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Random-effects Models for Smoothing Poststrati®cation
Weights

Laura C. Lazzeroni1 and Roderick J.A. Little2

1. Introduction

In the survey setting, strati®ed sampling is useful when survey outcome variables are

related to survey design variables that are observed for all units in the population. Strati-

®cation based on the design variables can reduce bias due to fallible sampling procedures,

and reduce variance by eliminating the between-stratum component of the variability of

the resulting estimates.

Sometimes, the population distribution is known for a secondary variable that is

impossible to observe on a given individual prior to sampling. In this case, it is still

possible to use the distribution to adjust estimates of the outcome in the analysis stage

using the technique known as poststrati®cation. Poststrati®cation can reduce bias caused

by problems in the sampling frame or unit nonresponse, and it can also increase the

precision of estimates. However, since the secondary variable is not a strati®er in the sample

design, the respondent counts in the poststrata are not under the control of the sampler and

hence the method can lead to a reduction in precision. This article concerns modi®cations

Poststrati®cation is a common technique for adjusting survey data using external data from a
census or larger survey. When the respondent counts in the poststrata are small, modi®cations
of the method, such as collapsing over adjacent poststrata, are needed to reduce variability in
the poststrati®cation weights. We consider here inference about a population mean with
ordered poststrata. One approach is to treat poststratum means as random effects, yielding
shrinkage towards the unweighted mean, but this method provides unsatisfactory inferences
when the means vary systematically across the poststrata. We consider alternative model-
based extensions of this method, where the poststratum means are assumed to be distributed
about a linear regression line, and where the poststratum means are assumed to have an
autoregressive covariance structure. The methods are illustrated on a real data set from the
Epidemiologic Catchment Area study, and compared with other procedures in a simulation
study. The latter suggests that the autoregressive random effects model may be a useful
approach to the problem.
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of the usual poststrati®ed estimator of the mean to limit the effects of excessive variability

in the poststratum counts.

We consider the problem of estimating the population mean of an outcome variable

when an ordinal poststratifying variable such as an index, or an interval-scaled post-

strati®er such as age or income, is available. We propose estimates based on two models

for the outcome that re¯ect the ordinal nature of the poststrati®er. An example is given

using data from the 1979 Los Angeles Epidemiological Catchment Area survey. The

methods are compared with previously suggested alternatives in a large simulation study.

Section 2 brie¯y reviews alternative approaches to this problem. Section 3 presents the

model based methods. Section 4 contains an example with comparative results for some of

these methods. Section 5 describes a simulation study comparing inferences under a variety

of approaches. Section 6 summarizes our conclusions.

2. Current Approaches

We consider the estimation of a ®nite population mean of a continuous outcome variable Y

based on a sample survey, in the presence of an ordinal poststrati®er W with known popu-

lation distribution. Suppose W has H levels. For poststratum h, let Nh be the population

size; nh, the sample size; Yhi, the value of Y for the ith individual in the population; and

yhi, the value of Y for the ith sample observation. Also, let:

N� �
X

h

Nh; n� �
X

h

nh; ÅY� �
X

h;i

Yhi=N; ÅYh �
X

i

Yhi=Nh; Åyh �
X

i

yhi=nh

denote respectively the total population size, the total sample size, the population mean,

the within poststratum population mean, and the within poststratum sample mean.

It is assumed that given the value of W , the probability of inclusion in the sample does

not depend upon the value of Y . Two standard approaches are to estimate ÅY� by (a) the

unweighted sample mean (unw) Åy� � Shph Åyh, where ph � nh=n�; and (b) the poststrati®ed

mean (psm) Åyps � ShPh Åyh, where Ph � Nh=N�. The sample mean is an appropriate estimate

of ÅY� when Y and W are unrelated. Even if the variables are related, Åy� is design unbiased

so long as the probability of inclusion in the sample does not depend upon W . However, Åy�
does not use information from the known distribution of W so that it may not be the best

estimate. Due to sampling variability or systematic bias in the sampling procedures, the

proportion ph falling within stratum h of a given sample deviates from its respective popu-

lation proportion Ph. Hence Åy� is biased for ÅY� conditional upon the sample poststratum

counts fnhg.

The poststrati®ed mean Åyps is unbiased given the sample poststratum counts, and can

have much smaller mean squared error than Åy� (Holt and Smith 1979; Little 1993).

Although Åyps incorporates information about the population distribution of W , Åyh is used

to estimate the poststratum mean, regardless of how many respondents fall in the post-

stratum. When a stratum contains few observations, the estimator of the stratum mean

might be improved by borrowing strength from information from neighboring strata.

Also, the poststrati®ed mean has the same form as for an unordered categorical poststrati®er,

and thus does not re¯ect the ordinal nature of the poststrati®er. From a model-based

perspective, the objective is to improve precision by using estimates of the poststratum

means that combine strength across poststrata.
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A different perspective is to regard estimates as weighted averages of the sample

observations. Both Åy� and Åyps can be written asX
h;i

wh yhi=
X

h;i

wh

where wh is a weight attached to each observation in stratum h. Conditional on the sample

poststratum counts, the variance of these estimates under simple random sampling is

X
h;i

w2
h 1 ÿ

nh

Nh

� �
S2

h=
X

h;i

wh

 !2

where S2
h is the within-stratum variance of Yhi. For Åyps, wh � Ph=ph, and for Åy�, wh � 1 for

all h. When ph is much smaller than Ph, cases in that poststratum receive a high weight,

in¯ating the variance of Åyps. In fact, ph can equal zero, in which case adjustments are

needed for Åyps to be de®ned.

Modi®cations of Åyps that reduce its variance can often be written as weighted averages

of the observations where the original poststrati®cation weights have been smoothed to

reduce variability. One method is to truncate the poststrati®cation weights larger than

some maximum allowable value. Simultaneously, smaller weights are adjusted upwards.

The truncation point may be ®xed in an ad hoc way, or based on the data (Potter 1990). A

second approach is to pool or collapse strata. Strategies for choosing how and when to

collapse strata have been suggested by Kalton and Maligalig (1991), Little (1993), and

Tremblay (1986). If sampling or nonresponse depends upon W , modeling of these rates

has been suggested (e.g., Kalton and Maligalig 1991). Observation weights can be based

on the estimated rates, which will usually be smoother than the observed rates.

3. Proposed Methods

The ideal compromise between Åy� and Åyps would use the ordinal structure of W to aid in

the prediction of the stratum means. It would control variance by not weighting any

individual observation too highly. When the sample means are well-observed and Y is

strongly related to W , the estimate should look like Åyps. When Y and W are not strongly

related, the estimate should look like Åy�. Also, since surveys contain large numbers of

variables, the ideal method would have general applicability without requiring a lot of

hands-on modeling for each outcome. However, if arbitrary choices are needed for the

sake of generality, the resulting estimates should be insensitive to these choices.

We consider methods based on models for the outcome, which can be viewed within

either a superpopulation or Bayesian framework. The general form of these models is

Yhijmh ,ind N�mh; j
2
� �1�

and

m , NH�Xb;D� �2�

where m � �m1; . . . ;mH�
T , X is a known H ´ Q design matrix, b is a Q ´ 1 vector of

unknown parameters and D is an H ´ H covariance matrix (Harville 1977; Laird and

Ware 1982). For applications of this model to cluster sampling, see Scott and Smith
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(1969) and Pfefferman and Nathan (1981). For individuals not included in the sample, Yhi

can be estimated by Ãmh, its expected value given the data. The estimated ®nite population

mean is

Åymod �
X

h

�nh Åyh � �Nh ÿ nh� Ãmh�=N� �3�

The estimates Ãmh of the stratum means shrink the sample means Åyh towards the hth element

of X Ãb, with a degree of shrinkage that tends to zero as the within-stratum sample size nh

increases. The estimator smoothes the within-stratum means when the sample size is

small, but it behaves like the poststrati®ed mean in large samples and hence is design

consistent.

Previous work has discussed inference under the exchangeable random effects (XRE)

model obtained from Equation (2) by setting X � �1; . . . ; 1�T , D � Ij2
m, where I is the

identity matrix (Holt and Smith 1979; Little 1983, 1991; Ghosh and Meeden 1986). If

the between poststratum variance j2
m is set equal to zero then mh ; m, Ãmh � Åy� and

Åymod � Åy�. If j2
m is set equal to in®nity, a ®xed effects ANOVA model is obtained,

Ãmh � Åyh and Åymod � Åyps. If j2
m is estimated from the data, an empirical Bayes approach,

the resulting estimate Åymod moves the means Åyh towards Åy�. While these properties are

appealing, simulations in Little (1991) indicate that con®dence intervals based on the

XRE model are sensitive to departures from the assumption of exchangeability in the post-

stratum means. This ®nding is consistent with comments by Morris (1983) in the general

context of empirical Bayes estimation. The exchangeability assumption is highly question-

able when W is ordinal, since a systematic relationship between Y and W might be

expected. We propose and study one-parameter extensions of the XRE model for an

ordinal poststrati®er.

Two ways are suggested for modeling the ordinal nature of W based on Equation (2).

The more standard approach is to model the mean structure by including functions of

W in X. In particular, the (REG) model for the stratum means sets

X �

1 W1

. . . . . .

1 WH

2664
3775 and D � Ij2

m �4�

In our application the poststrata are equally-spaced and Wh � h. Another approach is to

model the covariance matrix D to incorporate greater positive correlation between mh and

mh0 when h and h0 are close in value. A simple way to do this is to assume an AR1 model of

the stratum means, namely

X �

1

1

1

. . .

1

2666666664

3777777775
;D � j2

m

1 r . . . rHÿ1

r 1 . . . rHÿ2

r2 r . . . rHÿ3

. . . . . . . . . . . .

rHÿ1 rHÿ2 . . . 1

2666666664

3777777775
�5�

The AR1 model is proposed as a pragmatic device, since it induces differential shrinkages
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between the poststrata so that closer poststrata contribute more than more distant post-

strata. The AR1 structure of D effectively assumes the levels of the poststrati®er are

equally-spaced, but this could be modi®ed to re¯ect unequal spacings if necessary, by rais-

ing the correlations to powers of the absolute differences of the values of W . The REG and

AR1 models each contain four parameters, compared with three for the XRE model. Of

course these models could be elaborated, or a combined REG/AR1 model with ®ve para-

meters could be ®tted, with some loss of parsimony; here we examine the properties of the

REG and AR1 models treated separately.

Assume that exactly G poststrata contain data. The suf®cient statistics are Åy and S

where Åy is the G ´ 1 vector consisting of the ordered observed poststratum means and

S � Sh;i�yhi ÿ Åyh�
2. Let Z be the G ´ H submatrix of the H ´ H identity matrix with row

h deleted if nh � 0. Let R be the G ´ G diagonal matrix with the gth diagonal element

equal to j2=nh if h is the gth stratum for which nh > 0. De®ne V � ZDZT
� R. Conditional

on the observed poststratum counts,

Åy , NG�ZXb;V�

and independently

S=j2 , x2
nÿG

The maximum likelihood estimate of b for known V is

Ãb � �XT ZT Vÿ1ZX�ÿ1XT ZT Vÿ1 Åy

yielding predicted means

Ãm � X Ãb � DZT Vÿ1
� Åy ÿ ZX Ãb� � AÅy

say, where A is the matrix obtained by substituting for Ãb. Substitution in Equation (3)

yields a model estimate Åymod of the ®nite population mean, which has the form of a

weighted average of the observations for some set of smoothed weights,

fwh; h � 1; . . . ;Hg. Estimates of variance based on Model (2), ignoring error in estimating

V , can be derived by a standard empirical Bayes analysis, yielding

Var� Åymod ÿ ÅY� � �N ÿ n�T �T � ARAT
� �I ÿ AZ�D�I ÿ AZ�T ��N ÿ n�=N2

� �6�

where N and n are �G ´ 1� vectors of population and sample counts in the poststrata with

data, and T is the �G ´ G� diagonal matrix with diagonal elements j2=�Nh ÿ nh�. Expres-

sions (3) and (6) are also the posterior mean and variance of ÅY from a Bayesian analysis

with a uniform prior for b, ignoring uncertainty in estimating V . When, as is usual, the

variance parameters in V are unknown, the approach adopted here is to substitute

maximum likelihood estimates, so that D becomes ÃD and V becomes ÃV in Equations

(3) to (6). Approximate t-based corrections are applied for interval estimation, as dis-

cussed in Section 5.4. Exact Bayesian methods can be developed that allow for uncertainty

in estimating V , but they are not considered here to keep calculations simple.

4. Example

To illustrate our methods, we apply them to data from the Los Angeles Epidemiologic
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Catchment Area survey (for example, Eaton and Kessler 1985). This large mental health

survey was based on an equal probability sample of households in two areas, East Los

Angeles and West Los Angeles. Population distributions within these catchment areas

were taken from the 1980 U.S. Census. Data for the age-speci®c sampling proportions

and population distributions are given in Little (1993).

Eight demographic groups de®ned by Ethnicity (H � Hispanic;N � Not Hispanic),

Gender (F � Female;M � Male) and Catchment Area (E � East;W � West) were each

analyzed separately. Sample sizes varied from 112 to 738. The outcome variable Y was

a score measuring depression based on a set of questions from the survey. Although not

continuous, Y takes 71 distinct values from 0 to 51. The sample was poststrati®ed on

age, W , with each year representing one poststratum. Respondents varied in age from

18 to 96 while individuals in the population were recorded at age 102. All demographic

groups had some strata that were not represented in the sample. (Single year poststrata

are chosen to yield an extreme method with minimal shrinkage; in practice the number

of poststrata would usually be reduced, say by choosing ®ve-year age intervals).

Figure 1 displays data from 3 groups, HMW, NME, and NMW. The left panels plot Y

against W , and show a downward trend with age but with lots of variability especially at

younger ages. Plots of Ph and ph against age not included here suggest that some age

ranges may be systematically undersampled.

Fits of the AR1 and REG models applied to these data are summarized in Table 1. We

used a modi®ed version of the scoring algorithm described by Jennrich and Schluchter

(1986) that includes information from S as well as the poststratum means. Penalty

functions were used to insure that Ãj2 > 0, Ãj2
m > 0 and 0 < Ãr < 1. Under these constraints,

Ãj2
m was essentially zero in three cases for the AR1 model and six cases for the REG model.

For the AR1 model, this means that Ãr is meaningless and it is not reported. The estimated

slope is always negative under the REG model. Because the AR1 model describes the

stratum means rather than the observations, Ãr can be quite large, greater than 0.9 in two

cases. A simple intercept model for the outcomes was also ®t to the data. This is the simplest

superpopulation model that leads to the estimate Åy�. For the AR1 and the REG models,

Table 1 contains the difference of the log-likelihood from this simplest model as well

as maximum likelihood estimates of the parameters.

For three groups, the right panels of Figure 1 show Ãmh, the estimated or predicted means,

plotted against age, from poststrati®cation, and from the AR1 and REG models. For the

sample mean, the predicted means are identically equal to Åy�. Straight lines correspond

to Ãjm � 0 since the predicted mean is then just the estimated ®xed effect. The NME group

has the least smooth predicted values and the largest ratio of Ãj2
m to Ãj2. This group also has

the smallest meaningful estimates of r for the AR1 model. Plots of the weights against age

are shown for two groups in Figure 2, with the circles denoting poststrati®cation weights,

dashed lines weights from the REG model and continuous lines weights from the AR1

model. The variability of the weights from REG and AR1 in this example is small com-

pared to truncation-based methods that have been proposed. The AR1 model displays

weights that vary with the observed sampling rates whereas the weights of the REG model

are usually linear.

Table 2 shows ®ve estimates of the ®nite population mean, namely the unweighted

mean, the poststrati®ed mean and the predicted mean from the XRE, REG and AR1 models,
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Fig. 1. Observed depressions scores (on left) and predicted stratum means under PS, REG, and AR1 models

(on right)



for all eight groups. Estimated standard errors based on Equation (6) are also shown for

each estimator. For these data sets the XRE model estimates are generally much closer

to the unweighted mean than to the poststrati®ed mean, re¯ecting the large degree of

shrinkage of the weights. The AR1 and REG estimates are often similar to those from

XRE and have comparable estimated standard errors, but occasionally move towards

the poststrati®ed mean. The poststrati®ed means usually have somewhat larger standard

errors than the other methods. Con®dence intervals based on the poststrati®ed mean would

be even wider (by 20±30%) if a t-correction is applied, which appears necessary from the

results of the simulation study in Section 5.

5. Simulation Study

5.1. Overview

A sizable simulation study was carried out to assess the inferential properties of alternative

methods under correctly-speci®ed and misspeci®ed models. In all, 9 ´ 2 ´ 2 ´ 2 � 144

simulation conditions were created, by crossing 9 ´ 2 � 18 population types, 9 normal

and 9 lognormal, with 2 ´ 2 � 4 sample types, de®ned by mechanism (MAR, MCAR)

and sample size (50, 250). MAR mechanisms, where selection rates vary across the
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Table 1. Maximum likelihood estimation for AR1 and REG models in eight groups

Group Model Difference in MLE of MLE of MLE of MLE of MLE of
log-likelihood intercept j2 j2

m r slope

HFE AR1 0.00 8.88 62.13 0.00 NA
N � 46; 301 REG 0.60 9.72 61.99 0.00 ÿ0.02
n � 543
HME AR1 0.30 6.82 42.66 0.28 0.82
N � 42; 349 REG 1.14 7.93 42.76 0.00 ÿ0.03
n � 492
HFW AR1 0.01 8.81 97.46 0.66 0.50
N � 11; 120 REG 0.27 10.41 97.74 0.00 ÿ0.04
n � 142
HMW AR1 0.00 7.90 51.15 0.00 NA
N � 11; 448 REG 0.63 10.05 49.59 0.00 ÿ0.06
n � 112
NFE AR1 0.12 6.87 65.51 0.92 0.90
N � 12; 581 REG 2.08 10.06 64.87 0.00 ÿ0.06
n � 178
NME AR1 1.47 6.66 37.18 6.46 0.30
N � 11; 287 REG 1.98 8.66 37.37 5.64 ÿ0.04
n � 124
NFW AR1 0.00 6.99 67.22 0.00 NA
N � 55; 499 REG 0.63 7.88 67.11 0.00 ÿ0.02
n � 738
NMW AR1 2.01 5.84 47.66 0.98 0.92
N � 53; 593 REG 2.79 7.81 48.01 0.07 ÿ0.04
n � 711



poststrati®er, are included to model situations where frame limitations or unit nonresponse

result in a sample that is not missing completely at random. Non-MAR situations are not

included since none of the methods are designed to address non-ignorable selection. For

each simulation condition, 50 populations were generated and 10 samples generated

within each population, yielding 500 replications. Six estimation methods for the ®nite

population mean were applied to these replicates, and the bias and mean squared error

assessed. Also, the width and coverage of 95% intervals for the ®nite population mean

were compared for a variety of procedures.
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Fig. 2. Observation weights from PS, REG, and AR1 models for two groups



5.2. Details of the simulations

5.2.1. Simulated populations

The population counts and age structure were based on one of the ECA demographic

groups, namely Non-Hispanic Females in East Los Angeles, collapsing population counts

from four successive single age groups to yield 20 poststrata. The total population size was

12,575 and poststratum counts ranged from 47 to 982, with a mean of 629 and a standard

deviation of 283. Population values were generated as follows:

(A) Normal Yhi normal as in Equations (1) and (2), with H � 20 poststrata and the follow-

ing choices of X;D and parameters:

(1) NULL: X � �1; 1; . . . ; 1�T ;D � I;b � 0; j2
m � 0; j2

� 1

(2) XRE, Within Var � low: X � �1; 1; . . . ; 1�T ;D � I;b � 0; j2
m � 1=3; j2

� 1=3;

(3) XRE, Within Var � high: as for (2) but with j2
� 1

(4) AR1, Within Var � low: X and D in Equation (5), r � 0:9; b � 0; j2
m � 1=3;

j2
� 1=3;

(5) AR1, Within Var � high: as for (4) but with j2
� 1

(6) REG, Within Var � low: X and D in Equation (4) with Wh � h;b � �0; 0:2�;

j2
m � 1=3; j2

� 1=3;

(7) REG, Within Var � high: as for (6) but with j2
� 1

�8� QUAD;Within Var � low : X �

1 1 1

1 2 22

. . . . . .

1 H H2

26664
37775

D � I;b � �4:41;ÿ0:84; 0:04�; j2
m � 1=3; j2

� 1=3
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Table 2. Estimate (standard error) of mean depression score from ®ve methods in eight subgroups

Method Subgroup
HFE HME HFW HMW

Åy� 8.88 (.34) 6.84 (.30) 8.82 (.83) 7.90 (.67)
Åyps 8.92 (.35a) 7.00 (.35a) 8.69 (.88a) 7.63 (.76a)
Åyxre 8.88 (.34) 6.84 (.29) 8.82 (.83) 7.90 (.67)
Åyar1 8.88 (.34) 6.89 (.30) 8.82 (.83) 7.90 (.67)
Åyreg 8.88 (.34) 6.85 (.29) 8.77 (.83) 7.85 (.66)

Method Subgroup
NFE NME NFW NMW

Åy� 6.94 (.61) 6.61 (.60) 6.68 (.30) 6.25 (0.26)
Åyps 6.73 (.66a) 7.09 (.70a) 6.99 (.30a) 6.01 (0.26a)
Åyxre 6.94 (.61) 6.70 (.59) 6.99 (.30) 6.24 (0.26)
Åyar1 6.91 (.61) 6.67 (.59) 6.99 (.30) 6.14 (0.26)
Åyreg 6.93 (.60) 6.74 (.59) 6.95 (.30) 6.17 (0.26)

Notes: a Variance computed assuming unequal variances across the poststrata, and the asymptotic normal

reference distribution (method psvn in Section 5.4).



(9) QUAD, Within Var � high: as for (8) but with j2
� 1.

(B) Lognormal: (10)±(18) as in (1)±(9) but with Yhi lognormally distributed. Speci®cally,

Yhi � mh � j
��������������
64=151

p
�exp�Zhi� ÿ 13=8�;Zhi , N�0; 1�. When j � 1, Yhi has

approximate mean mh, variance 1:

5.2.2. Sampling mechanism

The total sample size in the simulations was ®xed but sample sizes in the poststrata

were random and hence vary over simulations. Sample sizes and mechanisms were as

follows:

Sample n: (1) Low: n � 50; (2) High: n � 250

(car) Missing completely at random: constant rates of selection across H poststrata

(mar) Missing at random: variable rates of selection across H poststrata. The logit of the

probability of selection in poststratum h is computed as ÿ9:3 ÿ :07Wh, yielding probabil-

ities of selection such that the highest is 3.8 times the lowest. The selection probabilities

are standardized to yield the desired sample size.

5.3. Point estimation

5.3.1. Methods

The following methods for estimating ÅY� were compared in the simulation: (psm) Post-

strati®ed mean, with some collapsing to yield at least 5 cases in each poststratum.

(cps) Collapsed poststrati®ed mean. The 20 poststrata were collapsed into 5 by combining

adjacent sets of four poststrata together. Any collapsed poststratum with less than 5

observations was combined with its neighbor, as with the original poststrati®ed mean.

(reg) Maximum likelihood estimate for REG Model.

(ar1) Maximum likelihood estimate for AR1 Model.

(xre) Maximum likelihood estimate for XRE Model.

(unw) Unweighted Sample Mean.

The average root mean squared error of each of these methods was computed over the

50 population replicates of each simulation condition.

5.3.2. Results

An overview of the results is given in Table 3A, which presents average root mean squared

errors for the six methods listed above by simulation population type and sample size. For

ease of interpretation, the average root mean squared errors in each row are presented as

per cent deviations from the corresponding average root mean squared error for psm. We

note the following from this table:

(1) The method corresponding to the model used to generate the data has the lowest root

mean squared error, for example reg is the best method for the REG populations and

unw is the best method for the NULL populations. This result is expected given

optimality properties of maximum likelihood when the assumed model holds.

(2) The unweighted mean unw does well for the NULL and XRE populations, but very
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Table 3. Average root mean squared errors of alternatives to the poststrati®ed mean, expressed as percentage

deviations from average root mean squared error of poststrati®ed mean

A) By population and sample size, averaged over sampling mechanism, error distribution
and within variance

Population Alternative estimator
# cps ar1 reg xre unw cps ar1 reg xre unw
NULL ÿ3 ÿ6 ÿ2 ÿ7 ÿ10 l ÿ2 ÿ5 ÿ2 ÿ5 ÿ5
QUAD 0 ÿ7 4 ÿ3 53 l 15 ÿ2 2 0 186
AR1 0 ÿ3 ÿ1 4 27 l 1 0 ÿ1 2 57
REG ÿ1 ÿ3 ÿ7 13 74 l 12 ÿ1 ÿ1 5 230
XRE ÿ2 ÿ7 ÿ4 ÿ8 ÿ4 l 9 ÿ2 ÿ1 ÿ1 15
Sample n ! 50 50 50 50 50 250 250 250 250 250

B) By population, sample size and sampling mechanism, averaged over error distribution
and within variance

Population Alternative estimator
# ar1 reg xre ar1 reg xre ar1 reg xre ar1 reg xre
NULL ÿ3 ÿ2 ÿ3 l ÿ8 ÿ2 ÿ11 l ÿ2 ÿ2 ÿ2 l ÿ7 ÿ3 ÿ8
QUAD ÿ6 1 0 l ÿ8 7 ÿ5 l ÿ1 1 0 l ÿ3 4 ÿ1
AR1 ÿ2 0 0 l ÿ3 ÿ1 8 l ÿ1 0 0 l 0 ÿ1 5
REG ÿ2 ÿ6 4 l ÿ4 ÿ7 21 l 0 ÿ1 0 l ÿ1 ÿ2 10
XRE ÿ5 ÿ4 ÿ6 l ÿ8 ÿ4 ÿ10 l ÿ1 ÿ1 ÿ1 l ÿ2 ÿ2 ÿ2
Sample n ! 50 50 50 50 50 50 250 250 250 250 250 250
Mechanism ! car car car mar mar mar car car car mar mar mar

C) By population type, sample size and error distribution, averaged over sampling
mechanism and within variance

Population Alternative estimator
# ar1 reg xre ar1 reg xre ar1 reg xre ar1 reg xre
NULL ÿ8 ÿ5 ÿ9 l ÿ4 0 ÿ6 l ÿ5 ÿ3 ÿ6 l 4 ÿ2 ÿ4
QUAD ÿ14 3 ÿ8 l ÿ1 5 1 l ÿ3 3 ÿ2 l ÿ1 2 0
AR1 ÿ5 ÿ3 ÿ5 l ÿ1 0 3 l ÿ1 ÿ1 1 l 0 ÿ1 2
REG ÿ4 ÿ11 16 l ÿ2 ÿ3 10 l ÿ1 ÿ2 8 l ÿ1 ÿ1 4
XRE ÿ10 ÿ8 ÿ11 l ÿ4 ÿ1 ÿ6 l ÿ2 ÿ2 ÿ2 l ÿ1 ÿ1 ÿ1
Sample n ! 50 50 50 50 50 50 250 250 250 250 250 250
Error distribution ! nml nml nml lno lno lno nml nml nml lno lno lno

D) By population type, sample size and within variance, averaged over sampling mechanism
and error distribution

Population Alternative estimator
# ar1 reg xre ar1 reg xre ar1 reg xre ar1 reg xre
NULL ÿ6 ÿ2 ÿ7 lNA NA NA l ÿ5 ÿ2 ÿ5 l NA NA NA
QUAD ÿ13 4 ÿ7 l ÿ3 4 0 l ÿ3 4 ÿ1 l ÿ1 2 0
AR1 ÿ4 ÿ1 7 l ÿ2 ÿ1 3 l 0 0 2 l 0 ÿ1 2
REG ÿ6 ÿ10 15 l ÿ1 ÿ4 11 l ÿ1 ÿ2 6 l ÿ1 ÿ1 5
XRE ÿ9 ÿ7ÿ10 l ÿ5 ÿ2 ÿ7 l ÿ2 ÿ2 ÿ2 l ÿ1 ÿ1 ÿ1
Sample n ! 50 50 50 50 50 50 250 250 250 250 250 250
Within variance ! low low low hi hi hi low low low hi hi hi



poorly for populations with more structure, such as those generated by the REG,

QUAD and AR1 populations, when the method is seriously biased, particularly

under MAR selection and the larger sample size. This method is clearly not useful

for routine use. The ar1, reg and xre methods are all consistent and behave like post-

strati®cation when the sample size is large, and they are much better than unw for the

structured populations.

(3) The ar1 method is the best overall in terms of root mean squared error. The ar1 and

reg methods display advantages over xre for the QUAD, AR1, and REG populations,

re¯ecting gains from including the added parameter in the models that underlie these

methods. Comparing ar1 and reg, ar1 has a noticeable advantage for the QUAD

population, when the mean structure differs from that assumed by the models that

underlie either method. The ar1 method yields small but consistent reductions of

root mean squared error over psm for all the populations. In contrast, the collapsing

method cps yields smaller reductions at the low sample size and is worse than psm

for the large sample sizes, except for the null model. The advantages of ar1 and reg

over the psm are considerably greater for n � 50 than for n � 250, as one would

expect since the gains of smoothing dissipate as the sample size increases, and

ar1, reg, and xre all converge towards the psm method.

Analyses of variance of these summaries were conducted to discover the main sources

of variation over simulation conditions, and these were used to form summary Tables 3B,

3C and 3D, which retain subsets of the simulation factors. In these more detailed tables we

restrict attention to root mean squared error comparisons of ar1, reg, and xre with psm.

Table 3B indicates that advantages of the modeling methods are greater for mar than

for car selection, as might be expected. In Table 3C it can be seen that gains from the

model methods are reduced for the lognormal populations, re¯ecting the lack of normality.

However, the root mean squared errors of ar1 and reg are quite robust to this form of

misspeci®cation. Table 3D show predictable gains of the model-based methods when

the within-group variance is large, since in this circumstance smoothing of the poststratum

weights is relatively advantageous.

5.4. Interval estimation methods

5.4.1. Methods

Methods of interval estimation involve other choices concerning conditional versus

unconditional approaches to estimating standard errors, assumptions about the variance

and t-type modi®cations of the reference distribution. We compared twenty methods in

our simulations, of which ten are discussed here:

(A) Intervals centered at the poststrati®ed mean:

(pscn): the variance of the poststrati®ed mean (ps) is computed by pooling across

strata, assuming a constant variance across poststrata (c) and using the asymptotic

normal reference distribution (n).

(psvn): as for pscn, but assuming a variance that varies across the poststrata (v). A

distinct variance is estimated for each poststratum, rather than pooling.

(psct): as for pscn, but with a t-like correction for estimating the variance (t). The
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normal reference distribution was retained, but the variance was in¯ated by

�n ÿ 1�=�n ÿ 3� to re¯ect the increased uncertainty from estimating the pooled var-

iance (e.g., Scott and Smith 1971). For a Bayesian justi®cation of the adjustment

see Little (1993). Although not strictly a t inference, a very similar interval would

be obtained by replacing the normal reference distribution by the t with n ÿ 1

degrees of freedom.

(psvt): as psvn, but with a t correction for estimating the variances within each post-

stratum. As before, a normal reference distribution was used, but the contribution of

the variance from poststratum h was in¯ated by �nh ÿ 1�=�nh ÿ 3� to re¯ect increased

uncertainty from estimating the within-stratum variance. A Bayesian justi®cation of

this adjustment is given in Little (1993).

(B) Intervals centered on the collapsed poststrati®ed mean:

(cpsct): as psct, but applied to the poststrati®ed mean after collapsing.

(cpsvt): as psvt, but applied to the poststrati®ed mean after collapsing.

(C) Intervals centered on model estimates (ar1, reg, xre). The variances for each of these

methods were computed via Equation (6). The reference distribution was Student's t

with degrees of freedom equal to the number of poststrata with observations minus

the number of parameters estimated, including ®xed-effects terms and r. For

example, if 16 poststrata had observations then degrees of freedom are

16 ÿ 2 � 14 for REG and AR1 and 16 ÿ 1 � 15 for XRE. An exact t correction

is not available for this model, but the proposed choice of degrees of freedom was

expected to improve the asymptotic normal intervals, which treat the covariance

matrix as effectively known.

(D) Interval centered on the unweighted mean (unw): The standard normal interval was

computed for the unweighted mean, with the sample variance computed collapsing

over the poststrata.

5.4.2. Results

Table 4A shows the coverage rates of these ten methods by population and sample size,

averaged over mechanism, distribution and within variance. The coverages are expressed

as deviations from the nominal 95% level, so for example the ®rst entry of 2.3 in Table 4A

means an empirical coverage of 97.3%. From this table, the uncorrected normal intervals

for the poststrati®ed mean, pscn and psvn, undercover slightly for n � 250 and markedly

for n � 50. The corrected intervals, psct and psvt, are somewhat conservative, and fairly

similar for these simulations. The collapsed methods, cpsct and cpsvt yield slightly

conservative intervals. Of the model-based methods ar1, reg, xre, and unw, ar1 has the

best coverage over all problems, although its coverage is slightly liberal; reg seriously

undercovers for the QUAD population and xre seriously undercovers for the REG and

QUAD populations. The intervals based on the unweighted mean have poor coverage in

the QUAD, AR1 and REG populations, particularly for the large sample size where

bias predominates over variance.

Tables 4B and 4C compares coverage of the psvt, ar1, reg, and xre intervals in a less

aggregated fashion, for sample size n � 50. From Table 4B, it can be seen that the under-

coverages of reg and xre under model misspeci®cation are greater for the mar than for the

car mechanism. From Table 4C, it is clear that undercoverage prevails in the lognormal

74 Journal of Of®cial Statistics



populations. Thus modi®cations of these models for non-normality might be expected to

improve their performance in such settings.

Table 5 summarizes the average width of the intervals from the ten methods, expressed

as percentage deviation of the width of the psvt, chosen as the poststrati®ed method of

choice for comparisons. The methods pscn and psvn have intervals that are 20% narrower

on average for n � 50 and 10% narrower on average for n � 250, but this is achieved at

the expense of undercoverage. The intervals based on the collapsed poststrati®ed mean are
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Table 4. Coverage rates for interval estimates, expressed as deviations from 95% nominal coverage

A) By population type and sample size, averaged over mechanism, distribution, and within
variance

Population Interval estimate
# psct pscn psvt psvn cpsct cpsvt ar1 reg xre unw

NULL 2.3 ÿ2.7 1.0 ÿ3.2 0.6 0.1 ÿ0.5 ÿ1.1 ÿ0.7 ÿ2.0
QUAD 1.1 ÿ4.0 1.1 ÿ3.1 1.6 1.4 ÿ0.4 ÿ3.2 ÿ0.1 ÿ7.2
AR1 1.9 ÿ3.6 2.0 ÿ2.7 0.0 0.0 ÿ1.3 ÿ1.1 ÿ2.4 ÿ6.4
REG 0.6 ÿ1.9 0.6 ÿ1.3 1.1 1.0 ÿ1.3 ÿ0.1 ÿ5.1 ÿ17.4
XRE 2.2 ÿ3.4 2.2 ÿ2.2 1.4 1.4 ÿ0.7 ÿ0.1 ÿ0.6 ÿ1.7
Sample n ! 50 50 50 50 50 50 50 50 50 50

NULL 0.9 ÿ1.5 0.5 ÿ1.4 ÿ0.6 ÿ1.0 ÿ0.2 ÿ0.1 ÿ0.3 ÿ1.5
QUAD 0.5 ÿ2.3 0.6 ÿ2.0 0.6 0.1 ÿ0.1 ÿ1.7 ÿ0.8 ÿ32.4
AR1 0.9 ÿ1.4 0.8 ÿ1.3 0.4 0.0 0.0 0.3 ÿ0.4 ÿ12.6
REG 1.0 ÿ0.5 0.9 0.0 ÿ0.3 ÿ0.9 ÿ0.3 0.3 ÿ2.2 ÿ43.1
XRE 0.9 ÿ1.5 0.7 ÿ1.8 0.2 ÿ0.1 0.2 0.3 0.1 ÿ3.0
Sample n ! 250 250 250 250 250 250 250 250 250 250

B) By population and mechanism, averaged over distribution and within variance, for
n � 50

Population Interval estimate
# psvt ar1 reg xre psvt ar1 reg xre
NULL 1.3 ÿ0.4 ÿ0.5 ÿ0.5 l 0.7 ÿ0.6 ÿ1.8 ÿ0.9
QUAD 1.9 ÿ0.1 ÿ1.7 ÿ0.6 l 0.4 ÿ0.7 ÿ4.6 0.5
AR1 2.0 ÿ0.7 ÿ0.4 ÿ0.9 l 1.9 ÿ1.9 ÿ1.7 ÿ3.9
REG 1.2 ÿ0.6 0.2 ÿ1.2 l ÿ0.1 ÿ2.0 ÿ0.5 ÿ9.1
XRE 2.4 0.0 0.2 0.1 l 1.9 ÿ1.5 ÿ0.5 ÿ1.2
Sample n ! 50 50 50 50 50 50 50 50
Mechanism ! car car car car mar mar mar mar

C) By population and distribution, averaged over mechanism and within variance, for
n � 50

Population Interval estimate
# psvt ar1 reg xre psvt ar1 reg xre
NULL 1.9 1.0 0.9 1.0 l ÿ0.9 ÿ1.5 ÿ2.0 ÿ1.7
QUAD 2.6 1.4 ÿ2.0 1.4 l ÿ0.3 ÿ2.2 ÿ4.4 ÿ1.5
AR1 3.5 0.6 0.6 ÿ0.4 l 0.4 ÿ3.2 ÿ2.7 ÿ4.5
REG 0.0 0.2 1.2 ÿ2.7 l 1.1 ÿ2.9 ÿ1.5 ÿ7.5
XRE 3.2 0.6 1.2 0.8 l 1.2 ÿ2.0 ÿ1.5 ÿ1.9
Sample n ! 50 50 50 50 50 50 50 50
Distribution ! nor nor nor nor lno lno lno lno



about 10% narrower for n � 50, suggesting a bene®t from collapsing at this sample size

that is less evident from the root mean squared errors in Table 3. At n � 250 the reductions

in interval width from collapsing have disappeared. The ar1, reg, and xre methods achieve

a reduction in width of around 20% for n � 50 and around 6% for n � 250. More detailed

classi®cations by the simulation factors, omitted here, indicate that these reductions are

fairly stable over simulation conditions. Thus ar1, which achieves these reductions with

good coverage (at least in the normal populations) is seen as a useful generalization over

xre and an attractive alternative to collapsing for small samples, when some smoothing

of the poststrati®cation weights is desired.

6. Discussion

This article has examined methods for an ordinal strati®er that modify the poststrati®ed

mean by imposing random-effects models on the poststratum mean differences. Other

model based weight smoothing strategies use ®xed-effects regression models for more

than one continuous or categorical poststrati®er, for equal and unequal probability sample

designs (Huang and Fuller 1978; Bardsley and Chambers 1984; Bethlehem and Keller

1987). The methods discussed in these articles reduce to the poststrati®ed mean for the

case of a single categorical strati®er and equal probability sampling that we consider

here. Like many of the methods in those articles, the methods described here yield

design-consistent estimates and hence are somewhat protected against model mis-

speci®cation. The REG and AR1 models for the poststratum means appear reasonable

generalizations of the previously-considered XRE model. Smoothing based on a model

like REG and AR1 seems less arbitrary than procedures that truncate the weights or

collapse the poststrata. A disadvantage over global weight smoothing strategies (e.g.,

Bardsley and Chambers 1984; Little 1993) is that our models are speci®c to survey out-

comes and hence in effect provide different weights for each survey outcome. Thus

they are less convenient and involve more computation than methods that provide a single
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Table 5. Average width of 95% interval, expressed as percentage deviations from average width of 95% interval

from PSVT method, by population type and sample size, averaged over mechanism, distribution, and within

variance

Population Interval estimate
# psct pscn psvn cpsct cpsvt ar1 reg xre unw
NULL 0 ÿ20 ÿ20 ÿ12 ÿ12 ÿ22 ÿ19 ÿ22 ÿ27
QUAD ÿ4 ÿ24 ÿ20 ÿ7 ÿ7 ÿ24 ÿ18 ÿ18 2
AR1 ÿ1 ÿ22 ÿ20 ÿ11 ÿ10 ÿ20 ÿ18 ÿ18 ÿ15
REG ÿ3 ÿ23 ÿ20 ÿ10 ÿ9 ÿ21 ÿ23 ÿ14 0
XRE ÿ2 ÿ23 ÿ20 ÿ10 ÿ10 ÿ24 ÿ21 ÿ24 ÿ23
Sample n ! 50 50 50 50 50 50 50 50 50

NULL 1 ÿ9 ÿ10 ÿ9 ÿ10 ÿ9 ÿ6 ÿ9 ÿ15
QUAD 0 ÿ11 ÿ11 9 7 ÿ5 ÿ4 ÿ5 41
AR1 0 ÿ10 ÿ10 ÿ3 ÿ4 ÿ5 ÿ4 ÿ5 0
REG 0 ÿ10 ÿ10 4 3 ÿ4 ÿ5 ÿ4 30
XRE 0 ÿ10 ÿ10 2 1 ÿ5 ÿ4 ÿ6 ÿ2
Sample n ! 250 250 250 250 250 250 250 250 250



smoothed weight for all outcomes. But computation is less of an issue in the era of high-

speed computers, and ML estimation for random-effects models such as (1) and (2) is

becoming more accessible in statistical software. Any procedure directed at reducing var-

iance must tailor the weights, depending on the degree of association of the poststrati®er

with the outcome.

One approach to allowing the uncertainty in estimating variance parameters is to apply

Bayesian methods, although for our model this involves some additional computational

complexity. We applied a simple t-based correction to account for uncertainty due to

estimation of the dispersion parameters, as in Scott and Smith (1971). This did not appear

to seriously distort coverages in the simulation study.

Our methods are model based, raising the important issue of performance when the

model is misspeci®ed. The effect of model misspeci®cation is limited here since the

estimates converge to the poststrati®ed mean as the sample size increases, and hence

are design consistent. In small samples the models yield optimal shrinkage methods

when correctly speci®ed, but the model estimates may still dominate ad hoc alternative

methods even when the model is misspeci®ed. Indeed the model-based estimates proved

quite robust to misspeci®cation in the simulation study, which included populations with

heteroscedasticity and non-normality. All the methods discussed here assumed ignorability

of the selection mechanism given the poststrati®er. Methods based on nonignorable models

can be developed, but are hard to estimate since information on systematic differences

between selected and non-selected cases within poststrata is rarely available.

Although both the REG and AR1 models were better than the XRE model in our simu-

lations, AR1 appeared a slightly better model for general use, since it was nearly as good

as REG when the REG model was correct, and provided better inferences when the post-

stratum means deviated from linearity. The AR1 covariance structure in (5) leads to local

smoothing of the poststratum weights, which seems intuitively sensible for an ordinal post-

strati®er. The model is applied here to a single equally-spaced ordinal poststrati®er, but other

categorical or continuous poststrati®ers could be modeled by including them as regressors

in the mean structure of (5), or through further elaboration of the covariance structure.
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