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Random hot deck imputation is often applied to survey data with nonresponse. One of the
popular methods for variance estimation without nonresponse is the random group method,
which has to be adjusted when it is applied to imputed data. One such kind of adjustment is
reimputing nonrespondents in each random group. We show that the random group method
with reimputation produces asymptotically unbiased and consistent variance estimators for
estimated population totals. As a special case of our general result, the random group variance
estimator for the case of no nonresponse is asymptotically unbiased and consistent, a result
that has not been documented although the random group method is frequently used in
applications. We also show how to apply a shortcut random group method, which reduces the
computational complexity due to reimputation, and establish the asymptotic unbiasedness and
consistency of the resulting variance estimators.
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1. Introduction

Nonresponse exists in most survey problems. Hot deck imputation is a very popular

method to impute nonrespondents by respondents from the same variable (Kalton and

Kasprzyk 1986; Rubin 1987). In this article, we focus on ignorable nonresponse, random

hot deck imputation, and the most basic survey sampling design, the stratified probability

proportional to size sampling design considered as a single stage sampling design or the

first stage of a multi-stage sampling design.

Variance estimation is an important element in sample surveys. The random group

method (Wolter 2007) is a popular replication method used in many economic surveys in

agencies such as the U.S. Census Bureau and the U.S. Bureau of Labor Statistics.

Replication methods require more computation, but have the advantages of (1) requiring

no separate theoretical derivations of a variance formula for each problem, which can

be difficult or messy; (2) programming ease in complex situations; (3) using a unified

recipe for various problems; and (4) to some degree, robustness against violations of

models/assumptions.
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Although most imputation methods are designed so that treating imputed values

as observed data and applying formulas for the case of no nonresponse leads to

approximately valid survey estimators (such as estimators of population means or totals),

treating imputed values as observed data and applying variance formulas for the case of no

nonresponse produces substantial underestimation of variances when the proportion of

nonrespondents is appreciable. Thus, various adjustment methods are proposed in the

literature for imputed data. For replication methods, Rao and Shao (1992) proposed to

apply an adjustment to every replicate to address the effect of nonresponse and imputation.

Shao (2001) showed that the Rao-Shao adjustment is equivalent to reimputing every

replicate, i.e., performing the same imputation procedure in every replicate using data in

the replicate.

For replication methods such as the jackknife, balanced repeated replication, and

bootstrap, the resulting variance estimators after reimputation have been shown to be

asymptotically consistent (e.g., Rao and Shao 1992; Shao and Sitter 1996; Shao et al.

1998). However, the same result for the random group variance estimator with

reimputation adjustment has not been established prior to our study. In fact, even the

consistency of the random group variance estimator in the case of no nonresponse has not

been documented. The first purpose of this article is to show the asymptotic unbiasedness

and consistency of the random group variance estimator with reimputation for data with

nonrespondents imputed by random hot deck. Of course, our result includes the case of no

nonresponse as a special case.

Since reimputation has to be applied to every replicate, the computation of a replication

variance estimator can be time-consuming and computer-intensive. Some shortcut

replication methods have been considered to reduce the computational complexity (see

Moore 2006; Thompson and Yung 2006; Haziza et al. 2010). These shortcut methods vary

with the imputation method and/or the replication method. The second purpose of this

article is to study the construction of a shortcut random group variance estimator that

reduces the computational complexity due to reimputation and is still asymptotically

unbiased and consistent.

The formulas for the random group variance estimator with reimputation and its

shortcut version are introduced in Section 2. Asymptotic properties of variance estimators

are studied in Section 3. In Section 4, the random group variance estimation method is

applied to a data set for illustration. Proofs of the results are provided in the Appendix.

2. The Random Group Method and Its Shortcut

Let P be a finite population containing units indexed by i and S be a sample taken from P

according to some sampling design. According to the sampling plan, survey weights wi,

i [ S, are constructed so that the Horvitz-Thompson type estimator Ŷ ¼
P

i[S wiyi is

unbiased (with respect to the repeated sampling) for the population total Y ¼
P

i[P yi,

where yi is a variable (item) of interest.

A replication method starts with the construction of K replicates. When there is no

nonresponse, the data set (including the survey weight) is ð yi;wiÞ; i [ Sf g. The kth

replicate is then yi;w
ðkÞ
i

� �
; i [ S

� �
; k ¼ 1; : : : ;K. Note that only the survey weight wi is

changed to wðkÞ
i . For the random group method (Wolter 2007), we randomly form K groups
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of the same or nearly the same size. The union of the K groups is S and the kth replicate

is yi; g
ðkÞ
i wi

� �
; i [ S

� �
, where

gðkÞi ¼
K if i is in group k

0 if i is not in group k

(

Let Ŷ ðkÞ ¼
P

i[S g
ðkÞ
i wiyi; k ¼ 1; : : : ; K. The random group variance estimator for Ŷ is

v ¼
1

KðK 2 1Þ

XK
k¼1

Ŷ ðkÞ 2
1

K

XK
j¼1

Ŷ ð jÞ

 !2

Forming random groups has to ensure that the original sampling design is reflected within

the groups (Wolter 2007). If the original sampling design is one-stage stratified sampling

with H strata, for example, then each group should contain all H strata. If cluster sampling

(either one-stage or multi-stage) is used, then clusters should be considered as units in

forming random groups and the random group variance estimator should be used when the

number of clusters is large.

2.1. Imputation and Reimputation

Let R ¼ i [ S; i is a respondentf g and N ¼ j [ S; j is a nonrespondentf g. For simpli-

city, we call yi a respondent when i [ R and yj a nonrespondent when j [ N . When there

are nonrespondents, we usually create L $ 1 imputation cells such that the nonresponse

probability in each imputation cell is nearly constant and then apply the random hot deck

within each imputation cell. More specifically, a nonrespondent in an imputation cell

is imputed by a respondent yi in the same imputation cell selected with probability

proportional to wi. After imputation, treating imputed values as observed data leads to the

following estimator of the population total Y:

ŶI ¼
i[R

X
wiyi þ

j[N

X
wj ~yj ¼

i[R

X
wiyið1þ uiÞ ð1Þ

where ~yj is the imputed value for a nonrespondent yj, ui ¼
P

j[N wjdij=wi; dij ¼ 1 if the

imputed value ~yi ¼ yi and dij ¼ 0 otherwise. Under the assumption that the nonresponse

probability is constant within each imputation cell, ŶI is consistent and asymptotically

normal (see, e.g., Rao and Shao 1992).

Treating imputed values as observed data and applying the formula for the case of no

nonresponse leads to a naive variance estimator given by

vI ¼
1

KðK 2 1Þ

XK
k¼1

Ŷ
ðkÞ

I 2
1

K

XK
j¼1

Ŷ
ð jÞ

I

 !2

ð2Þ

with

Ŷ
ðkÞ

I ¼
i[R

X
gðkÞi wiyi þ

j[N

X
gðkÞj wj ~yj

However, vI underestimates the variance of ŶI , because it treats imputed values as

observed data. The reimputation method can be described as follows. An imputed value in
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an imputation cell and the kth group is treated as a nonrespondent and is reimputed by a

respondent yi in the same imputation cell and the kth group selected with probability

proportional to gðkÞi wi. The resulting estimator of Y based on the kth group is

Ŷ
ðkÞ

RI ¼
i[R

X
gðkÞi wiyi þ

j[N

X
gðkÞj wj ~y

ðkÞ
j

where ~y
ðkÞ
j is the reimputed value. The key difference between Ŷ

ðkÞ

I and Ŷ
ðkÞ

RI is that the

former uses the original imputed ~yj whereas the latter replaces ~yj by a reimputed value ~yðkÞj

using the respondents in group k. The random group variance estimator with reimputation

is given by

vRI ¼
1

KðK 2 1Þ

XK
k¼1

Ŷ
ðkÞ

RI 2
1

K

XK
j¼1

Ŷ
ð jÞ

RI

 !2

ð3Þ

2.2. Shortcut

Since reimputation has to be carried out for every replicate, the computation of vRI in (3)

can be quite complicated. A shortcut proposed in Moore (2006) can be described as

follows. Note that each sampled unit i [ S is associated with a “group label” gðkÞi for

forming the random groups. Instead of reimputing every replicate, we “impute” the group

label gðkÞj associated with a nonrespondent yj by ~g
ðkÞ
j , the group label of the respondent used

to impute yj. Imputing the group label associated with a nonrespondent alters each

replicate so that replicates have different sizes. This creates more variation among

replicate estimators, which results in a variance estimator larger than the naive estimator vI.

The shortcut replicate estimator based on the kth group is

Ŷ
ðkÞ

S ¼
i[R

X
gðkÞi wiyi þ

j[N

X
~g
ðkÞ
j wj ~yj

which is different from Ŷ
ðkÞ

I since gðkÞj in Ŷ
ðkÞ

I is replaced by ~g
ðkÞ
j . The shortcut random group

variance estimator is

vS ¼
1

KðK 2 1Þ

XK
k¼1

Ŷ
ðkÞ

S 2
1

K

XK
j¼1

Ŷ
ð jÞ

S

 !2

ð4Þ

Note that

Ŷ
ðkÞ

S ¼
i[R

X
gðkÞi wiyi þ ð1þ uiÞ

For reimputation,

Ŷ
ðkÞ

RI ¼
i[R

X
gðkÞi wiyi þ 1þ uðkÞi

� �

where uðkÞi ¼
P

j[N K21gðkÞj wjd
ðkÞ
ij =wi; d

ðkÞ
ij ¼ 1 if ~y

ðkÞ
j ¼ yi, and dðkÞij ¼ 0 otherwise. Thus,

Ŷ
ðkÞ

RI is computationally simpler than Ŷ
ðkÞ

RI because we do not need to compute uðkÞi for every

k or the reimputed values ~y
ðkÞ
j .
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Unfortunately, vS may be inconsistent and seriously biased. To see this, we consider

the special case of simple random sampling. Under simple random sampling, wi ¼ N=n,

where n and N are respectively the sample size and population size, and ui ¼ di, the

number of times respondent yi is used to impute nonrespondents. If yi is equal to a constant

c for all i [ P, then we can estimate Y ¼ cN perfectly by ŶI ¼ cN (as long as we have at

least one observed value) and the asymptotic variance of ŶI is 0. In this case, both vI in

(2) and vRI in (3) are 0, since Ŷ
ðkÞ

I ¼ Ŷ
ðkÞ

RI ¼ cN. On the other hand, a straightforward

calculation shows that Ŷ
ðkÞ

S ¼ ðcN=nÞ
P

i[R gðkÞi ð1þ diÞ and

vS ¼
c2N 2

n2KðK 2 1Þ

XK
K¼1 i[R

X
gðkÞi ð1þ diÞ2 n

0
@

1
A

2

which is not 0 and can be arbitrarily large when c 2 is arbitrarily large. The problem

is caused by the fact that, when yi ¼ c for all i, Ŷ
ðkÞ

S is not a prefect estimator,

i.e.,
P

i[R gðkÞi ð1þ diÞ – n.

Thus, we propose an adjustment to force the shortcut replicate estimator to be prefect

in the special case of yi ¼ c for all i. Note that

Ŷ
ðkÞ

S ¼
N

n

XL
l¼1 i[Rl

X
gðkÞi yið1þ diÞ

where Rl is the set of respondents in imputation cell l, l ¼ 1; : : : ; L. Our adjustment is

to divide each term in the previous sum by a factor

ak;l ¼
1

nl i[Rl

X
gðkÞi ð1þ diÞ

where nl is the sample size for imputation cell l, i.e., the adjusted shortcut replicate

estimator is

~Y
ðkÞ

S ¼
N

n

XL
l¼1 i[Rl

X gðkÞi yið1þ diÞ

ak;l

In the special case of yi ¼ c for all i,

~Y
ðkÞ

S ¼
N

n

XL
l¼1

cnl ¼ cN

Although this adjustment is derived under the special case of simple random sampling,

our result in Section 3 shows that the same adjustment produces a consistent and

asymptotically unbiased shortcut random group variance estimator in the case of

unequal wi’s.

Thus, in general, we define

~Y
ðkÞ

S ¼
XL
l¼1 i[Rl

X gðkÞi wiyið1þ uiÞ

ak;l
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and the adjusted shortcut random group variance estimator

vAS ¼
1

KðK 2 1Þ

XK
k¼1

~Y
ðkÞ

S 2
1

K

XK
j¼1

~Y
ð jÞ

S

 !2

ð5Þ

3. Asymptotic Unbiasedness and Consistency

We consider the asymptotic setting in which S is sampled from a sequence of finite

populations, there is a fixed number of imputation cells, the response probability within

each imputation cell is constant, and the number of sampled units in any imputation

cell tends to 1. The estimator ŶI in (1) is well-defined as long as there is at least one

respondent in each imputation cell. The estimators Ŷ
ðkÞ

I ; Ŷ
ðkÞ

RI ; and Ŷ
ðkÞ

S are well-defined as

long as there is at least one respondent in each imputation cell and group k. If the response

probability in each imputation cell is positive, then asymptotically these conditions are

satisfied and ŶI ; Ŷ
ðkÞ

I ; Ŷ
ðkÞ

RI ; and Ŷ
ðkÞ

S are well-defined. From now on, all the expectations

and variances are calculated conditional on the event that there is at least one respondent

in each imputation cell and group. Thus, there are asymptotic expectations and variances.

For simplicity, we now assume that there is a single imputation cell (L ¼ 1) and

Pði [ RÞ ¼ p for all i [ P . Since ŶI ¼
PL

l¼1Ŷ
ðl Þ

I , where Ŷ
ðl Þ

I ¼
P

i[Rl
wiyið1þ uiÞ

andRl is the set of respondents in imputation cell l, all the results obtained are valid for the

case of multiple imputation cells with a fixed L when Ŷ
ðl Þ

I ’s are independent or

asymptotically independent.

3.1. Asymptotic Unbiasedness under Simple Random Sampling without Replacement

Under simple random sampling without replacement, wi ¼ N=n for all i and ui in the

formula of ŶI equals to di, the number of times unit i is used as a donor. Furthermore,

Pðdij ¼ 1ji [ R; j [ N ; rÞ ¼ 1=r and P dðkÞij ¼ 1
��i [ R; j [ N ; rk

� �
¼ gðkÞi =ðKrkÞ,

where r and rk are random variables representing the numbers of respondents in the

sample and in group k, respectively. Let di be the indicator of whether unit i is a

respondent, a ¼ ðN=nÞdið1þ diÞ; i [ P
� �

0, and y ¼ ð yi; i [ PÞ0. Then ŶI ¼ a 0y and

Var ðŶIÞ ¼ y 0Eðaa 0Þy2 y0EðaÞEða 0Þy

Because missing is completely at random and imputation is random hot deck, components

of a have the same distribution and, hence, E(aa 0) and E(a)E(a0) are linear combinations of

the N £ N identity matrix and the N £ N matrix with all ones. Also, E(aa 0) and E(a)E(a 0)

do not depend on the yi’s. Then

Var ðŶIÞ ¼ aY 2 þ b
i[P

X
y2i ð6Þ

where a and b are two constants not depending on the yi’s. We now determine values of a

and b using two particular sets of yi’s. When yi ¼ 1 for all i [ P, Var ðŶIÞ ¼ 0 and result

(6) becomes

aN 2 þ bN ¼ 0 ð7Þ
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If all yi’s are 0 except that y1 ¼ 1, then ŶI ¼ Nn21d1ð1þ d1Þ; Y ¼ 1,
P

i[P y2i ¼ 1, and

result (6) becomes

aþ b ¼ Var ðNn21d1ð1þ d1ÞÞ

Using result (21) in the Appendix, we obtain that

aþ b ¼
N

n
12 pþ

1

p

� 	
þ Oð1Þ þ OðN=n2Þ ð8Þ

where p is the response probability. From (6), (7), and (8), we obtain

Var ðŶIÞ ¼
N 2

n
12 pþ

1

p

� 	
S2N þ OðNÞ þ OðN 2=n2Þ ð9Þ

where

S2N ¼
1

N
i[P

X
ð yi 2 Y=NÞ2

For l ¼ 1; : : : ;K, let al ¼ ðNK=nÞdilð1þ uðl Þi Þ; i [ P
� �

0 and let dil ¼ 1 if yi is a

respondent in group l and dil ¼ 0 otherwise. For the random group variance estimator

with reimputation, by the exchangeability of group assignment

EðvRIÞ ¼
E Ŷ

ðkÞ

RI

� �2
2E Ŷ

ðkÞ

RI Ŷ
ðhÞ

RI

� �
K

¼
y 0Eðaka

0
kÞy2 y 0Eðaka

0
hÞy

K
¼ gY 2 þ h

i[P

X
y2i

where k – h; k; h [ {1; : : : ;K}, and g and h are two constants not depending on yi’s.

The last equality follows from the fact that E(aka
0
k) and E(aka

0
h) (k – h) are linear

combinations of the N £ N identity matrix and the N £ N matrix with all ones. Again, by

considering yi ¼ 1 for all i [ P, we obtain

gN 2 þ hN ¼ 0 ð10Þ

by considering yi ¼ 0 for all i except y1 ¼ 1, we obtain that

gþ h ¼
N

n
12 pþ

1

p

� 	
þ O

NK

n2

� 	
ð11Þ

From (10) and (11), we obtain

EðvRIÞ ¼
N 2

n
12 pþ

1

p

� 	
S2N þ O

N 2K

n2

� 	
ð12Þ

Using the same technique, we obtain the following results for the two shortcut random

group variance estimators

EðvASÞ ¼
N 2

n
12 pþ

1

p

� 	
S2N þ O

N 2K

n2

� 	
ð13Þ

EðvSÞ ¼
N 2

n
12 pþ

1

p

� 	
S2N þ 2pþ

1

p

� 	
Y 2

n
þ O

N 2

n2

� 	
ð14Þ

Combining (9), (12), (13), and (14), we have the following result.
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Theorem 1. Suppose that S2N and �Y ¼ Y=N are bounded. Then, under simple random

sampling without replacement, vRI and vAS are asymptotically unbiased in the sense that

n

N 2
½EðvRIÞ2 Var ðŶIÞ�! 0 and

n

N 2
½EðvASÞ2 Var ðŶIÞ�! 0

when n ! 1, n/K ! 1, and n/N ! 0. The unadjusted shortcut random group variance

estimator vS is asymptotically biased in the sense that

n

N 2
½EðvSÞ2 Var ðŶIÞ� ¼ 2pþ

1

p

� 	
�Y2 þ Oð1=nÞ þ Oð1=NÞ

where �Y ¼ Y=N.

3.2. Asymptotic Unbiasedness under Unequal Probability Sampling with Replacement

For unequal probability sampling, we consider sampling with replacement.

Under unequal probability sampling without replacement, the derivation of a valid

variance estimator may be too difficult or even impossible and, hence, at the stage of

variance estimation, we treat S as a sample obtained with replacement. This may

overestimate the variance when the original sampling design is without replacement

and sampling fractions are not negligible. But it is often used in practice because

of its simplicity when no valid variance estimator for without replacement sampling

is available.

Letwi ¼ 1=ðnpiÞ, S2N ¼
P

i[P pi{yi=ðNpiÞ2 �Y}2, Pðdij ¼ 1jR; i [ R ; j [ N Þ ¼

wi=
P

i[R wi and P dðkÞij ¼ 1jR ; i [ R; j [ N
� �

¼ gðkÞi wi=
P

i[R gðkÞi wi

� �
; i; j [ P

where pi is the probability that yi is sampled in each draw. We assume that

C1. M1N/n , wi , M2N/n for all i [ P , where M1 and M2 are constants;

C2. j �Yj ¼ jY=Nj , M and S2N , M for a constantM . 0.

Condition C1 means that there is no unit that has extremely large or small inclusion

probability. Under Conditions C1 and C2, it is shown in the Appendix that

n

N 2
Var ðŶIÞ ¼

S2N
p

þ ð12 pÞ

 
�Y2 cþ

1

p
{ð12 2pÞbþ 1}


 �

þ �Y
2w

p
þ 2aðb2 1Þ

� 
þ

1

N
i[P

X
y2i

!
þ O

1

n

� 	
ð15Þ

where a ¼
P

i[P yipi, b ¼ N22
P

i[P 1=pi, w ¼ N22
P

i[P yi=pi, and c ¼ N
P

i[P p2i .

Under C1, a, b, w, and c are bounded. Hence, C1–C2 and result (15) show that Var ðŶIÞ

is O(N 2/n).

Without loss of generality we assume that n/K is an integer, which is the “sample size”

of each group (replicate). With reimputation, it is clear that, for a fixed group, Ŷ
ðkÞ

RI behaves

like ŶI with a sample size n/K. In particular, K21Var Ŷ
ðkÞ

RI

� �
¼ Var ðŶRIÞ þ oðN 2=nÞ.
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It follows from exchangeability that, for k – h,

EðvRIÞ ¼
1

K
E Ŷ

ðkÞ

RI

� �2
2E Ŷ

ðkÞ

RI Ŷ
ðhÞ

RI

� �
 �

Let EG be the expectation taken under a fixed assignment of groups. Then, for k – h,

E Ŷ
ðkÞ

RI Ŷ
ðhÞ

RI

� �
¼ EG Ŷ

ðkÞ

RI Ŷ
ðhÞ

RI

� �
¼ EG Ŷ

ðkÞ

RI

� �
EG Ŷ

ðhÞ

RI

� �
¼ E Ŷ

ðkÞ

RI

� �
E Ŷ

ðhÞ

RI

� �
;

where the first and the last equalities are because of the exchangeability and the second

equality is because data in different groups are independent and the imputation is also

independently carried out in different groups. Hence, Ŷ
ðkÞ

RI and Ŷ
ðhÞ

RI are uncorrelated and

EðvRIÞ ¼
1

K
Var Ŷ

ðkÞ

RI

� �
¼ Var ðŶIÞ þ oðN 2=nÞ;

showing that vRI is asymptotically unbiased.

For the adjusted shortcut estimators, ~Y
ðkÞ

S and ~Y
ðhÞ

S are not uncorrelated but the correlation

converges to 0, i.e.,

n

N 2K
Cov ~Y

ðkÞ

S ; ~Y
ðhÞ

S

� �
¼ OðK21Þ! 0; k – h ; ð16Þ

when K ! 1 (see the Appendix). Then, for the adjusted shortcut random group variance

estimator vAS in (5),

n

N 2
EðvASÞ ¼

n

N 2K
E ~Y

ðkÞ

S

� �2
2E ~Y

ðkÞ

S
~Y
ðhÞ

S

� �
 �

¼
n

N 2K
E ~Y

ðkÞ

S

� �2
2E ~Y

ðkÞ

S

� �
E ~Y

ðhÞ

S

� �
 �
þ OðK21Þ

¼
n

N 2K
Var ~Y

ðkÞ

S

� �
þ OðK21Þ:

ð17Þ

The form of Var ~Y
ðkÞ

S

� �
is not simple because of the shortcut and adjustment. In the

Appendix, we derive a formula for Var ~Y
ðkÞ

S

� �
, which leads to the following result.

Theorem 2. Under C1–C2, both vRI and vAS are asymptotically unbiased, i.e.,

n

N 2
½EðvRIÞ2 Var ðŶIÞ�! 0 and

n

N 2
½EðvASÞ2 Var ðŶIÞ�! 0

when n/K ! 1 and K ! 1.

3.3. Consistency

To establish the consistency of vRI and vAS, we focus on vAS because the discussion for vRI
is similar. By exchangeability, E ~Y

ðkÞ

S

� �
does not depend on k ðk ¼ 1; : : : ;KÞ. Letting
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u ¼ E ~Y
ðkÞ

S

� �
and �u ¼ K21

PK
k¼1

~Y
ðkÞ

S , we obtain that

n

N 2
vAS ¼

n

N 2KðK 2 1Þ

XK
k¼1

~Y
ðkÞ

S 2 u
� �2

2
n

N 2ðK 2 1Þ
ðu2 �uÞ2: ð18Þ

The second term on the right-hand side of (18) converges to 0 in probability (see

the proof of Theorem 3 in the Appendix). The first term on the right-hand side of (18)

involves a sum of variables
�
~Y
ðkÞ

S 2 u
�2
; k ¼ 1; : : : ;K. If these variables are independent,

then the consistency of vAS follows from Khintchine’s law of large numbers and the

fact that nN22K21E
�
~Y
ðkÞ

S 2 u
�2
¼ nN22Var ðŶIÞ þ Oðn21KÞ þ Oðn21Þ (see the proof of

Theorem 2 in the Appendix). Although
�
~Y
ðkÞ

S 2 u
�2
; k ¼ 1; : : : ;K; are not independent,

the correlation among them converges to 0 and we can use a modified Khintchine’s law

of large numbers (Lemma 1 stated in the Appendix) to establish the consistency of vRI
and vAS. The proof of the following result is given in the Appendix.

Theorem 3. When n/K ! 1 and K ! 1,

n

N 2
½vRI 2 Var ðŶIÞ�!p 0 and

n

N 2
½vAS 2 Var ðŶIÞ�!p 0; ð19Þ

where !p is convergence in probability.

The asymptotic results require both n/K and K (the number of groups) to be large.

In applications, constructing groups with a large K may not be easy when n is not very

large. We can use the following idea proposed by Rao and Shao (1996). Suppose that we

independently construct R sets of groups with the rth set containing K groups that result in

the variance estimator vðrÞAS according to formula (5). Then, we use vAS ¼ R21
PR

r¼1v
ðrÞ
AS as

the adjusted shortcut variance estimator. This estimator is approximately as good as the

vAS with KR groups. vRI with R sets of groups can be similarly obtained.

4. Empirical Results for the National Immunization Survey

The 2007 National Immunization Survey is used here to illustrate the application of the

random group variance estimators and to examine their finite sample performance. This

survey was conducted jointly by the National Center for Immunization and Respiratory

Diseases and the National Center for Health Statistics (see http://www.cdc.gov/nis/

data_files.htm). The survey design is stratified unequal probability sampling with 64

geological strata, each of which is used as an imputation cell. Duration of breast feeding

(in days) is chosen to be the variable y of interest, because it has appreciable nonresponse.

The population size N is 6,025,053 and the total sample size is 24,807. Ranges of the

population sizes, sample sizes, sampling fractions, nonresponse rates, estimated stratum

totals, and estimated stratum standard deviations over 64 strata are listed in Table 1.

Nonrespondents were imputed by random hot deck imputation within each imputation

cell. Based on the imputed data set, four random group variance estimators, vI, vRI, vS, and

vAS, were computed for the estimated population total. Ten random groups were

constructed within each imputation cell and grouping was independently repeated ten

times (see the discussion at the end of Section 3). The results are listed in Table 2. From

Table 2, vI is much smaller than other variance estimates (e.g., 32% smaller than vRI),
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which indicates its underestimation. On the other hand, the shortcut estimate vS is about

40% larger than vRI, which suggests the overestimation of vS as indicated by our analysis in

Section 2. The adjusted shortcut estimate vAS is close to vRI, both of which are shown to be

asymptotically unbiased in Section 3.

To examine the finite sample performance of the four random group variance

estimators, we conducted a simulation study based on a population generated using the

observed data. Our simulation procedure is as follows.

1. Population. Within each stratum h ¼ 1; : : : ; 64, population y-values are generated

by first taking a probability proportional to survey weight sample of size equaling

the original population size of stratum h with replacement from the respondents

in the hth stratum, and then adding a random noise to each generated population value.

The randomnoises havemean0 and standarddeviation equal to 1023 times the observed

standard deviation within each stratum and are independent within and across strata.

2. Within the hth population stratum generated in Step 1, draw a sample with

replacement of the original sample size. The inclusion probability is proportional to

the inverse of the original survey weight. Independent samples are obtained for

h ¼ 1; : : : ; 64.

3. Within each stratum, generate nonrespondents (missing completely at random)

with the observed nonresponse rate. Respondents in different strata are obtained

independently.

4. Perform random hot deck imputation for nonrespondents within each stratum and

independently across strata.

5. Compute the estimated total ŶI and random group variance estimates vI, vS, vAS, and

vRI with K ¼ 10 and R ¼ 10.

6. Repeat steps 2–5 for 1,000 times. Compute V ¼ the sample variance of the 1,000

ŶI’s. Compute the averages of vI, vS, vAS, and vRI over 1,000 simulations, and their

standard errors based on 1,000 simulations.

Table 1. Ranges of some quantities and estimates over 64 strata for the duration of

breast feeding from the 2007 National Immunization Survey

Quantity Range over 64 strata

Population size 9,766 , 506,300
Sample size 244 , 519
Sampling fraction 0.062% , 4.32%
Nonresponse rate 13.48% , 46.86%
Estimated total 2.197 £ 106 , 1.467 £ 108

Estimated standard deviation 142.05 , 199.96

Table 2. Random group variance estimates for the estimated total of the duration of breast feeding from the

2007 National Immunization Survey

ŶI vI vS vAS vRI

1.36 £ 109 2.25 £ 1014 4.65 £ 1014 3.14 £ 1014 3.32 £ 1014
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The results are tabulated in Table 3. In theory, the simulation variance V is close to the true

variance when the simulation size is large. From Table 3, it is clear that vAS, vRI, and V are

very close to each other; the naive estimate vI is about 26% smaller than V; and vS is 41%

larger than V. These results are consistent with our theory in Section 3 and support our

conclusions based on the results in Table 2.

Appendix

Since yi; i [ P, are sampled with replacement in Sections 3.2–3.3, to simplify the proofs,

throughout, we view ŶI , vI, vS, vAS and vRI as functions of Y1; : : : ; Yn and W1; : : : ;Wn,

where Yl ðl ¼ 1; : : : ; nÞ denotes the random outcome from the lth sampling, which has

discrete uniform distribution on P, and Wl is the associating weight of Yl. The pairs

(Y, Wl), l ¼ 1, : : : ,n, are independent of each other. Correspondingly, let R ¼ {l: Yl is a

respondent}, and let N ¼ {m: Ym is a nonrespondent}, but S is unchanged. Now, we

introduce some additional notation. Define UðkÞ
l ¼ ð1þ ulÞg

ðkÞ
l , Ul ¼ ð1þ ulÞ and

Zl ¼ YlWl, where ul ¼
P

m[N Wmdlm=Wl and dlm ¼ 1 if the imputed value ~Ym ¼ Yl, 0

otherwise. Let G ¼ {gðkÞl ; l ¼ 1; : : : ; n; k ¼ 1; : : : ;K} denote the group assignment

and D ¼ dlm; l [ R ; m [ Nf g denote the imputation. Let r ¼ r1 þ · · ·þ rK , where

rk ðk ¼ 1; : : : ;KÞ denotes the number of respondents in the kth group. For any pair of

event or variable B and C, let EBjC and VarBjC be the conditional expectation and variance

taken with respect to B given C.

Proof of (8) Since E½d1ð1þ d1Þjd1 ¼ 0� ¼ 0, E½d21ð1þ d1Þ
2jd1 ¼ 0� ¼ 0, and

Pðd1 ¼ 1Þ ¼ nN21p,

Varðn21Nd1ð1þd1ÞÞ¼n22N 2E½d21ð1þd1Þ
2�2n22N 2{E½d1ð1þd1Þ�}

2

¼n21N 1pE½d21ð1þd1Þ
2jd1¼1�2p2{E½d1ð1þd1Þjd1¼1�}2

Recall that d1 is the number of times y1 is used as a donor to impute missing

values. Conditional on d1¼1 and the number of respondents r . 0, d1 has the

binomial distribution with size n 2 r and probability r 21. Then, Var (n 21Nd1(1 þ d1))

equals

n21NpE½1þr21ðn2rÞ{2þr21ðn21Þ}jd1¼1�2p2½Eðr21njd1¼1Þ�2 ð20Þ

Since we consider asymptotic expectations with r . 0, as n ! 1, Eðr21jd1¼1Þ¼

ðnpÞ21þOðn22Þ and Eðr22jd1¼1Þ¼ðnpÞ22þOðn23Þ. Substituting these results into

(20), we obtain that

Table 3. Simulation results of the random group variance estimators for the estimated total of the duration of

breast feeding from the 2007 National Immunization Survey

vI vS vAS vRI V

Mean 2.0819 3.9796 2.7378 2.7603 2.8233
Standard error 0.0110 0.0219 0.0152 0.0142

All numbers have been divided by 1014

V: simulation sample variance of ŶI’s
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Var ðn21Nd1ð1þ d1ÞÞ ¼ Nn21ð12 pþ p21Þ þ Oð1Þ þ OðNn22Þ ð21Þ

Proof of (15) We show (15) in three steps. First, let

An ¼ nN22½E{ŶI 2 EðŶIÞ}
2 2 EðŶI 2 YÞ2� ¼ 2nN22{EðŶIÞ2 Y}2 ð22Þ

To simplify (22), we have that EðŶIÞ ¼ E
P

l[R ZlUl

� �
, which equals

E
l[R

X
ESjRðZlÞ þ ZlEDjS;RðulÞ
� �2

4
3
5 ¼ E

rY

n
þ

Nðn2 rÞ

n
ESjR

X
l[R

ZlX
l[R

Wl

0
BB@

1
CCA

8>><
>>:

9>>=
>>;

¼ Eðrn21YÞ þ n21NE ðn2 rÞ

ESjR

X
l[R

Zl

 !

ESjR

X
l[R

Wl

 !þ Opðnr
22Þ

8>>>><
>>>>:

9>>>>=
>>>>;

2
66664

3
77775

¼ Eðrn21YÞ þ n21NE½ðn2 rÞ{ �Yþ Opðnr
22Þ}� ¼ Y þ Oðn21NÞ

where the third equality is due to the Taylor expansion argument and Conditions C1–C2.

Hence, (22) equals O(n 21).

Second, let Bn ¼ nN22{EðŶI 2 YÞ2 2 EðŶI 2 ~YÞ2}, which equals

nN22E
�
2E{ŶIð ~Y2 YÞ}þ Y 2 2 Eð ~Y2Þ

�
¼ Bn1 þ Bn2

where ~Y ¼ n21Y
P

l[Rð1þ ulÞ, Bn1 ¼ 2nN22E{ŶIð ~Y2 YÞ} and Bn2 ¼ nN22£

{Y 2 2 Eð ~Y2Þ}. By Conditions C1–C2, we have

Bn1 ¼ 2 12 pð Þ �Y 2p21ð �Yþ wÞ þ abþ p21ð22 pÞ �Yb
� �

þ Oðn21Þ ð23Þ

Bn2 ¼ 23p21ð12 pÞðb2 1Þ �Y2 þ Oðn21Þ ð24Þ

Third, consider Cn ¼ n=N 2EðŶ1 2 ~YÞ2. We have

Cn¼
n

N 2
E

l[R

X
ðZl2n21YÞ2U2

l

8<
:

9=
;þE

l1–l2[R

X
ðZl1 2n21YÞðZl2 2n21YÞUl1Ul2

8<
:

9=
;

2
4

3
5

¼p21S2Nþð12pÞ N21
XN
i¼1

y2i 22 �Yaþ �Y2c

 !
þOðn21Þ

ð25Þ

Since, nN22Var ðŶIÞ ¼ An þ Bn1 þ Bn2 þ Cn, by (23)–(25) and the fact An ¼ O(n 21),

(15) is proved.
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Proof of (16) For k ¼ 1; : : : ;K, let

f kðtÞ ¼ tak þ ð12 tÞEðakÞf g
21 tŶ

ðkÞ

s þ ð12 tÞE Ŷ
ðkÞ

S

� �n o

where 0 , t , 1 with f kð1Þ ¼ ~Y
ðkÞ

S . By the Taylor expansion argument,

f kð1Þ ¼ f kð0Þ þ f 0kð0Þ þ 221f 00kð~t Þ ð26Þ

where 0 , ~t , 1. Then, by the exchangeability of group assignment, Cov{f 0kð0Þ; f
00
hð~tÞ} ¼

Cov{ f 0hð0Þ; f
00
kð~t Þ} for k – h, and this, together with the fact that fk(0) and fh(0) are

constant, gives:

Cov ~Y
ðkÞ

S ; ~Y
ðhÞ

S

� �
¼ Cov{f kð0Þ þ f 0kð0Þ þ 221f 00kð~tÞ; f hð0Þ þ f 0hð0Þ þ 221f 00hð~tÞ}

¼ Cov{f 0kð0Þ; f
0
hð0Þ}þ Cov{f 0kð0Þ; f

00
hð~tÞ}þ 421Cov{f 00kð~tÞ; f

00
hð~tÞ}:

ð27Þ

To simplify (27), we work on Cov{f 0kð0Þ; f
0
hð0Þ} first. Since EðakÞ ¼ 1, we have

Cov{f 0kð0Þ; f
0
hð0Þ} ¼ Cov Ŷ

ðkÞ

S ; Ŷ
ðhÞ

S

� �
þ Covðak; ahÞ

� E Ŷ
ðkÞ

S

� �n o2

22Cov Ŷ
ðkÞ

S ; ah

� �
E Ŷ

ðkÞ

S

� �
: ð28Þ

Now, we calculate the three terms of the above separately. For the first term,

E Ŷ
ðkÞ

S Ŷ
ðhÞ

S

� �
¼ E EG;DjR ;S

l1–l2[R

X
Zl1Zl2U

ðkÞ
l1
UðhÞ

l2

0
@

1
A

8<
:

9=
; ð29Þ

where the inside expectation of the right-hand side of (29) can be calculated by taking

another conditional expectation:

EG;DjR ;S;rk ;rh UðkÞ
l1
UðhÞ

l2

� �
¼

rkrhK
2

rðr 2 1Þ
1þ

2
X
m[N

WmX
l[R

Wl

þ

X
m1–m2[N

Wm1Wm2

X
l[R

Wl

 !2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

Plugging this back into (29), taking expectation with respect to S gives:

K 2Y 2E½rkrh{rðr 2 1Þ}21{12 ð3n2 2rÞn22 þ Opðnr
22Þ}�

Taking expectation of the above with respect to rk, rh given r and then taking expectation

with respect to r yields:

E Ŷ
ðkÞ

S Ŷ
ðhÞ

S

� �
¼ Y 2 þ Oðn21N 2Þ ð30Þ
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By the exchangeability of group assignment, E Ŷ
ðkÞ

S

� �
E Ŷ

ðhÞ

S

� �
¼ E Ŷ

ðkÞ

S

� �n o2

, which

equals {Y þ Oðn21NÞ}2. Then, this together with (30) and Condition C1 gives:

Cov Ŷ
ðkÞ

S ; Ŷ
ðhÞ

S

� �
¼ Y 2½1þ Oðn21Þ2 {1þ Oðn21Þ}2� ¼ Oðn21N 2Þ ð31Þ

The calculation of the first term of (28) is now completed. Next, for the second term of

(28), observe that:

k–h

X
Covðak;ahÞþ

XK
k¼1

Covðak;akÞ¼Cov
XK
k¼1

ak;
XK
k¼1

ak

 !
¼Var

XK
k¼1

ak

 !
¼VarðKÞ¼0

By the exchangeability of group assignment, we have that

Covðak; ahÞ ¼ 2{KðK 2 1Þ}21
XK
k¼1

Var ðakÞ ¼ 2ðK 2 1Þ21Var ða1Þ;

where Var ða1Þ ¼ Var{EGjR ;D;r1 ða1Þ}þ E{VarGjR ;D;r1ða1Þ} equals

Var ðKr1r
21Þ þ E n22

l[R

X
ð1þ dlÞ

2{K 2r1r
21 2 ðKr1r

21Þ2}

2
4

þ n22

l1–l2[R

X
ð1þ dl1Þð1þ dl2 Þ K 2 r1ðr1 2 1Þ

rðr 2 1Þ
2 ðKr1r

21Þ2
� 35

¼ E{ðK 2 1Þr21}þ K 2E
r1ðr 2 r1Þ

rðr 2 1Þ
n22

l[R

X
ð1þ dlÞ

2 2 r21

8<
:

9=
;

2
4

3
5 ¼ Oðn21KÞ

Then, the second term in (28),

Covðak; ahÞ E Ŷ
ðkÞ

S

� �n o2

¼ Oðn21N 2Þ ð32Þ

For the third term in (28), observe

k–h

X
Cov Ŷ

ðkÞ

S ;ah

� �
þ
XK
k¼1

Cov Ŷ
ðkÞ

S ;ak

� �
¼Cov

XK
k¼1

Ŷ
ðkÞ

S ;
XK
k¼1

ak

 !
¼Cov

XK
k¼1

Ŷ
ðkÞ

S ;K

 !
¼0

By the exchangeability of group assignment, Cov ŶS;ah
� �

¼ð12KÞ21Cov Ŷ
ð1Þ

S ;a1

� �
for

k – h, where
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Cov Ŷ
ð1Þ

S ; a1

� �
¼ Cov EGjR;S;D;r1 Ŷ

ð1Þ

S

� �
;EGjR ;S;D;r1 ða1Þ

n o
þ E CovGjR;S;D;r1 Ŷ

ð1Þ

S ;a1

� �n o

¼ Cov Kr1r
21;Kr1r

21

l[R

X
ZlUl

0
@

1
Aþ E

l[R

X
ZlCovGjR ;S;D;r1 U ð1Þ

l ; a1
� �8<

:
9=
;

¼ E
l1;l2[R

X
n21Zl1Ul1 ð1þ dl2ÞCovGjR ;S;D;r1 gð1Þ

l1
; gð1Þ

l2

� �8<
:

9=
;þ YðK 2 1ÞE{r21 þOðnr23Þ}

¼ E K 2 r1ðr2 r1Þ

rðr2 1Þ l[R

X
ZlUl{n

21ð1þ dlÞ2 r21}

2
4

3
5þ YðK 2 1ÞE{r21 þOðnr23Þ}

¼ Oðn21NKÞ þOðn21NÞ:

Hence, the third term of (28),

Cov Ŷ
ðkÞ

S ; ah

� �
E Ŷ

ðkÞ

S

� �
¼ Oðn21N 2Þ: ð33Þ

With the fact that E Ŷ
ðkÞ

S

� �
¼ OðNÞ combining (31), (32) and (33) gives, the first term

in (27),

Cov{f 0kð0Þ; f
0
hð0Þ} ¼ Oðn21N 2Þ:

Following similar argument, it can be shown that the remaining terms of (27) are of

the same order as the first term. This implies,

nN22K21Cov ~Y
ðkÞ

S ; ~Y
ðhÞ

S

� �
¼ OðK21Þ:

Therefore, (16) is proved.

Proof of Theorem 2 Observe that EðvRIÞ ¼ K21
�
E
�
Ŷ
ð1Þ

RI

�2
2E
�
Ŷ
ð1Þ

RI Ŷ
ð2Þ

RI

��
. Since, for

k – h, Ŷ
ðkÞ

RI and Ŷ
ðhÞ

RI are uncorrelated, nN22EðvR1Þ ¼ nN22K21Var
�
Ŷ
ðkÞ

RI

�
, which equals

nN22K21 Var ES;R ;DjG Ŷ
ðkÞ

RI

� �n o
þ E VarS;R ;DjG Ŷ

ðkÞ

RI

� �n oh i

¼ nN22K21VarS;R ;DjG
l[Rk

X
YlW

*
l 1þ uðkÞl

� �8<
:

9=
;;

where W*
l ¼ KWl and the equality follows from the fact that ES;R;DjG Ŷ

ðkÞ

RI

� �
and

VarS;R ;DjG Ŷ
ðkÞ

RI

� �
do not depend on G. Conditional on group assignment G, we view

Ŷ
ðkÞ

RI ¼
P

l[Rk
YlW

*
l 1þ uðkÞl

� �
as a replicate of ŶI ¼

P
l[R YlWlð1þ ulÞ calculated based

on a random sample of size nK 21. Since (15) holds for all n, we have:

nN22EðvRIÞ ¼ nN22K21Var Ŷ
ðkÞ

RI

� �
¼ nN22Var ðŶIÞ þ Oðn21Þ þ Oðn21KÞ;

which means that vRI is asymptotically unbiased when n21K ! 0:
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Next, we show the asymptotic unbiasedness of vAS. By (17), nN22EðvAsÞ is

asymptotically equivalent to nN22K21Var Ŷ
ðkÞ

S

� �
. Note that

nN22K21 E ~Y
ðkÞ

S 2 E ~Y
ðkÞ

S

� �n o2

2E ~Y
ðkÞ

S 2 Y
� �2
 �

¼ Oðn21KÞ: ð34Þ

Hence, to show the asymptotic unbiasedness of vAS, it is sufficient to show E ~Y
ðkÞ

S 2 Y
� �2

is asymptotically unbiased for Var ðŶIÞ. We have

nN22 K21E ~Y
ðkÞ

S 2 Y
� �2

2EðŶI 2 YÞ2
� 

¼ nN22K21E
l[R

X
a22
k ZlU

ðkÞ
l

� �28<
: 2 K

l[R

X
ðZlUlÞ

2 þ a22
k
l1;l2[R

X
Zl1U

ðkÞ
l1
Zl2U

ðkÞ
l2

2K
l1;l2[R

X
Zl1Ul1Zl2Ul2 2 2Y a21

k
l[R

X
ZlU

ðkÞ
l 2 K

l[R

X
ZlUl

0
@

1
Aþ Y 2ð12 KÞ

9=
; ð35Þ

To simplify the above, we use the Taylor expansion argument similar to (26) to expand the

three ratios with ak or a2k as the denominator. For the first ratio a22
k ZlU

ðkÞ
l

� �2
, after

expanding it to the first order term and taking the expectation, the residual part is already

of order Oðn22N 2K 2Þ; which multiplies with the factor nN22K21 converging to 0 when

n21K ! 0. For a22
k

P
l1;l2[R

Zl1U
ðkÞ
l1
Zl2U

ðkÞ
l2

and a21
k

P
l[R

ZlU
ðkÞ
l , in order to obtain a

residual part with order Oðn22N 2KÞ, we expand them to high order Taylor series. Details

are the following. By Condition C1 and the fact EG;DjR;SðakÞ ¼ 1,

EG;DjR ;S a22
k
l1;l2[R

X
Zl1U

ðkÞ
l1
Zl2U

ðkÞ
l2

0
@

1
A ¼ EG;DjR ;S

l1;l2[R

X
Zl1Zl2U

ðkÞ
l1
UðkÞ

l2

0
@

1
A

þ 3EG;DjR ;S
l1;l2[R

X
Zl1Zl2U

ðkÞ
l1
UðkÞ

l2

0
@

1
AVarG;DjR ;SðakÞ

2 2EG;DjR ;S
l1;l2[R

X
Zl1Zl2

0
@

1
ACovG;DjR ;S UðkÞ

l1
UðkÞ

l1
; ak

� �
þ Opðr

22K 2N 2Þ

ð36Þ

and EG;DjR ;S a21
k

P
l[R ZlU

ðkÞ
l

� �
equals

EG;DjR ;S
l[R

X
ZlU

ðkÞ
l

0
@

1
Aþ EG;DjR ;S

l[R

X
ZlU

ðkÞ
l

0
@

1
AVarG;DjR ;SðakÞ

2 EG;DjR;S
l[R

X
Zl

0
@

1
ACovG;DjR ;S UðkÞ

l ; ak
� �

þ Opðr
22K 2NÞ

ð37Þ
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where CovG;DjR ;S UðkÞ
l ; ak

� �
equals:

K

n

X
m[N

WmX
l[R

Wl

þ

ðn2 r 2 1ÞWl

X
m[N

Wm

X
l[R

Wl

 !2
þ

ðn2 rÞWlX
l[R

Wl

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

þ Opðr
22K 2Þ; ð38Þ

VarG;DjR ;SðakÞ ¼
K

n

2ðn2 rÞ

n2 1
þ

ðn2 rÞ2
X
l[R

W2
l

ðn2 1Þ
X
l[R

Wl

 !2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

þ Opðr
22K 2Þ; ð39Þ

and CovG;DjR ;S UðkÞ
l1
UðkÞ

l2
; ak

� �
equals:

K

n
2

X
m[N

Wmþ
X

m1–m2[N

Wm1
Wm2

X
l[R

Wl

 !2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

2
666664

þ ðWl1 þWl2 Þ
n2rX
l[R

Wl

þ

2ðn2r21Þ
X
m[N

Wm

X
l[R

Wl

 !2
þ

ðn2r22Þ
X

m1–m2[N

Wm1
Wm2

X
l[R

Wl

 !3

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

3
777775

þ Opðr
22K 2Þ:

ð40Þ

By plugging (37) and (36) into (35) and using (38)–(40) and the Taylor Expansion

argument for simplification, we obtain, for k¼1; : : :;K,

nN22K21E ~Y
ðkÞ

S 2Y
� �2

¼nN22VarŶIþOðn21KÞþOðn21Þ:

This together with (16) gives the asymptotic unbiasedness of vAS:

nN22EðvASÞ¼nN22K21 E ~Y
ð1Þ

S 2Y
� �2

þCov ~Y
ð1Þ

S ; ~Y
ð2Þ

S

� �� 
þOðn21KÞ

¼nN22VarŶIþOðn21KÞþOðK21ÞþOðn21Þ:

ð41Þ

Theorem 2 is now proved.

Lemma 1. Let XK
k ; k ¼ 1; : : : ;K, be identically distributed positive random variables

with a common mean m , 1 and a constant Cov XK
k ;X

K
h

� �
for k – h and any fixed
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K. Assume that Cov XK
k ;X

K
h

� �
! 0 as K !1. Then, for any 1 . 0;

K!1
limP

1

K

XK
k¼1

XK
k 2 m

�����
����� . 1

 !
¼ 0 ð42Þ

Lemma 1 can be proved by slightly modifying the proof of Khintchine’s law of large

numbers (see, e.g., Chung 1974, pp. 109–110) and using the fact that Cov XK
k ;X

K
h

� �
! 0.

Proof of Theorem 3. The second term on the right-hand side of (18) converges to 0 in

probability, because, by Chebyshev’s inequality, for any 1 . 0 and k – h,

P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðu2 �uÞ2

N 2ðK 2 1Þ
. 1

s0
@

1
A #

nEðu2 �uÞ2

12N 2ðK 2 1Þ

¼
nVar ~Y

ðkÞ

S

� �
12N 2ðK 2 1ÞK

þ
nCov ~Y

ðkÞ

S ; ~Y
ðhÞ

S

� �
12N 2K

¼
nVar ~Y

ðkÞ

S

� �
12N 2ðK 2 1ÞK

þ OðK21Þ

! 0

when K !1, where the second last equality follows from (16) and the last equality

follows from Var
�
~Y
ðkÞ

S

�
¼ OðN 2K=nÞ. It remains to show the first term on the right-hand

side of (18) is consistent. For k ¼ 1; : : : ;K, let XK
k ¼ nN22ðK 2 1Þ21

�
~Y
ðkÞ

S 2 u
�2
.

Following similar argument for the proof of (16), it can be shown that Cov XK
k ;X

K
h

� �
! 0

when nK21 !1 and K !1. By Theorem 2, (15) and C1, E XK
k

� �
is bounded for all k.

Then, by Lemma 1, (42) holds. This, together with the proved fact
K!1
limE XK

k

� �
2

nN22Var ðŶIÞ ¼ 0 in Theorem 2, implies vAS is asymptotically consistent. Thus,

Theorem 3 is proved.
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