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Probability Estimation With Sample
Compositing Techniques

Forest C. Garner,' Martin A. Stapanian,' Evangelos A. Yfantis,> and Llewellyn
' R. Williams®

Abstract: Sometimes the objective of an
experiment is to estimate the proportion p
of individuals that possess a characteristic,
such as a parasite, a blood disease, or an
antibody, and it is not necessary to identify
those individuals. In such a case, analyzing
composites of aliquots from k individual
test portions may result in an estimator of p
with substantially lower mean square error
than the traditional estimator. The mean

1. Introduction

Suppose the objective of an experiment is
to estimate the proportion of individuals
possessing a characteristic, such as a blood
type, a disease, a parasite, or an enzyme.
Suppose further that it is not necessary to
identify the individuals that are positive for
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square error varies with & and p, and we
show a method for choosing the optimal
value of k. Practical considerations for
environmental scientists designing such an
experiment are discussed. Substantial cost
savings may result when a carefully planned
sample compositing experiment is used.

Key words: Sample compositing; group test-
ing; probability estimation.

the characteristic. Sample compositing, or
group testing, could be applied to this
experiment. After taking sufficient test
material from the appropriate number of
individuals or sites, the individual test por-
tions, or aliquots (subportions) from the test
portions may be combined. The resulting
composites would then be analyzed. In a
traditional experiment, each test portion
would be analyzed separately. Substantial
savings in analytical costs may occur when a
carefully planned compositing strategy is
used.

General applications of sample composit-
ing include (1) estimation of parameters,
particularly the mean; (2) identification of
defective, or positive individuals; and (3)
estimation of proportions. Specific examples
include sampling plankton (Cassie (1971)),
bales of wool (Cameron (1951)), determin-
ing levels of insecticide in fruit (Ryan, Pilan,
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and Leduc (1982)), fat content in milk
(Connolly and O’Connor (1982)), and charac-
terizing the communication of disease
(Thompson (1962)). Sample compositing
has many applications in industry (Sobel
and Groll (1959)) and in geochemistry and
remote sensing (Garrett and Sinding-Larsen
(1984)). Advantages of sample compositing
include the reduction of experimental costs
(Watson (1961)), reduction in the variance
of an estimate of average concentration
(Garner, Stapanian, and Williams (1987)),
and increase in the precision and probability
of detection (Mack and Robinson (1985)).
Rohde (1976) attempted to describe the dis-
tribution of composite analyses when the
test portion sizes are random.

In spite of these advantages and wide-
spread applications, sample compositing is
used rather infrequently by most environ-
mental scientists. Environmental studies
generally have severe budgetary constraints.
As a result, traditional sampling techniques,
which generally require less experimental
planning, are used without consideration of
sample compositing. Sample compositing
for estimating probability is not common,
and most of the relevant literature is rela-
tively unknown or not readily accessible to
most environmental scientists. The purpose
of this paper is to direct the attention of
environmental scientists to the use of sample
compositing for estimating probability.
Mathematically this paper is similar to those
of Gibbs and Gower (1960), Thompson
(1962) and Sobel and Elashoff (1975).

In this paper, we discuss and compare
characteristics of traditional experiments
and composite experiments. In a typical
experiment using sample compositing, the n
test portions are partitioned into n/k distinct
sets. Equal-sized aliquots are taken from
each test portion. The aliquots from each set
of k test portions are physically combined to
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form n/k composites which are each sub-
sequently analyzed. Limitations of such
composite experiments are discussed. We
describe the relationship between the pro-
portion of the population having the charac-
teristic and (1) its traditional estimator and
(2) its maximum-likelihood estimator when
sample compositing is used. The mean
square errors of the estimators are com-
pared for a fixed number of analyses. The
costs of traditional and composite plans
are compared. We assume that proper pro-
cedures are used in composite experiments,
such as ensuring homogeneity of each test
portion. The model below assumes that the
characteristic of interest is either present in
detectable amounts or absent. The results of
an analysis are either positive or negative.
The effects of “false positive” and “false
negative” rates are discussed.

2. The Estimator

Let p be the proportion of individuals
possessing a characteristic. Suppose # indi-
viduals are chosen randomly from an (essen-
tially) infinite population. A representative
test portion is taken from each individual.

Under these conditions, the parameter p
can be estimated in the traditional way by
separately analyzing the test portion from
each individual, and by using

p = Xin 2.1

as an estimator of p, where X is the number
of individual test portions that test positive.
The mean and variance of the traditional
estimator are, respectively,

E[p] = »p (2.2)

and
Vip) = EIp —p7] = p(1 —pn".
(2.3)
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The cost of obtaining this estimate of p is

C, = n(C, + Cy), 24

where C, is the total cost, C, is the cost of
obtaining a test portion from one individual,
and C, is the cost of performing one analy-
sis. Because of (2.2), p, is an unbiased esti-
mator of p. The estimator p, has the least
variance among all unbiased estimators of p
under these conditions.

Suppose random samples of size k are
chosen from the » individual test portions
(n > k), and each group of test portions is
composited and analyzed. Let m = n/k be
the number of composites. Let X, be the
number of composites that test positive. The
random variable X, has a binomial distribu-
tion with density

m
fx) = ( )P”‘(l -
X

x=0,1,2,...,m 2.5)

where p’ is the probability that a composite
possesses the characteristic. The relation
between p” and p is

P =1-0-p" (2.6)
Thus,
p =1—(0—p)k 2.7

The maximum-likelihood estimator of p is
h = 1-(0 = X /m" 28

The mean and variance of p, are, respectively,

E%)=§H—U—WWUmmd

2.9)
V(h) = B0 (= i) A
~ [E (5P, (2.10)

367

The cost of the composite sampling plan is

C, = n(C, + C,lk). Q.11

The reduction in cost is emphasized when
C, is substantially greater than C,.

We use the mean square error (MSE) as a
measure of the quality of j, and p,.

MSE = o + (4 — p) 2.12)

where o and p are the variance and mean,
respectively, of the estimators of p. The
MSE is used to compare the traditional (2.1)
and the composite (2.8) estimators because
the traditional is unbiased and the composite
is biased. The costs of traditional and com-
posite experiments should be compared for
a fixed MSE.

This theory can be extended to encom-
pass measurement errors. Typically there is
a small probability o of incorrectly detecting
the characteristic when it is not present (a
false positive) and a small probability B of
failing to detect the characteristic when it is
present (a false negative). Thus, the fre-
quency of detection, p,, is related to the
frequency of occurrence, p’, by

ps = (1 —pha+p (1 —B)

The performance of most measurement
methods in wide usage is well known, and
very good estimates of « and B are generally
available. The true frequency may be esti-
mated by

Fo= (pi— (1 —a— B

where p,, is the observed frequency of detec-
tion. The probability of occurrence of the
characteristic of interest in a single test
portion is estimated by

L= (1= p)"

For many environmental analytical methods,
a and B are small enough that p, is very close
to p’. Under these circumstances, the use of

(2.13)

(2.14)

b = (2.15)
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equations (2.13) through (2.15) is unnecessary.
All of the results presented in this paper
consider cases with negligible measurement
errors. .

In the next sections, we (1) find the opti-
mal value of k, i.e., the number of individual
test portions in a composite which mini-
mizes MSE, for a given level of p and a
fixed number of analyses; (2) compare the
MSE of j, to those of p, for a fixed number
of analyses; and (3) compare the costs of
achieving a tolerable level of MSE with
composite and traditional sampling plans.
These comparisons were rapidly accomplished
through the use of a computer.

3. Results

The MSE values for combinations of k
and m are given in Table 1 for p = 0.25,
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0.10, 0.05, and 0.01. In general, the MSE
decreases to a minimum as the optimal
value of k is attained, then increases. The
traditional sampling plan for a given number
of analyses is represented by £ = 1. Lower
MSE values occur with larger number of
analyses (m). After the minimum MSE is
reached, the rate of increase in MSE with k
decreases as the number of composites
increases.

The optimal k (i.e., the number of por-
tions or aliquots in a composite which
minimizes the MSE) was calculated for
combinations of p and m (Fig. 1). For a
given p, the optimal k increases as more
analyses are performed. Rapid increases in
optimal k are observed when 0 < p < 0.10.
As discussed below, however, previous

‘knowledge of the characteristic of interest

100

80

80

70

60

50

OPTIMAL k

40

30

20 —

10

0 1 T I

—
—

T T T
0 0.04 0.08 0.12

T T T
0.16 0.24 0.28

PROBABILITY (p)

Fig. 1. Optimal composite sample size versus the probability that an individual possesses a
characteristic; m equals the number of composite samples analyzed
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MSE(OPTIMUM) / MSE(TRADITIONAL)

Y T T
0 0.04

T T T
0.08

T
0.12

T T T T T T
0.2 0.24 0.28

T T
0.16

PROBABILITY (P)

Fig. 2. Ratio of mean square error when optimal k is used to the mean square error when
the traditional sampling plan is used versus the probability that an individual possesses a
characteristic. Again m equals the number of composite samples analyzed

may place an upper limit on k. As p increases,
the family of curves in Fig. 1 converges to
an optimal & of 1. Figure 1 is discontinuous
because k takes only integer values.

At low values of p, the MSE for optimal
k is always less than the MSE for the tradit-
ional sampling plan for a given number of
analyses (Fig. 2). Clearly, the advantages of
sample compositing over traditional techni-
ques are greatest at low levels of p. The
discontinuity in Fig. 2 is due to changes in
optimal k, which can only assume integer
values. In Figures 1 and 2, the distance
between the curves for m = 100 and
m = 40 is generally less than the distance
between the curves for m = 20 and m = 40.
Increasing the number of composites, m,
results in (1) reducing MSE, (2) increasing

optimal £ and (3) reducing the ratio of opti-
mal MSE to traditional MSE.

4. Discussion

Obviously, the value of p is not known
in advance, but typically a researcher can
obtain a reasonable upper bound. Estab-
lishing such an upper bound before using
Table 1 to determine appropriate values of
m and k is critical to avoid overestimating
optimal k£ and the large MSE values that
result. Clearly, there is also an upper limit to
the number of aliquots that can be pooled
into a composite. An assumption of the
model is that the test portions are homoge-
neous and representative of the individuals.
Furthermore, it is assumed that the aliquots
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that make up the composites are representa-
tive of the individuals. It is conceivable that
below a certain volume, the aliquots may
not be representative. If the volume of the
composite is fixed, then k is limited by the
smallest volume of the aliquot that gives
reliable results. The dilution effect has been
considered elsewhere (Hwang (1976)). Fur-
thermore, the characteristic of interest may
not be detectable when it occurs below a
certain concentration or density. For example,
if the characteristic of interest is a disease
organism that must be grown on a culture
medium, there may be a threshold level of
population size below which the culture will
not have a high probability of becoming
established. In such a case, one must be very
cautious of large k and small p because the
probability of occurrence of the characteris-
tic places a limitation on the number of
aliquots that can be pooled into a composite.
Previous knowledge of the detectability of
the characteristic is necessary.

These techniques can be used to deter-
mine the optimal experimental design. Given
an experimental goal, such as a maximum
tolerable MSE and a preliminary estimate of
a reasonable upper bound for p, one can
find the value of k& which yields the mini-
mum cost. Suppose that in a particular
experiment an MSE of 0.001 is the maxi-
mum tolerable value when estimating p, and
a reasonable upper bound on p is 0.10. Sup-
pose further that the cost of one analysis of
test material (C,), from either an individual
test portion or a composite, is four times the
cost of obtaining test material from one
individual (C,). The techniques in construct-
ing Table 1 and Figure | may be useful
in comparing alternative experiments. For
example, when p = 0.10, and 20 analyses
are performed, a design in which k = 8
yields an MSE of 0.000986 (Table 1). When
40 samples are analyzed, a design in which
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k = 3 yields an MSE of 0.000857. From
Table 1, the traditional plan (k = 1) would
require approximately 100 analyses to achieve
an MSE of approximately 0.001. The costs
of these three alternative experiments are
estimated as follows:

C, = n(C, + Cslk) = mkC, + mC,
Cig = 20-8-1+20-4
= 240 cost units
Cioy = 40-3-1+40-4
= 280 cost units
Ceoy = 100-1-1+ 100-4

500 cost units.

The first alternative, therefore, is the most
cost-effective. It requires only 48% of the
cost of the traditional plan to achieve the
objective MSE value of 0.001 in this example.

Clearly, the best design for a given experi-
ment depends on p, the tolerable MSE, C,,
and C,. The researcher can use the tech-
niques described above to select the least
costly design that achieves the experimental
objectives.
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