; Zn21Þþ

2 covðZ1 þ · · ·þ Zn21; ZnÞ þ VðZn21Þ þ VðZnÞ

..

.

¼
S

X
VðZiÞ þ 2 cov

j,i

X
Zj; Zi

 !
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Using E(·) to denote the expectation operator for an r.v., we have

covðZ1 þ · · ·þ Zm21; ZmÞ ¼ EðZ1 þ · · ·þ Zm21 2 ðm2 1ÞE½Z�ÞðZm 2 E½Z�Þ

¼ 2ðm2 1ÞE½Z�2 þ
Xm21

i¼1

E ZiZm

In the above equation, the expected value of the product ZiZm must be computed. Using

the definition of Zi (Equation 19), we have

E ZiZm ¼ Pr½i [ A� £ EðZiji [ AÞ £ Pr½m [ Aji [ A� £ EðZmjm [ AÞ ð21Þ

The probability that Unit i is in A, Pr[i [ A ], will be estimated as nA/n. The expected

value of Zi given that Unit i is in A, E(Ziji [ A) will be estimated as
P

S>A Zk=nA. Given

that Unit i is of Type A (such that yi ¼ 1), the probability of Unit m also being of Type A,

Pr[m [ Aji [ A ], will be estimated as (s m2i)AA.

Then EZiZm is estimated as

nA

n

X
S>A

Zk

nA
ðsm2iÞAA

X
S>A

Zk

nA
¼ P̂Aðs

m2iÞAA
1

nA S>A

X
Zk ¼ P̂Aðs

m2iÞAA
d̂U

d̂A
¼

n

nA
P̂
2

Aðs
m2iÞAA

where we have used d̂U=d̂A ¼ P̂An=nA to simplify the equation.

Continuing in this way by reducing the variance of the sum of Zi to the sum of the

variances and covariances of Zi we find that

V̂ðZ1 þ · · ·þ ZnÞ ¼ V̂ðnP̂AÞ ¼ n2V̂ðP̂AÞ

¼ nV̂ðZÞ2 P̂
2

Anðn2 1Þ þ
2nP̂

2

A

nA

Xn
i¼2

Xi21

j¼1

ðs i2jÞAA ð22Þ

Solving for V̂ðP̂AÞ gives Equation 17.

Unfortunately, the variance estimator 17 is not unbiased for a couple of reasons. Firstly,

d̂U is included in each Zi term, and will therefore affect the covariance between Zi. This

would be difficult to account for and is not included in Equation 17. But for sufficient

sample size, the variance of d̂U is generally very small, as the selection probabilities for

this quantity are proportional to its size. Secondly, the transition probabilities s are not in

general known, and usually must be estimated. Although the estimation of variance is not

unbiased, under most conditions it will perform quite well. Its performance is explored by

simulation in the next section.

Other strategies could be pursued to derive a variance estimator, for instance by

considering a linearization approximation. The RDS II estimator can be expressed as a

ratio P̂A ¼ Ŷ=X̂ where Ŷ ¼
P

S yi=di and X̂ ¼
P

S 1=di, where EX̂ ¼ n=dU . Then,

P̂A 2 PA <
1

EX̂
Ŷ2

EŶ

EX̂
X̂

� �
¼

1

n S

X yi 2 PA

di=dU
ð23Þ

Taking Zi ¼ ð yi 2 PAÞ=ðdi=dUÞ one could proceed as above.
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6. Simulation Study of RDS I and RDS II

So far we have presented three estimators for RDS data, RDS I, RDS II, and RDS II/DS.

In addition we have an estimate of variance for RDS II, given by Equation 17. To gain

insight into the properties of these estimators we have performed computer simulations of

RDS samples on random networks with known properties.

There are several technicalities in the simulation of RDS due to the complicated

sample design. The population under study is represented by a random network, which

can have a wide range of properties and can be generated by any of many algorithms

that have been developed for the task. In addition, each node must have a value

assigned to it for the study-variable, yi. Secondly, random walks of specified length are

executed on the random network by choosing a node uniformly at random from the

network’s giant component, and then randomly selecting a neighbor of the last node at

each step of the random walk. The random walks are interpreted as RDS samples by

keeping track of the degree of each node and the node’s yi value. In these simulations,

we consider the estimation of PA, such that the yi is the indicator function for

membership in Group A.

Several pieces of information are required to construct a random network:

. A specification of group sizes – that is, the size of each group A, B,: : :

. A list of degree distributions for all groups in the network

. Amixing matrixA, where the element ½A�XY specifies the fraction of all connections

in the network that exist between groups X and Y.

We proceed by randomly assigning each node a degree drawn from the corresponding

degree distribution. Then we randomly match connections in the network while

simultaneously satisfying the constraint specified by A.6

The parameter space specified by the group sizes, degree distribution, and mixing

matrix is vast. In these simulations we have kept the population size fixed at N ¼ 10,000.

The networks are divided into four groups. The variable we wish to estimate is PA ¼ 0.1,

so that NA ¼ 1,000. The remaining three groups are equal in size: NX ¼ 3,000. In addition,

each group has its own degree distribution. In all cases the degree distribution is Poisson,

but with different parameters controlling the average degree of the group. These variables

are summarized in Table 2.

The effects of both sample size and assortative mixing have been determined by

experiment. Figure 2 shows the the effects of sample size on the variance of the three

estimators. Five random networks were generated with mild assortative mixing

(sAA ¼ .15), and 10,000 random walks were executed on each network. The estimators

were applied to each random walk, and the empirical variance of each estimator computed.

The average estimate of variance (Equation 17) from these simulations is also shown in

Figure 2.

6Amore detailed description of methods for generating random networks which exhibit assortative mixing can be
found in Newman (2002).
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As demonstrated in Section 4, RDS II and RDS I/DS coincide very closely. Both are

consistently more precise than RDS I, although RDS II has greater performance than RDS

I/DS for small sample size.7

For small sample sizes, RDS II is slightly more accurate (less biased) than RDS I/DS, as

the latter methodology relies on accurate estimation of transition probabilities to perform

reliably (results not shown). Both RDS II and RDS I/DS are consistently more accurate

than RDS I, although because all the estimators are asymptotically unbiased, the

difference disappears as sample size is increased. Salganik and Heckathorn (2004) have

previously given a detailed analysis of bias for RDS I.

In this set of simulations, the variance estimator (Equation 17) shows slight but

consistent bias in over-estimating the actual variance. The average coverage probability of

the variance estimator for 90% confidence intervals is 91.03%. The naive variance

estimator, V̂HH (Equation 16), has an average coverage probability of 85%.

A different scenario is presented in Figure 3. Recall that sAA is the probability that

someone of Type A will recruit again someone of Type A. sAA actually represents an

aspect of network topology: it is the proportion of connections from nodes of Type A that

Table 2. Random networks were generated with four disjoint groups, each having the size NX and Poisson

degree distribution with average degree z

Group NX z

A 1,000 32
B 3,000 40
C 3,000 48
D 3,000 56

Fig. 2. Variance of three RDS estimators and mean estimated variance, based on 50,000 simulations as

described in the text. Sample size is varied from 75 to 500. The data are plotted with log–log axes

7 Subsequent work has shown that these results are very specific to simple unbranched recruitment chains. The
presence of branching (sample unit recruits more than one neighbor) can increase the performance of reciprocity-
based estimators such as RDS I/DS or RDS II/DS relative to RDS II.
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go to other nodes of Type A. In these simulations we have varied this parameter from

sAA ¼ 0.069, which corresponds to essentially no assortative mixing, to sAA ¼ 0.57 which

represents a very strong preference for nodes of Type A to connect to one another at the

expense of connections to nodes of other types. In all simulations, the sample size was

n ¼ 500.

The effect of increasing assortative mixing is the exponential increase in the variance of

the estimator. In terms of MCMC sampling, this corresponds to increased sample size

required for the sample to reach equilibrium.

The average coverage probability for this set of simulations is 89.997% for 90%

confidence intervals. The estimated variance correctly tracks the exponential trend. The

naive estimate of variance (not shown) which does not account for assortative mixing

(Equation 15) grossly underestimates the actual variance and has a coverage probability

which decreases from 88% to 62% as sAA is increased.

Finally, it provides a useful perspective to compare the estimators with real data. Table 3

shows RDS I, RDS I/DS, and RDS II, as applied to data from a study of 264 New York

City jazz musicians (Heckathorn and Jeffri 2003). Various categorical and continuous

variables are estimated. Note that for dichotomous variables such as Gender and Union

membership, RDS I and RDS I/DS give identical estimates.

Fig. 3. Variance of RDS II and RDS I, alongside the estimated variance for RDS II based on 50,000 simulations

with sample size 500 as described in the text. The mixing parameter sAA is varied from 0.069 to 0.57

Table 3. RDS I, RDS I/DS, and RDS II are compared for a real data set. The data come from a survey of 264

New York City jazz musicians (Heckathorn and Jeffri 2003)

Estimator Gender
(male)

Race
(white)

Gender
(black)

Union membership Age
(mean)

RDS I 76.2% 53.8% 35.0% 25.1% –
RDS I/DS 76.2% 53.2% 35.9% 25.1% –
RDS II 72.0% 55.7% 32.8% 23.8% 42.97
Sample (Naive estimate) 73.7% 54.8% 32.8% 39.9% 45.46
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For most variables, the estimators give results in line with the sample proportions.

However for the Union Membership variable, all estimators correctly adjust for the over-

counting of union members in the sample data. Although the simulation study

demonstrated that the variance of RDS II and that of RDS I/DS are generally very close,

individual estimates can diverge appreciably when one is not demographically adjusting

the RDS II estimator, such as for the estimation of gender in Table 3.

7. Discussion

This article has further developed RDS estimation theory. A new estimator for RDS data

has been presented (RDS II) which offers superior precision to prior methodology (RDS I),

with the advantage of increased simplicity, analytical tractability, and analytical variance

estimation. The new estimator also allows the estimation of continuous as opposed to

categorical variables. The classical RDS estimator requires quite a bit of custom code in

order to derive the recruitment matrix and solve the system of linear equations

(see Section 4), and is restricted to the estimation of categorical variables.8

There are multiple issues that still need to be addressed. The theory developed here

relied on the sampling-with-replacement assumption. Biases which may be introduced due

to sampling without-replacement are poorly understood. When individuals are eliminated

from the pool of potential recruits, not only can they not be reselected into the sample, but

all avenues for recruitment that pass through them are also eliminated. If the average

degree and population size are small, this can have unpredictable effects on the selection

probabilities for everyone in the population.

In RDS samples, it is usually the case that respondents are allowed to recruit more than

one person into the study. It is possible for this to introduce biases into the sample, for

example if the number of recruits is correlated with the study variable or degree. However,

these biases remain poorly understood.

The variance estimator presented here uses the known mixing properties of the

population. In general, the mixing matrix will not be known, and will have to be estimated.

Furthermore, it is possible for there to exist higher-order correlations between sample

elements than are presented in the mixing matrix, so that the estimated covariance between

sample units may actually be biased. Such problems are inevitable whenever sampling

from a network with unknown composition and structure. Certainly more could be done in

improving this estimate of variance, though our simulations indicate that for most

applications it should perform well.

An important problem not confronted here is how to fit models such as linear and

logistic regressions to RDS data. Model-fitting should incorporate sample weights as well

as information about correlation between sample units.

The refinements to RDS theory outlined in this article should prove useful in exploring

these problems, and as RDS is applied with greater frequency around the world, should

find wide application.

8 See http://www.respondentdrivensampling.org for downloads of RDS software for computing the classical RDS
estimator.
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