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Measures of disclosure risk at the record level have a variety of potential uses in statistical
disclosure control for microdata. We propose a record level measure of disclosure risk, which
is the probability that a unique match between a microdata record and a population unit is
correct. For discrete key variables subject to no measurement error, we study this measure
under the assumption of a Poisson and a Poisson-gamma log-linear model. We apply the
approaches to a sample of microdata from the U.K. General Household Survey. The results
provide empirical validation of the risk measure.
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1. Introduction

Researchers require access to survey microdata for analysis, but agencies conducting

surveys have obligations to the respondents providing the data and need to protect against

statistical disclosure when making microdata available. There is a growing literature on

methods for undertaking such protection – see for example, Duncan and Lambert (1989),

Bethlehem et al. (1990), Lambert (1993), Fienberg and Makov (1998) and Willenborg and

de Waal (2001) and there is an increasing interest in applying these methods in

government statistical agencies (Doyle et al. 2001).

In this article we consider the problem of assessing whether a specified form of

microdata output could lead to statistical disclosure. Direct identifiers for individuals, such

as names and addresses, are assumed to have been removed from the data to form an

‘anonymised’ file. Disclosure could still arise, however, if the user of the file could identify

an individual using the values of the variables recorded in the microdata. We shall use

disclosure risk as a broad term to refer to the probability of such an event; the precise

nature of the event and the probability requires further clarification. The challenge is to

construct a measure of disclosure risk, which not only reflects relevant concerns about

disclosure, but also can be estimated adequately from the microdata.

Measures of disclosure risk are often based upon the notion of identifying key variables

(Bethlehem et al. 1990). These are variables with values assumed known both for

individuals in the microdata sample and for certain identifiable individuals in the
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population. We shall assume that the relevant units are individuals, but other units, such as

households, are possible. An example of a measure of disclosure risk is the proportion of

individuals in the microdata sample that have a unique combination of values of the key

variables (assumed categorical) in the population (Fienberg and Makov 1998). Such

individuals, referred to as population unique, may be judged to be particularly ‘at risk of

disclosure’.

A measure of the form ‘the proportion of individuals in the microdata file at risk of

disclosure’ may be problematic, however, if it is considered unacceptable for disclosure to

arise for any individual in the file. In this case, even if one individual out of ten thousand in

the microdata sample is seriously ‘at risk’ then this might be unacceptable, despite the

small value (0.0001) of the measure. The basic problem here is that the measure is a “file

level” measure, which ‘averages the risk’ across the whole microdata sample and thus may

conceal small parts of the sample where the risk is high.

To address such concerns, it is natural to consider a record level measure, i.e., a measure

which may take a different value for each record in the microdata (Elliot 2001). Such a

measure may help identify those parts of the sample where disclosure risk is high and more

protection is needed and may be aggregated in different ways to a file level measure if

desired (Lambert 1993). While record level measures may provide greater flexibility and

insight when assessing whether specified forms of microdata output are ‘disclosive’, they

are potentially more difficult to estimate than file level measures.

A number of approaches have been proposed for the estimation of record level measures.

For continuous key variables, Fuller (1993) shows how to assess the record level probability of

identification in the presence of added noise, under normality assumptions. See also Paass

(1987) and Duncan and Lambert (1989). For categorical variables, Skinner and Holmes

(1998) define a measure as the probability that a record is population unique, with probability

interpreted with respect to a model. They restrict attention to sample unique records, i.e.,

records with combinations of values of the key variables which are unique in the microdata

sample, on the grounds that these are the records most at risk. Like Bethlehem et al. (1990),

they assume a compound Poisson model for the generation of the frequencies of the values of

the key variables, but with a log-normal distribution for the compound error rather than a

gamma distribution. Like Fienberg and Makov (1998), they use a log-linear model to capture

the dependence on the key variables. After estimating the model parameters, they use

numerical integration to compute the measure. Carlson (2002) develops a related method with

the log-normal distribution replaced by an inverse Gaussian distribution.

An alternative approach is currently used in the software m-ARGUS (Franconi and

Polettini 2004), where a measure is defined as the expected value of 1=Fj; conditional on

the observed microdata, where Fj is the population frequency of the record’s combination

of key values j. Thus, Fj ¼ 1 if the record is population unique. Conditional on the data, Fj

is assumed to follow a negative binomial distribution.

In this article, we show how the log-linear modelling approach of Skinner and Holmes

(1998) may be applied to a risk measure defined as above for m-ARGUS. We argue that this

measure has a useful interpretation as the probability that an observed match (between a

microdata record and an identifiable unit in the population) is correct, following an

analogous argument for file level measures by Skinner and Elliot (2002). In the m-ARGUS

approach to estimating such a measure, the only variation in the record level measure among
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records with a common key value sample frequency arises from unequal sample weights.

Thus, for example, in a survey with constant weights, all sample uniques will have the same

record level measure. In contrast, we show that the log-linear modelling approach can lead

to variation in record level measures in this case and we provide empirical validation that

this variation measures real differences in disclosure risk. We thus suggest that the proposed

approach provides a more realistic measure of record level risk.

A second purpose of this article is to consider the extent to which the log-linear

modelling approach of Skinner and Holmes (1998) may be simplified computationally, in

particular by replacing the compound Poisson assumption by a simple model without

random effects.

The statistical framework for the article is introduced in Section 2. The record level

measure is defined in Section 3 and the specification of alternative models and estimation

under these models are discussed. The relation of the proposed measure to some file level

measures of risk is discussed in Section 4. An empirical evaluation of the approaches

outlined in Section 3 is presented in Section 5 based upon data from the UK General

Household Survey.

2. Framework and Notation

In this section we introduce the formal framework. We consider a finite population U,

consisting of N individuals (or some other form of unit), and suppose that the microdata

file consists of records for a sample s , U of size n # N: The sampling fraction is denoted

p ¼ n=N: Following Bethlehem et al. (1990), we assume that the possibility of statistical

disclosure arises if an intruder gains access to the microdata and attempts to match a

microdata record to external information on a known individual using the values of m

discrete key variables X1; X2; : : : ; Xm:

Let the variable formed by cross-classifying X1; X2; : : : ; Xm be denoted X, with values

denoted 1; : : : ; J, where J is the number of categories or key values of X. Each of these

key values corresponds to a possible combination of categories of the key variables. As in

Section 1, let Fj be the number of units in the population with key value j, i.e., the

population frequency or size of cell j for j ¼ 1; : : : ; J, and let the population frequencies

of frequencies be Nr ¼
P

j I ðFj ¼ rÞ; r ¼ 1; 2; : : : : For example, N1 is the number of

population uniques. The sample counterpart of Fj is denoted by f j and the sample

frequencies of frequencies by nr ¼
P

j I ð f j ¼ rÞ; r ¼ 1; 2; : : : : For example, n1 is the

number of sample uniques.

3. Disclosure Risk at the Record Level

3.1. Definition of Risk and Model Specification

We consider a microdata record with key valueX ¼ j:We restrict attention to records which

are sample unique, i.e., f j ¼ 1; since these may be expected to be most risky (Skinner and

Holmes 1998). We assume there is no measurement error in X (which could lead to false

matches). In this case, there will be Fj individuals in the population that match the specified

record. Assuming symmetry of the sampling scheme (see Section 6 for a more precise

statement of the necessary condition), as for example for simple random sampling or
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Bernoulli sampling, the probability that an observed match between this specified record

and an individual in the population is correct, conditional on X ¼ j and Fj; is

Prðcorrect match j unique match; X ¼ j;FjÞ ¼ 1=Fj

In practice, Fj will generally be unknown. We therefore consider specifying a model

which generates the Fj; j ¼ 1; : : : ; J, and define the record level measure of risk for a

specified sample unique record with X ¼ j as

uj ¼ Prðcorrect match j unique match; X ¼ jÞ ¼ Eð1=Fj j f j ¼ 1Þ ð1Þ

This expectation is with respect to both the model generating the Fj and the sampling

scheme. This is the same measure considered by Franconi and Polettini (2004).

The risk measure in (1) may be generalised to Eð1=Fj j f jÞ for any record in the

microdata with f j $ 1: The measure assumes that the intruder does not have “response

knowledge” (Bethlehem et al. 1990), i.e., does not know whether the population individual

matched to a record is in the sample or not. A conservative approach to risk assessment

might seek to protect against the possibility that the intruder might collude with a

respondent (or more than one respondent) to identify other respondents. If the colluding

respondent could identify his or her own record in the microdata using the full set of

responses he or she provided to the survey agency, the intruder could effectively remove

this record from the microdata and reduce both f j and Fj for the colluding respondent’s key

value j by one. Thus, if there were just one other record in the microdata with this key

value then this record could effectively be treated as sample unique and its risk might

therefore be judged to be increased. The possibility being considered here appears very

remote, however, and we shall not pursue it any further in this article.

To implement the definition of uj in (1) in practice, we need to specify the model

generating the Fj: Following Bethlehem et al. (1990) and other authors, we assume that the

Fj are independently Poisson distributed with means lj treated initially as fixed

parameters. We assume further, like Skinner and Holmes (1998), that the sampling scheme

is such that f j and zj ¼ Fj 2 f j are independently Poisson distributed as

f j j lj , PoðpljÞ and zj jlj , Poðð1 2 pÞljÞ ð2Þ

This is the case, for example, under Bernoulli sampling with selection probability p. We

let mj ¼ plj and note that the mj represent the expected sample frequencies in the m-way

contingency table formed by cross-classifying the key variables X1; : : : ; Xm: There are

different possible approaches to modelling the mj (or equivalently lj). One approach is to

treat them as independent and identically distributed (iid ) outcomes of a random variable,

as in Bethlehem et al. (1990). This approach implies, however, that the mk; for k – j; will

carry no information about the risk measure uj so that the intruder will be unable to use the

information provided by the f k for other key values (i.e., k – j) to judge whether uj should

be relatively high or low. This approach may therefore fail to identify particularly risky

records. We therefore consider two broader classes of models, which include the iid model

as a special case. The first class of models consists of log-linear models of a conventional
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form (e.g., Agresti 1996) in which the mj are generated by

logmj ¼ xj
0b ð3Þ

where xj is a vector containing specified main effects and interactions for X1; : : : ; Xm:

Note that, under this model, the expected population frequencies, lj; also follow a log-

linear model differing from (3) only by an intercept term (which is decreased by logp).

This model assumes certain relationships between the mj for different j and hence

enables inference about the risk measure uj for a given key value j to borrow information

provided by the f k for other key values. For example, under an independence model with

just two key variables, X1 and X2; the smallest value of mj will correspond to the rarest

categories for these two variables, as implied by the relevant elements of b. Evidence

about the relative size of mj (and therefore of uj) in this example will be provided not only

by f j but also by the f k for key values k for which the category of either X1 or X2

corresponds to the categories defining j (these values are used in the estimation of b). If the

categories of both X1 and X2 are relatively rare and if f j ¼ 1; we may expect uj to be

relatively high.

A key issue in our approach is the choice of which terms xj to include in (3) and, in

particular, how ‘complex’ a model to specify. If the model includes many higher order

interactions, then, as we shall note in Section 3.2., the resulting estimated measures of risk

may be either unstable or not very informative. On the other hand, if we over-simplify the

model by omitting important interaction terms the estimated risk measures may fail to

capture all the variation between the mj and hence fail to identify records which are

particularly risky. We suggest that an appropriate theoretical criterion for model selection

in disclosure risk assessment is that it provides ‘good’ prediction of the 1=Fj in (1). This is

not the same as the more conventional criterion of good fit to the data, although the two

criteria are likely to be related in practice. How to translate the theoretical criterion of good

prediction into a data-based criterion is beyond the scope of this article, however. Here, we

shall simply address the model choice issue empirically, firstly by considering two

alternative specifications of the xj as discussed in Section 5 and, secondly, by making

allowance for the possibility that a given specification of (3) fails to capture all the

variation between the mj by generalising the model to include a random effect 1j as

follows:

logmj ¼ xj
0bþ 1j ð4Þ

allowing for departures from the model in (3) via possible overdispersion. See, for

example, Cameron and Trivedi (1998) and Agresti (1996). Such a model has been

considered in the disclosure control context by Skinner and Holmes (1998).

For simplicity, we specify a gamma distribution for vj ¼ expð1jÞ as

gðv; y ; bÞ ¼
b y

Gðy Þ
vy21 expð2bvÞ; y ; b . 0

where EðvÞ ¼ y=b and varðvÞ ¼ y=b2: To centre the distribution of 1j; the gamma mean
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is assumed to be one, y ¼ b; that is

gðvj; y Þ ¼
y y

Gðy Þ
vy21
j expð2yvjÞ ð5Þ

Given the model specified by (2) and either (3) or (4), we return to consideration of the

record level measure of risk, defined in (1). We may write

uj ¼ E
1

f j þ zj
j f j ¼ 1; data

� �
¼ E E

1

f j þ zj
jlj

� �
j f j ¼ 1; data

� �
ð6Þ

It follows from (2) that

E
1

f j þ zj
jlj

� �
¼
X1
z¼0

1

ð1 þ zÞ

exp ½2ð1 2 pÞlj�½ð1 2 pÞlj�
z

z!

¼
1

ð1 2 pÞlj
{1 2 exp ½2ð1 2 pÞlj�} ð7Þ

Under Model (3), lj is fixed and so (7) provides an expression for uj: Under Model (4),

lj is random and we obtain from (6) and (7) that

uj ¼ E
1

ð1 2 pÞlj
{1 2 exp½2ð1 2 pÞlj�}j f j ¼ 1; data

� �

¼

ð
1

ð1 2 pÞlj
{1 2 exp½2ð1 2 pÞlj�}gðlj j f j ¼ 1Þdlj ð8Þ

where gðlj j f j ¼ 1Þ is the conditional density of lj given that f j ¼ 1: Under the gamma

model in (5), we may write

uj ¼

ð1
0

1

ð1 2 pÞp21vfj

{1 2 exp½2ð1 2 pÞp21vfj�}gðvj f j ¼ 1Þdv ð9Þ

where fj ¼ exp ðxj
0bÞ: From Skinner and Holmes (1998) we find that

gðvjj f j ¼ 1Þ ¼
mj exp ð2mjÞgðvjÞÐ
mj exp ð2mjÞgðvjÞdvj

ð10Þ

and for the gamma model we find that the conditional distribution of vj given f j ¼ 1 is also

gamma with parameters y þ 1 and y þ fj: It follows from (9) and (10) that

uj ¼
pðfj þ y Þ

ð1 2 pÞfjy
1 2

fj þ y

p21fj þ y

� �y� �
ð11Þ

3.2. Estimation of uj Under Log-Linear Model in (3)

We assume that the Fj are unobserved and that the data available to estimate uj consist of

the sample frequencies f j: From (2) these are assumed to be independently Poisson

distributed, f j , POðmjÞ with the mj obeying (3). The parameter vector b in (3) may be
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estimated by maximum likelihood using iterative proportional fitting (Agresti 1996), to

give an estimated vector b̂ and fitted values m̂j ¼ exp ðxj
0b̂Þ: From (6) and (7) the

estimated disclosure risk is

ûj ¼
1

ð1 2 pÞl̂j
{1 2 exp½2ð1 2 pÞl̂j�}

¼
1

ð1 2 pÞp21m̂j

{1 2 exp½2ð1 2 pÞp21m̂j�} ð12Þ

As mentioned in Section 3.1., the m̂j and hence the ûj may be unstable or not very

informative if many higher order interaction terms are included in (3). In the extreme case,

if a saturated model is employed, m̂j ¼ 1 for all j and the ûj fail to discriminate at all

between the sample unique cases. On the other hand, a model with too few interaction

terms may fail to capture the full variation between the mj: To allow for this we now

consider estimation under the overdispersed Model (4).

3.3. Estimation of uj Under Overdispersed Log-Linear Model in (4)

We again estimate the parameters b and y of the model defined by (4) and (5) by

maximum likelihood to give b̂ and ŷ : We let f̂j ¼ expðxj
0b̂Þ and plugging f̂j and ŷ into

the expression in (11) we obtain, as our estimated risk measure

ûj ¼
pðf̂j þ ŷ Þ

ð1 2 pÞf̂jŷ
1 2

f̂j þ ŷ

p21f̂j þ ŷ

 !ŷ
2
4

3
5

4. Relation to File Level Measures of Risk

Four file level measures of risk considered in the literature are:

PrðPUÞ ¼
X

Ið f j ¼ 1;Fj ¼ 1Þ=n

PrðPUjSUÞ ¼
X

Ið f j ¼ 1;Fj ¼ 1Þ=
X

Ið f j ¼ 1Þ

uU ¼
X

Ið f j ¼ 1Þ=
X

FjIð f j ¼ 1Þ and

us ¼
X

F21
j Ið f j ¼ 1Þ=

X
Ið f j ¼ 1Þ

where all the summations are over j ¼ 1; : : : ; J: The first two measures may be

interpreted as the proportions of sample individuals or sample unique individuals,

respectively, that are population unique (Fienberg and Makov 1998; Samuels 1998). Since

only sample unique records can be population unique we must have PrðPUÞ # PrðPUjSUÞ

and the latter measure may be treated as more conservative. Skinner and Elliot (2002)

argue, however, that both these measures may be overoptimistic, because they fail to

reflect the risk arising from values of X which are twins ðFj ¼ 2Þ; triples ðFj ¼ 3Þ and so

forth, and they introduce the third and fourth measures. These may be interpreted as the

probability that an observed match (on the key variables) between a sample unique
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individual and a known individual in the population is in fact correct, according to whether

the individual is drawn at random (with equal probability) from the population, for uU ; or

from the sample unique cases, for us: Whether uU or us is a more realistic measure depends

upon the assumed threat from the intruder, but it will always be the case that uU # us:

The file level measures above may all be interpreted as probabilities with respect to

sampling mechanisms which draw individuals from the population or sample with equal

probability. These probabilities are effectively unconditional on the value of X. In contrast,

the record level measure in Section 3.1 may be interpreted as a probability conditional on

the values of the key variables defining X.

The measure uj has the same form as the file level measures uU and us if the expectation

in (1) is replaced by a mean of F21
j across sample unique records, either with weights

proportional to Fj for uU or with equal weights for us: In particular, we may expect that the

(unweighted) average of the record level measures uj will approximately equal us: Since

us $ uU ; it follows that if uU is used as a file level measure, e.g., for the reasons of

simplicity of estimation discussed in Skinner and Elliot (2002), this measure will tend to

understate the (unweighted) average of the record level measures of risk uj:

5. Empirical Evaluation

In this section we seek to evaluate the properties of the ûj empirically using an artificial

finite population. We wish to avoid basing our evaluation on any single assumed model

and hence cannot simply compare the values of ûj with “true values” uj; since the latter are

defined with respect to a model. We therefore adopt two alternative approaches. First, we

study the relation between ûj and the empirical proportion of population uniques among

sample unique units. Second, we study the relation between the average value of ûj and the

average value of 1=Fj overall and within subgroups. For ûj to be a useful measure, we

expect a strong positive relationship in the first case and a strong positive relationship, with

approximate equality between the two averages, in the second case.

As a basis for studying these relationships, we constructed an artificial population file

by combining data for two years (1996, 1997) from the UK General Household Survey,

resulting in records on N ¼ 33; 142 individuals. Following consideration of possible

intruder scenarios by Dale and Elliot (2001), we used the following m ¼ 5 key

variables:

1. X1, sex in 2 categories

2. X2, marital status in 7 categories

3. X3, economic status in 13 categories

4. X4, socio-economic group in 10 categories

5. X5, age in ten-year bands in 8 categories

generating J ¼ 2 £ 7 £ 13 £ 10 £ 8 ¼ 14; 560 possible key values. We evaluated the

estimated measures of disclosure risk for two simple random samples from this

population, one of size n ¼ 2; 500 ðp ¼ 0:075Þ and one of size n ¼ 5; 000 ðp ¼ 0:15Þ: The

numbers of sample uniques were n1 ¼ 370 in the first sample and n1 ¼ 495 in the second

sample. The corresponding numbers of population uniques in these samples were 59 and

130 respectively. The four file level measures of risk (see, Section 4) were:
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. sample 1 ðn ¼ 2; 500Þ : PrðPUÞ ¼ 0:024; PrðPU j SUÞ ¼ 0:159; uU ¼ 0:115; us ¼

0:313;

. sample 2 ðn ¼ 5; 000Þ : PrðPUÞ ¼ 0:026; PrðPU j SUÞ ¼ 0:262; uU ¼ 0:210; us ¼

0:443:

As expected, we find PrðPUÞ # PrðPU j SUÞ # us and uU # us for both samples so that us
is the most conservative measure.

We next compute values of ûj for each of the sample unique cases in each sample. We

first consider the log-linear model in (3) for which the lj are fixed and obtain the ûj as

discussed in Section 3.2. We consider the following two specifications of the model in (3):

. Model 1: a log-linear model including all main effects;

. Model 2: a log-linear model including also all two-factor interactions.

Two specifications are considered to allow some empirical assessment of the effect of

model choice. The independence model, Model 1, is chosen as a simple model which

can be easily fitted in practice and which allows the risk measure to reflect the relative

rarity of the categories in each individual key variable separately, if not in combination.

Model 2 allows the risk measure to capture unusual combinations of categories of pairs

of key variables. It is more demanding computationally to estimate than Model 1 but is

still sufficiently parsimonious for overfitting not to appear to be a problem. The only

zero counts observed in the cells of two-way margins of the table cross-classifying the

key variables are structural zeros. On the other hand there are many sampling zeros in

the three-way margins of this table, and this suggests that including three-factor

interactions in the model might lead to overfitting. Model choice is discussed further in

Sections 3.1 and 6.

Tables 1–4 show the distributions of ûj across sample unique cases for these two models

for both samples. For the first sample ðn ¼ 2; 500Þ; we find the mean values of ûj to be

0.442 and 0.296 for Models 1 and 2 respectively, compared with the “expected” mean

us ¼ 0:313: For the second sample ðn ¼ 5; 000Þ we find mean values of ûj of 0.513 and

0.435 for the two models, compared with us ¼ 0:443: The correspondence with us seems

rather better for Model 2. (This suggests a means of estimating us to augment the simpler

approach to estimating uU discussed by Skinner and Elliot (2002).) In all cases uU
understates substantially the average record level measure.

The five divisions of the range [0, 1] for ûj in Tables 1 and 2 define subsets of sample

uniques with similar values of ûj: For each of these subsets, the proportion of population

unique cases is presented in these tables. As in Skinner and Holmes (1998), we find that ûj
are useful for deciding whether a sample unique case is population unique, with Model 2

providing better discrimination. For the first sample, it is more likely than not that a sample

unique is population unique if ûj . 0:8 for Model 2, but not for Model 1. The ability to

detect population uniques with high probability is even stronger for the second sample.

Tables 3 and 4 give the results when lj is random and follows a gamma distribution, as

discussed in Section 3.3. We find similar results to the model with no overdispersion, with

no evidence of improved discrimination for the model with random effects.

We next consider the relation between the average value of 1=Fj and ûj: Table 5

presents the means of 1=Fj within each of the five classes of values of ûj considered in the
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previous tables. Given the lack of evidence of improved performance using random

effects, we only consider the model with lj fixed. For the interpretation of ûj to be valid,

we expect the mean values to lie approximately within the class intervals. As before, we

find that the results for Model 2 show greater validity, with all the average values of 1=Fj

falling within the class intervals of ûj:

Table 5 provides empirical verification of the interpretation of ûj as the probability of a

correct match. To check this validity further, we have also studied the relationship

between the mean of ûj and the mean of 1/Fj within the 40 ð¼ 2 þ 7 þ 13 þ 10 þ 8Þ

subgroups defined by the univariate categories of the five key variables for sample unique

records for each of the two samples. Table 6 gives the results for the seven subgroups

defined by the categories of marital status for Model 2. We observe a good correspondence

between the two sets of means, especially for the larger sample size. For the purpose of

disclosure control we might wish to use the values of ûj to identify any categories with a

high level of risk. It is clear from the 1=Fj columns that Category 7 is the riskiest, and

calculation of the mean of the ûj among sample uniques within this category would enable

the risky nature of this category to be identified. In fact, for the case n¼ 2; 500; there are

just two sample uniques in this category, both population unique, and this high level of risk

is captured by the average value of 0.93 of ûj for these two records. For the case

n ¼ 5; 000; there are six sample uniques in this category. The probability that a match

Table 2. Frequencies and proportions of population unique cases for sample unique records within classes of

values of ûj for Models 1 and 2 with overdispersion and n ¼ 2; 500

Range of
values of

Model 1 Model 2

ûj Frequency Proportion population
unique

Frequency Proportion population
unique

(0.0, 0.2) 79 0.05 105 0.06
(0.2, 0.4) 64 0.08 86 0.06
(0.4, 0.6) 85 0.15 79 0.10
(0.6, 0.8) 87 0.22 59 0.27
(0.8, 1.0) 55 0.34 41 0.58
Total 370 370

Table 1. Frequencies and proportions of population unique cases for sample unique records within classes of

values of ûj for Models 1 and 2 with no overdispersion and n ¼ 2; 500

Range of
values of

Model 1 Model 2

ûj Frequency Proportion population
unique

Frequency Proportion population
unique

(0.0, 0.2) 84 0.07 113 0.07
(0.2, 0.4) 61 0.11 68 0.08
(0.4, 0.6) 88 0.13 78 0.09
(0.6, 0.8) 79 0.19 67 0.18
(0.8, 1.0) 58 0.33 44 0.59
Total 370 370
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between one of these records and a population individual would be correct is 0.88, and this

high risk is again captured well by the mean value of ûj of 0.82. Considering all 40

subgroups we found that the correlation coefficients between the two means are 0.76 and

0.82 for Models 1 and 2 respectively, with n ¼ 2; 500 and 0.75 and 0.96 for the models

with n ¼ 5; 000: It is again clearly preferable to include the two-way interactions in the

model.

Figure 1 displays scatterplots of values of (1=Fj; ûjÞ for the 40 subgroups with 45-degree

lines joining (0, 0) and (1, 1) superimposed. They confirm the closeness between the means

of ûj and 1=Fj; especially for Model 2.

6. Conclusion

Skinner and Elliot (2002) argued in favour of measuring disclosure risk at the file level

by the probability that an observed match is correct rather than by the probability

of population uniqueness. In this article, we have shown how the record level measure of

disclosure risk of Skinner and Holmes (1998), defined in terms of the probability of

population uniqueness, may be extended in a parallel way to a record level measure of the

probability that an observed match is correct. Both measures depend on the specification

of a log-linear model for an assumed set of key variables. In an empirical evaluation of

different versions of the new record level measure using real survey data, we found

Table 3. Frequencies and proportions of population unique cases for sample unique records within classes of

values of ûj for Models 1 and 2 with no overdispersion and n ¼ 5; 000

Range of
values of

Model 1 Model 2

ûj Frequency Proportion population
unique

Frequency Proportion population
unique

(0.0, 0.2) 110 0.11 137 0.07
(0.2, 0.4) 94 0.11 92 0.08
(0.4, 0.6) 98 0.12 88 0.14
(0.6, 0.8) 92 0.42 76 0.49
(0.8, 1.0) 101 0.55 92 0.70
Total 495 495

Table 4. Frequencies and proportions of population unique cases for sample unique records within classes of

values of ûj for Models 1 and 2 with overdispersion and n ¼ 5; 000

Range of
values of

Model 1 Model 2

ûj Frequency Proportion population
unique

Frequency Proportion population
unique

(0.0, 0.2) 88 0.09 114 0.08
(0.2, 0.4) 123 0.17 146 0.20
(0.4, 0.6) 102 0.23 111 0.23
(0.6, 0.8) 99 0.32 83 0.45
(0.8, 1.0) 83 0.54 41 0.71
Total 495 495

Elamir and Skinner: Record Level Measures of Disclosure Risk for Survey Microdata 535



evidence of discrimination by the measure between records of different levels of risk; in

particular records which are very likely to be population unique could be identified by

consideration of records with high values of the measure. We found no evidence, however,

that allowance for overdispersion via the inclusion of random effects in the model

improved its performance. The measure obtained under the simpler model with no random

effects was validated by comparing its average value in 40 subpopulations with the “true”

population quantity it was estimating, and the relationship was found to be very good for a

model including only one- and two-way interactions. This measure is much easier to

compute, requiring only the fitting of a standard log-linear model, than the measure

proposed by Skinner and Holmes (1998), which additionally required numerical

integration. In summary, we suggest for use in practice the measure obtained from

Equation (12) for a log-linear model with main effects and two-way interactions. We are

currently exploring the robustness of the measure to model choice and whether any

improvements can be obtained through the use of higher-order interactions and model

selection techniques. The questions of how model selection should depend upon the sizes

of the sample and the population and whether models should be fitted separately for

different subpopulations also need consideration. It may be appropriate to use simpler

models for smaller sample sizes.

The measure obtained from (12) ignores any error in estimating the parameters b of the

log-linear model by b̂: In principle, if the true measure is taken as the posterior probability

of a correct match from a Bayesian perspective and if uncertainty about b can be

represented in an appropriate way (this may need to take account of the complexity of the

Table 5. Means of 1=Fj within classes of values of ûj for Models 1 and 2 with no overdispersion

Range of
values of

n ¼ 2; 500 n ¼ 5; 000

ûj Model 1 Model 2 Model 1 Model 2

(0.0, 0.2) 0.06 0.09 0.07 0.06
(0.2, 0.4) 0.25 0.28 0.22 0.29
(0.4, 0.6) 0.38 0.42 0.36 0.44
(0.6, 0.8) 0.53 0.59 0.58 0.61
(0.8, 1.0) 0.68 0.81 0.73 0.83

Table 6. Means of ûj and 1=Fj across seven subsets of the sample unique records defined by the categories of

marital status, for Model 2 without overdispersion

Marital
status category

n ¼ 2; 500 n ¼ 5; 000

Mean ûj Mean 1=Fj Mean ûj Mean 1=Fj

1 0.22 0.27 0.36 0.38
2 0.39 0.35 0.54 0.50
3 0.30 0.29 0.41 0.41
4 0.22 0.20 0.36 0.36
5 0.35 0.35 0.48 0.49
6 0.41 0.47 0.53 0.54
7 0.93 1.00 0.82 0.88

Journal of Official Statistics536



survey sampling scheme) then this uncertainty could be integrated out, perhaps using a

simulation-based approach. We have not pursued this possibility, however, and suspect

that it is more important initially to explore the dependence of the measure on model

specification.

This article has assumed that the key variables are categorical and that the intruder

measures X in the same way it is recorded in the microdata. In separate work, we are

considering the effect of measurement error arising from the application of a known

misclassification matrix to X in the microdata. This article has some conceptual relevance

to the case of continuous key variables in the sense that the definition of risk as the

expected value of 1=Fj applies for general key variables if it is assumed that the intruder

employs a matching algorithm for which Fj is the number of individuals in the population

that the intruder would match to a given microdata record (and it is assumed that these

individuals include the true respondent). However, the log-linear modelling approach in

this article only relates to the case of categorical key variables.

This article has also made simplifying assumptions about the sampling scheme. A

number of issues arise in considering the possible effect of complex sampling. The first is

whether the measure in (1) should be modified since the assumption that 1=Fj is the

probability of a correct match given a unique match (see Section 3.1) depends upon

Fig. 1. Scatter plots of means of 1=Fj against means of estimated measure of risk ûj with y ¼ x lines for (a)

Model 1 with n ¼ 2; 500; (b) Model 2 with n ¼ 2; 500; (c) Model 1 with n ¼ 5; 000; (d) Model 2 with n ¼ 5; 000
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assumptions about the sampling scheme. Thus, suppose that the Fj population units with

key value j are ordered k ¼ 1; : : : ; Fj and suppose that the intruder seeks a microdata

record which matches the kth of these units. Let Ak be the event that the kth unit is sampled

and the remaining Fj 2 1 units are not sampled. Then the probability of a correct match

given a unique match and known Fj is the probability of Ak given that one of A1; : : : ; AFj

occurs. In general this will depend upon Fj-way inclusion probabilities and thus be

complex. In many practical circumstances, however, it might be natural to include the

design variables, according to which inclusion probabilities vary amongst the key

variables, since these design variables are often visible. In this case, it may be reasonable

to assume that A1; : : : ; AFj
are equiprobable and thus that the probability 1=Fj still

applies. This would be similar to the approach of Franconi and Polettini (2004), who

assume that all units with a common key value have a common inclusion probability and

that the definition in (1) is still appropriate. On the other hand, if inclusion probabilities do

vary among units with common values of the key variables and if these probabilities could

be determined by the intruder for population units and sample design weights are included

in the microdata file, then the identification risk may be seriously increased (de Waal and

Willenborg 1997).

Even if the measure in (1) is retained, there is still the question of how the complex

design should be allowed for in Expressions (7) and (8) and in the estimation method. As a

pragmatic approach we suggest retaining Expressions (7) and (8), with p now being the

actual inclusion probability for the record, which may vary between records. Regarding

estimation, since the aim is to predict the finite population quantities, Fj; we suggest that a

log-linear model for the lj be fitted using standard survey weighting (Rao and Thomas

2003). Complex design issues require further research, however. See Skinner and Carter

(2003) on the use of weights in the file level measure of Skinner and Elliot (2002) and

Franconi and Polettini (2004) on the use of auxiliary population information via

calibration weights in record level measures.

7. References

Agresti, A. (1996). An Introduction to Categorical Data Analysis. New York: Wiley.

Bethlehem, J.G., Keller, W.J., and Pannekoek, J. (1990). Disclosure Control of Microdata.

Journal of the American Statistical Association, 85, 38–45.

Cameron, C.A. and Trivedi, P.K. (1998). Regression Analysis of Count Data. Cambridge.

Carlson, M. (2002). Assessing Microdata Disclosure Risk Using the Poisson-inverse

Gaussian Distribution. Statistics in Transition, 901–925.

Dale, A. and Elliot, M. (2001). Proposals for 2001 Samples of Anonymized Records: An

Assessment of Disclosure Risk. Journal of the Royal Statistical Society, Series A, 164,

427–447.

de Waal, A.G. and Willenborg, L.C.R.J. (1997). Statistical Disclosure Control and

Sampling Weights. Journal of Official Statistics, 13, 417–434.

Doyle, P., Lane, J., Theeuwes, J., and Zayatz, L. (eds) (2001). Confidentiality Disclosure

and Data Access: Theory and Practical Applications for Statistical Agencies. North-

Holland.

Journal of Official Statistics538



Duncan, G. and Lambert, D. (1989). The Risk of Disclosure for Microdata. Journal of

Business and Economic Statistics, 7, 207–217.

Elliot, M. (2001). Disclosure Risk Assessment. In Confidentiality Disclosure and Data

Access: Theory and Practical Applications for Statistical Agencies, P. Doyle, J. Lane,

J. Theeuwes, and L. Zayatz (eds). North-Holland, 75–90.

Fienberg, S. and Makov, U. (1998). Confidentiality, Uniqueness and Disclosure

Limitation for Categorical Data. Journal of Official Statistics, 14, 385–397.

Franconi, L. and Polettini, S. (2004). Individual Risk Estimation in (-ARGUS: a Review.

In J. Domingo-Ferrer and V. Torra (eds). Privacy in Statistical Databases, Springer

Lecture Notes in Computer Science 3050. Berlin, 262–272.

Fuller, W.A. (1993). Masking Procedures for Microdata Disclosure Limitation. Journal of

Official Statistics, 9, 383–406.

Lambert, D. (1993). Measures of Disclosure Risk and Harm. Journal of Official Statistics,

9, 313–331.

Paass, G. (1987). Disclosure Risk and Disclosure Avoidance for Microdata. Journal of

Business and Economic Statistics, 6, 487–500.

Rao, J.N.K. and Thomas, D.R. (2003). Analysis of Categorical Response Data from

Complex Surveys: an Appraisal and Update. In Analysis of Survey Data, R.L.

Chambers and C.J. Skinner (eds) Chichester: Wiley, 85–108.

Samuels, S. (1998). A Bayesian, Species-Sampling-Inspired Approach to the Uniques

Problems in Microdata Disclosure Risk Assessment. Journal of Official Statistics, 14,

373–383.

Skinner, C.J. and Carter, R.G. (2003). Estimation of a Measure of Disclosure Risk for

Survey Microdata Under Unequal Probability Sampling. Survey Methodology, 29,

177–180.

Skinner, C.J. and Elliot, M. (2002). A Measure of Disclosure Risk for Microdata. Journal

of the Royal Statistical Society, Series B, 64, 855–867.

Skinner, C.J. and Holmes, D.J. (1998). Estimating the Re-identification Risk Per Record in

Microdata. Journal of Official Statistics, 14, 361–372.

Willenborg, L. and de Waal, T. (2001). Elements of Statistical Disclosure Control.

New York: Springer.

Received July 2004

Revised September 2005

Elamir and Skinner: Record Level Measures of Disclosure Risk for Survey Microdata 539


