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Reduction of Nonresponse Bias Through
Regression Estimation
Jelke G. Bethlehem!

Abstract: To investigate the properties of
estimators of population characteristics,
nonresponse is incorporated in the sampling
theory by the introduction of response prob-
abilities. Within this framework the charac-
teristics of the Horvitz-Thompson estimator,
generalized regression estimator and post-

1. Introduction

The results of a sample survey are affected by
many kinds of errors, one of the most impor-
tant sources being nonresponse. The main
problem caused by nonresponse is that esti-
mators of population characteristics must be
assumed to be biased unless convincing evi-
dence to the contrary is provided.

Hansen and Hurwitz addressed the prob-
lem of nonresponse in mail surveys in 1946.
Nonresponse remains a subject for ongoing
concern. An important symposium on mis-
sing data (see Madow and Olkin (1983))
concluded that even with intensive efforts in
the data collection stage, nonresponse will
inevitably occur. Furthermore, no statistical
method will fully compensate for missing
data, and biases will almost certainly remain.

Generally, two different approaches can
be distinguished in tackling the nonresponse.
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stratification estimator are studied. It is
shown that proper use of auxiliary informa-
tion can reduce the nonresponse bias.

Key words: Nonresponse; regression estima-
tor; post-stratification.

The first approach is to make new attempts to
collect the missing data, and the second
approach is to make do with the data, but to
apply an adjustment technique. An example
of the first approach is the proposal by
Hansen and Hurwitz (1946) to let a subsample
of mail survey nonrespondents be visited by
interviewers. This type of reinterview may
also work for face to face interviews, for
instance if a subsample of nonrespondents is
visited a second time, but now by especially
trained interviewers. Another implementa-
tion of the first approach is the Basic Ques-
tion Procedure, proposed by Bethlehem and
Kersten (1985), in which refusers are asked
to answer only one or two important ques-
tions.

An example of the second approach is
adjustment of the available data using a
weighting or imputation procedure. Imputa-
tion is often carried out in the case of item
nonresponse. Imputation techniques are
discussed by, e.g., Platek and Gray (1983).
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In the case of unit nonresponse weighting is
generally preferred, see, e.g., Bailar, Bailey,
and Corby (1978), Lindstrom, Wretman,
Forsman, and Cassel (1979), and also Platek
and Gray (1983).

A vital part of the adjustment approach is
the availability of auxiliary information.
Augxiliary information and the sampling data
are used to construct models that describe
nonrespondent behaviour with respect to the
target variables of the survey. In this paper,
modified versions of the Horvitz-Thompson
estimator and the generalized regression esti-
mator are proposed. It will become clear that
use of auxiliary variables can reduce the bias.
To study the effect of nonresponse on estima-
tors, a general framework is proposed. In this
framework, nonresponse is incorporated in
the sampling theory by introducing the con-
cept of individual response probability. The
assumption that each sample element has a
certain (unknown) response probability is,
however, also a vital part of many other the-
oretical contributions on nonresponse.

In the literature, adjustment is applied in
various ways. Platek and Gray (1983) use a
framework similar to ours in the context of
missing value imputation. Little (1982) pre-
sents a model-based theory, in which values
in the population are treated as realizations
of random variables that are distributed
according to a superpopulation model. The
theoretical concept of ignorability is used to
obtain insight into the role of probability
sampling and the mechanism causing nonre-
sponse. Greenlees, Reece, and Zieschang
(1982) develop a method for imputing mis-
sing values when the response probability
depends on the variable that has been im-
puted by a logistic function. Under an assumed
linear regression superpopulation model, the
theory of stochastic censoring is applied.
Sarndal and Swensson (1985) point at the
resemblance between two phase sampling
and the nonresponse situation. They develop
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a general theory for two phase sampling (in
the case of full response), and apply the
results to nonresponse, where nonresponse is
conceived as the second phase with unknown,
but estimated, sampling probabilities.

In Section 2 the theoretical framework is
introduced. Section 3 discusses the Horvitz-
Thompson estimator and Section 4 discusses
the generalized regression estimator. It can
be shown that post-stratification is a special
case of the generalized regression estimator.
This case is treated in Section 5.

2. The Theoretical Framework

Let the target population of a sample survey
consist of N identifiable elements, which are
labeled 1,2,..., N. Associated with each ele-
ment k is a value Y of the target variable. The
N-vector of all values of the target variable in
the population is denoted by Y. The aim of
the sample survey is the estimation of the
population mean

Mz

y=L1
Y=N, Y,

1

of the target variable. Of course, inference
on population totals can easily be derived
from the results on population means.

A sample selected without replacement
from the population can be represented by an
N-vector t=(t,t,...,ty)" of indicators. The k-
th indicator ¢, assumes the value 1 if element
k is selected, and otherwise it assumes the
value 0. The expected value of ¢ is equal to

E(@t) ==,
where nt=(m,, 7,,...,ny)’ is the N-vector of
first order inclusion probabilities of the ele-
ments. The second order inclusion probabil-

ity of elements k and / (k+#[) can be written as

Ty = E(tktl) and Tpp =Tk -
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There are two ways to incorporate nonre-
sponse in the theory, (1) the fixed response
approach and (2) the random response
approach. Both are discussed by, e.g.,
Kalsbeek (1980) and Cassel, Siarndal, and
Wretman (1983).

In the fixed response approach the popula-
tion is divided into two strata, one consists of
(potential) respondents and the other of (po-
tential) nonrespondents. A sample is select-
ed from the population, thereby disregarding
the stratification. Sampled elements which
belong to the nonresponse stratum will not
respond.

In this paper the more general random
response approach is adopted. Each element
k in the population is assumed to have an
(unknown) response probability g, Only
responding elements can be observed and the
response is represented by an N-vector.

r=(ry,r,...,rn)’

of indicators. The kth indicator r, assumes
the value 1if element k is selected (¢,=1) and
responds; otherwise it assumes the value 0.
The expected value of r; is equal to

E(ry) = mQy,

for k=1,2,...,N, where the expectation is
taken over all possible samples and all possi-
ble response patterns. In this theory, the fun-
damental assumption is that the response
behaviour of one element is not influenced
by the response behaviour of another ele-
ment. Consequently, for two elements k and
1 (k#I])

E(ryr) is equal to my, o, 0

This result is used in the computation of vari-
ances of estimators. It will be assumed that,
for respondents, the values of the target vari-
able are observed without measurement
error, i.e., there is no response error.

3. The Modified Horvitz-Thompson Esti-
mator

An unbiased estimator of the population
mean Y, given sampling with unequal prob-
abilities without replacement and under full
response, is given by Horvitz and Thompson
(1952). Using the notation of the previous
section this estimator can be written as

1

_ Yty
Yur =5

Tk

(3.1)

TM=z

1

The variance of this estimator is equal to

N N

1
V (Yur) = ﬁkzl 121 (70— 03t;)

Y.Y,
may

In the case of nonresponse, estimates must
be based on responding elements rather than
sampled elements. The obvious modification
for the Horvitz-Thompson estimator in this
case would be to replace ¢, by r; and m; by
70 in (3.1). In practice, however, this will
not work, since the response probabilities
01,02,.--,0y are unknown. Furthermore, if the
r. and m, are used and if the nonresponse is
ignored, the estimator will be biased. For
example, if all Y, are positive, the estimator
will always be biased downwards. There are
two ways to solve this problem, but both
approaches are based on the use of auxiliary
information. In the first approach the esti-
mate is improved by using a generalized
regression estimator instead of the Horvitz-
Thompson estimator. Examples of this
approach can be found in Greenlees et al.
(1982) and Bethlehem and Keller (1987). In
the second approach the available auxiliary
information is used to make estimates of the
response probabilities. These estimates will
then be substituted in the Horvitz-Thompson
estimator. This approach is suggested in
Sarndal (1981). o
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Both approaches may reduce the bias of
the resulting estimator. The success of the
regression approach relies on the extent to
which the auxiliary information can describe
the behaviour of the values of the target vari-
able. In the second approach the auxiliary vari-
ables must be able to describe the behaviour
of the values of the response probabilities.
Here, we concentrate on the regression
approach.

In both approaches something must be
done about the unknown response probabili-
ties. A reasonable, but probably not ideal,
solution is to replace each g, by

L
N

T

1%

b

||M2

which is an unbiased estimator of the mean
response probability

(o]

Il
z|=
I Mz

(=]
=

Thus, in the case of nonresponse the modi-
fied Horvitz-Thompson estimator is defined
as

N N
( z——{’;’")/ ( by ;—")
k=1 "'k k=1 "k

Note that in the case of full response, estima-
tor (3.2) is not reduced to the original
Horvitz-Thompson estimator. Instead the
population size N is replaced by its estimator

(3.2)

based on the sample. This estimator is also

discussed by Sarndal (1980), who claims that
this estimator has properties which make it
preferable to the unbiased Horvitz-Thompson
estimator.
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The modified Horvitz-Thompson estima-
tor (3.2) has the form of a ratio estimator.
Therefore, its properties can be derived
using the standard first order Taylor series
expansion. The Taylor expansion technique
is discussed in, e.g., Wolter (1985). If this
technique is applied, it turns out that the
expected value of estimator (3.2) can be
approximated by

E(yfir) =Y*, (3.3
where

_ N

Y= Nl = Q’éY" . (3.4)

An approximation of the bias of the modified
Horvitz-Thompson estimator can now be
obtained by comparing (3.4) with the popula-
tion mean. This results in

B(yir) = EGfi) -Y =Y* Y = Cpy / @,
(3.5)
in which
1 N ) _
Cor=7 %, (@=0) (Yi-Y)

is the population covariance between
response probabilities and the values of the
target variable. Hence, the modified Horvitz-
Thompson estimator is unbiased if there is no
correlation between the target variable and
the response behaviour. The stronger the
relationship between the target variable and
the response behaviour, the larger the bias.

The variance of the modified Horvitz-
Thompson estimator can be approximated
by

Vi) = (N )2
53 Y, Y*) (Y, 7*
Xz X (lenkl—QlenkJEl)(_!‘._Iz(;’——),
k=11=1 )
. (3.6)
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where o,;=040; for k#I, and Qi =0;.

In the case of full response, the variance of
the Horvitz-Thompson estimator vanishes,
provided the first order inclusion probabili-
ties are proportional to the values of the tar-
get variable (if the sample size is fixed).
Thus, in practice one tries to establish inclu-
sion probabilities using an auxiliary variable
which is as proportional as possible to the tar-
get variable. This practice does not work in
the case of nonresponse. The extra quantity
Y* in (3.6) disturbs the nice variance property
of the Horvitz-Thompson estimator.

4. The Generalized Regression Estimator

In the full response case, the precision of
the Horvitz-Thompson estimator can be
improved if suitable auxiliary information is
available. Suppose there are p auxiliary
variables. Each element k in the popula-
tion is associated with a p-vector X;=
(Xi1,Xx25- -, Xyp)' Of variable values. The
population mean of the vectors is denoted by

X= X, .

L
N k=1

T Mz

The NXp matrix of all values of the auxiliary
variables is denoted by X. If the auxiliary
variables are correlated with the target vari-
able, then for a suitably chosen vector f§ =
(B1,B2,---,B,)" of regression coefficients for a
best fit of Y on X, the residuals in the vector
€ = (&,&,...,€5)’, defined by

e=Y-Xp ,
vary less than the values of the target variable

itself. Application of ordinary least squares
results in

N N
B=(X'"X)"'X'Y=(Z XX (T XYy
k=1 k=1
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In the case of full response this quantity
can be estimated by

1
B= ( g 6 X X ) 1( g thkYk)
k=1 T% k=1 %
4.1

The estimator [3 is an asymptotically design
unbiased (ADU) estimator of 3. This means
that B is asymptotically unbiased for large
samples. Using (4.1) the generalized regres-
sion estimator for the case of full response is
defined as

Yor = Jur + X=xun)' B, (4.2)

in which Xyt is the analogue of yyr, as de-
fined in (3.1). The generalized regression
estimator is an ADU estimator of the popula-
tion meanY. The estimator and its properties
are also discussed in Robinson and Sirndal
(1983), Isaki and Fuller (1982), and Bethle-
hem (1985). Bethlehem and Keller (1987)
investigate generalized regression estimation
in the context of weighting sample survey
data. If there exists a p-vector ¢ of fixed num-
bers such that Xc=t, where v is a vector con-
sisting of 1’s, estimator (4.2) can also be writ-
ten as

yor =X'B. (4.3)

This condition is fulfilled if the regression
model contains a constant term, or if post-
stratification is used (see Section 5). In the
remainder of this paper it is assumed that
Xc=1. Another consequence of this assump-
tion is thatY—Xp=¢=0.

Given simple random sampling and only
one continuous auxiliary variable, the gener-
alized regression estimator reduces to the
well-known simple regression estimator as,
e.g., discussed by Cochran (1977). If can be
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shown that the variance of estimator (4.5)
can be approximated by

1 N N €€
V(YGR)—]V § §1(nkl_nknl) pp

where m=m;, (see e.g. Sdrndal (1982) or
Bethlehem and Keller (1987)). This variance
will be small if the residual values g,,¢&,,...,&x
are small. Hence, the use of auxiliary vari-

ables which can explain the behaviour of the .

target variable will result in a precise estima-
tor.

In the case of nonresponse, the Horvitz-
Thompson estimators yyy and Xy cannot be
used. Furthermore, also estimation of f§ will
have to be based on available observations
only. The modified generalized regression
estimator is now defined by

yér = yir + & —xir)'B*, (4.4)
in which yfr is defined by (3.2), x{ir is the
analogue of yjir, and B* is equal to

—1
B*= g ’kaXI'c) g’kaYk
k=1 T =1 T '

Using the same techniques as Cochran (1977,
p-193) in his proof of the consistency of the
simple regression estimator, it can be shown
that [3* is an ADU estimator of

N ! N
B* = (1}_—:1 QkaXI'c) (kEI QkaYk) .

The expected value of xfir can be approxi-
mated by

QkX k

E(%fp) = X* = -
(%) s

IIMZ

1
Nk
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Therefore, the expected value of the modi-
fied regression estimator can be approxi-
mated by

E(7&r) =Y* + € -X*)'B*,

and the bias of this estimator is approxi-
mately equal to

(4.5)

Since Y*=X*B* (assuming Xc=t), the bias
can also be written as

B(7&x) = X p*-Y). 4.6)
From (4.6) it is clear that the bias vanishes if
p* is equal to B. Thus, if nonresponse does
not affect the regression coefficients, the

resulting regression estimator will not be
biased. By writing

-1
1 N QkaXk')
* — = ST kTk %
B B+ (N k§1 Q €7,

where

two conclusions can be drawn. First, $* and
will be equal if e*=0, and that will be the case
if there is no correlation between the residu-
als of the regression model and the response
behaviour. Second, B* and p will be approx-
imately equal if €* is small. Hence, a good fit
(small residuals) will reduce the bias:*
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5. A Special Case: Post-Stratification

Post-stratification is a well-known and fre-
quently used technique to reduce nonresponse
bias. For example, Thomsen (1973, 1978)
presents formulae for the bias of estimators
after post-stratification, which are based on
the fixed response approach. A general
approach to post-stratification based on
linear models is given by Bethlehem and
Keller (1987).

Post-stratification can also be treated from
the random response viewpoint. In fact,
post-stratification theory is a special case of
the theory given in the previous section. Sup-
pose we want to stratify the sample into L
strata. To that end L dummy variables are
introduced. Associated with each element k
is a vector (X, Xi,...,Xx) of dummy
values. The Ath dummy X, assumes the
value 1 if element k belongs to stratum 4 and
0 if it belongs to another stratum. In the case
of full response, {3 turns out to be

B =Yz Y1),

in which Y}, is the mean value in stratum L.
The estimator for § becomes
B= (ur,1,PHT,25++ > YHT,L) > 5.1
where yyr 4, for h=1,2,...,L, is the Horvitz-
Thompson estimator in stratum 4 (the adap-
ted version, in which the population size is
replaced by its estimator).
The mean vectorX of the dummy values in
the population is equal to
‘Y= (W17W2""’WL),, (52)
in which W,=N,/N is the relative size of stra-

tum k. Substitution of (5.1) and (5.2) in (4.3)
gives

L

Yor =h§1Wh Yurs - (5.3)

For simple random sampling, this is the post-
stratification estimator as discussed by, e.g.,
Cochran (1977). Therefore, estimator (5.3)
will also be denoted by yps. In the case of full
response, the post-stratification estimator is
approximately unbiased. The estimator is
not exactly unbiased, because there is a non-
zero, but generally small, probability of
empty strata. If there is nonresponse, we
have to rely on the modified generalized
regression estimator which in the case of
post-stratification turns into

L
V&r =h:21 W, Viirh - (5.4

In (5.4) yfir » is a modified Horvitz-Thomp-
son estimator for stratum 4. We denote the
estimator (5.4) also by y§g and its bias is

L - -
B(fi';s) =h§1 Wi (Y7 - Yh) .

The quantity Y} is the analogue of Y*, but
applied to stratum k. Apparently the bias of
the post-stratification estimator is a weighted
sum of the stratum biases. By applying (3.5)
the bias can be rewritten as

L
B(y%s) =h§1Wh Covh/On » (5.5

in which

Np _
Covn= NI— 2 (=0 Yin—Yh),
A 25|

and where the double subscript kh denotes
the kth element in stratum . The quantity o,
is the mean of the response probabilities in
stratum A. Within a stratum the bias will
vanish if there is no relationship between the
response probabilities and the values of the
target variable. This gives us some guidance
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on how to stratify: construct strata in which
the response behaviour is independent of the
target variable. The following is a discussion
of rules that are helpful in practice.

1. Construct strata which are homogeneous
with respect to the target variable. If the
values of this variable differ very little,
the covariance C,y , will be close to zero.

2. Construct strata which are homogeneous
with respect to the response probabilities.
Then again, the covariance will be close
to zero.

Rule 1 concentrates on the target variable.
It is a well-known rule which is also applied in
the case of full response. In that situation
post-stratification will lead to a small vari-
ance. Therefore, it is very important to look
for good stratification variables that will
reduce both variance and bias. The choice of
stratification variables cannot be made solely
on the basis of the available observations.
Over or underrepresentation of some groups
can mislead us about the relationship
between the target and the stratification vari-
able. There has to be additional information
about the homogeneity of the target variable.

Rule 2 concentrates on the response prob-
abilities. If the strata can be further divided
into substrata and the population sizes of the
substrata are known, then the mean response
probabilities can be estimated in each sub-
stratum. Comparing these estimates may
give an indication of the homogeneity of
strata with respect to the response probabili-
ties. If all probabilities within a stratum are
equal, then the population distribution and
the observed distribution of the target vari-
able will coincide.

These rules are discussed in the literature.
Thomsen (1973) splits the nonresponse bias
in two components: one which measures the
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difference between response probabilities
over strata, and another which contains the
biases within strata. In Madow, Nisselson
and Olkin (1983), Chapter 1, Recommenda-
tion 17, one is advised to select strata so that
differences between respondents and non-
respondents are relatively small. Lock Oh
and Scheuren (1983) stress the importance of
a uniform response mechanism within strata.
Platek and Gray (1983) indicate that the cor-
relation between response probabilities and
the characteristic to be investigated should
be minimal.

Preferably, the statistician should apply
both rules simultaneously. The stratification
should be done in such a way that strata are
homogeneous with respect to the target vari-
ables (thus decreasing the variance and bias)
and with respect to the response probabilities
(thus decreasing bias). In practice it will not
always be easy to obtain such a stratification.
Still, it is important that the statistician is
aware of the possible effects if he/she is in a
position to choose one of several possible
stratifications.

Another way to look at the bias in case of
post-stratification is to compare the bias of
yps with the bias of the modified Horvitz-
Thompson estimator yjr. It turns out that

L _ _
Bt =BG +2 w73 (1- %),
(5.6)

It can be observed that a change in the bias is
mainly caused by differences in mean
response probabilities between strata and
differences between the values of Y. Itis also
clear from (5.6) that post-stratification does
not necessarily reduce the bias; a badly
chosen stratification may increase the bias.
Since all quantities can be estimated using
sample information, we can estimate the bias
shift for a given stratification. A large shift in
bias is no guarantee that the bias is reduced.
Nevertheless, usually a reduction does’occur,
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especially if the model describing the rela-
tionship between the target variable and the
auxiliary variables fits well. Thus, the residuals
in € must be small. In the case of post-stratifi-
cation, the residual g, associated with ele-
ment k in stratum £, is equal to

&n =Y~ XiB = Y _}_’h~

Again, we must conclude that strata must be
homogeneous with respect to the target vari-
able.

One should be aware of the fact that a
reduction of the bias does not necessarily
imply a reduction of the corresponding mean
square error. A stratification may reduce the
bias but increase the variance, especially if
the number of observations per stratum is
small. Still, one may prefer a bias reduction,
thus permitting a more valid inference about
population parameters.

6. Conclusion

This paper presents a general framework to
study the behaviour of estimators given non-
response by introducing response probabili-
ties. It is shown that the bias can be reduced
if models are built that can explain the behav-
iour of the target variable. The better the
model fits, the smaller the nonresponse bias
becomes. In the special case of stratification
it becomes clear that good stratifications (in
the traditional sense, i.e., strata that are
homogeneous with respect to the target vari-
able) also perform well in reducing the bias.
Stratifications that are homogeneous with
respect to the response probabilities work
well too.
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