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Regional Presentation—Choice of Region Sizes

Daniel Thorburn!

Abstract: In many surveys data are presented
for different regions. If these regions are too
large the geographical variation is not reflect-
ed. If they are too small, the geographical
variation cannot be separated from the ran-
dom variation. We discuss, from a mathemat-
ical point of view, the choice of the number
and size of regions when the sample is given.
We also consider the choice of regions in the
sampling phase. Asymptotic expressions for
the optimal size of regions are derived for
one, two, and higher dimensional regions. It

1. Introduction

Many statistical quantities vary geographical-
ly, e.g., unemployment, nativity, precipita-
tion, and housing standards. These variations
are often interesting and it is the object of
statistics to describe them as well as possible.
The variation is usually described by present-
ing figures for different regions. An interest-
ing and very important question is the best
number and size of these regions. This ques-
tion has no theoretical basis and is usually
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is shown that the number of regions increases
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solved quite ad hoc. In this paper we shall give
a mathematical foundation for this problem.
We shall also give some practical examples
showing that the method can be used in real
surveys.

The standard procedure today is to decide
the presentation regions in advance. The sta-
tistician has to answer questions on the cost of
producing accurate figures for counties, for
municipalities and for other geographic parti-
tions. He or she computes the number of
observations needed to give an acceptable
precision. The number of regions is then de-
cided and the survey is conducted. Sometimes
the presentation regions are not decided until
the survey is completed. In this case the re-
gions are decided so that the precision should
be sufficient. However, there is, 4 priori, no
reason to believe that these standard proce-
dures will lead to an optimal solution. A parti-
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tion satisfying a precision constraint may be
far from optimal.

In this paper we will use a new approach
and view the choice of regions as an optimiza-
tion problem. If too many regions are chosen
the random errors will become too large, but
if too few regions are chosen, the regional
variation will not be adequately described.
What is the “best” partition given the sample
and the prior knowledge of the subject matter
under study?

An important question is what should be
meant by “best.” We use the criterion smallest
average mean square error (AMSE). This can
be explained in the following way. If a random
element is represented by a region’s average
instead of its true value, an error is made. The
variance of this error is minimized when the
AMSE is minimized. When the regions are
too large to describe the regional variation,
the representation error often becomes large
as does the AMSE. On the other hand, if the
areas are small the average in every region
will be badly estimated. The representation
error and the AMSE will thus be large for this
reason. Somewhere between these two ex-
tremes is the optimal region size. In order to
calculate the AMSE, rough estimates of the
sampling variance and the geographical vari-
ation are used. These can be obtained from
the sample itself or from prior knowledge.

Our approach is similar to those used in the
estimation of probability densities using his-
tograms or kernel estimates (see Devroye and
Gyorfi (1985), Silverman (1986) and Prakasa
and Rao (1983)). Previous articles on optimal
stratification and regionalization have mostly
minimized the variance of the population to-
tal (e.g., Dalenius and Gurney (1951)). Three
other references on related problems are the
domains of study in Cochran (1977), some
work in Matern (1960) and in Ripley (1981).

We mostly discuss geographical regions,

but our results can also be applied to other .

classification schemes like age groups and in-
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come classes. We will, for instance, obtain
optimal classification schemes for the margins
of two-way tables.

Our results must, of course, be modified
for use in practical work. One ought, for in-
stance, to use existing traditional or adminis-
trative regions and boundaries. One should
use prior knowledge on other relevant vari-
ables, like climatic zone or population densi-
ty, when deciding where the actual boundaries
should be drawn. However, we feel that the
derived formulas should be useful as rules of
thumbs or as warnings for when the data are
broken down into too small regions.

In Section 2, the problem is formulated in
mathematical terms. This section also con-
tains the solution in the simple case of a one-
dimensional country. By this we mean an
oblong country, which is so long and narrow
that its width can be neglected. The problem
is formulated in model-based terms, but we
could also have used ordinary design-based
terms. Section 3 contains a thorough discus-
sion of this and of our other assumptions.

In Sections 4-7, the model is developed in
different ways. We consider optimal alloca-
tion in stratified sampling, two and higher
dimensional countries, small area or kernel
estimation and estimation of functions. The
problems of stratified sampling now involves
both the choice of sampling intensities and .
presentation regions simultaneously with the
object of minimizing the AMSE. In the last
case, estimation of functions, the regional fig-
ures are only intermediate results, which will
be used in further calculations by the user of
the statistics.

Sections 4—7 are more technical than Sec-
tions 1-3. We go through a lot of different
cases. In order to make the paper reasonably
short we have omitted some detail and exten-
sive justifications. In places, a full page math-
ematical proof has been replaced by a single-
line verbal explanation. We hope that this will
not cause any serious problems for the reader.
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2. One Dimension
2.1. Formulation

We assume that every element in the pop-
ulation can be associated with a point in the
area of study. In applications, it may be a
person’s home or the point where a thermom-
eter is placed. We use a model-based ap-
proach and assume that the answer from the
individual or the measurement on the element
is a random variable, whose distribution de-
pends on the corresponding point x. The
mean value is /4(x) and the standard deviation
is 0(x). When needed, we assume that 4 and o
are smooth functions with one or two deriv-
atives.

Initially we assume that all elements are
evenly spread over the whole area, i.e., the
corresponding points follow a uniform distri-
bution. We want to estimate h(x) as well as
possible. Let i;(x) denote the estimate for the
region containing x. The mean square error at
point x is a measure of how good the estimate
is at that point. As an overall measure we use
the average mean square error (AMSE)

JTh(x)~h(x)Pdx / [dx,

where the average is taken over all points in
the area. We believe that this is the most nat-
ural choice even though there are other candi-
dates. Thus, our goal is to find the partition
having the smallest AMSE.

In this section we assume that the area is an
interval on the real line. In later sections the
results are generalized to higher dlmensmnal
regions.

2.2.  Solution

Example 2.1. We start by solving our problem
with a very simple case where the mean value
is a straight line 4(x)=a+bx and the variance
o is constant. We let the whole area be the
unit interval and assume that it shall be divid-

ed into equally large regions. We denote the
total sample size by N and shall determine the
number of regions m and the region sample
size n (which equals N/m) in an optimal way.

This example is illustrated in Fig. 1, where
the true mean value A(x) is represented by the
sloping thin line. The thick lines are the true
averages in the regions. The broken lines are
the sample estimates (a realization of the ran-
dom outcome with this sample).

The squared bias due to the use of a con-

stant in each region instead of the line A(x) is

m-1 ({+1)im

s o i1RY, b
Z i/’{ (a+bx a-b - )dx Tt

This is the integrated squared difference be-
tween the thick and thin lines in the figure.
The variance in each region is

n 12nm*

2 2
0+b

The first term here is the common variance of
the mean of n independent random variables.
The second term is included because a ran-
dom element may be located anywhere in the
region. We will call this term the random loca-
tion error. These two terms correspond to the
expected squared distance between the thick
and broken lines in a region in the figure.

Using n=N/m, our total average mean
square error (AMSE) is

b’ o’'m, b
12m* N 12mN (2.1)

Expression (2.1) is minimized for a given N
by

(2N+m)b2 2662)13
m=(gr) ~(Wbi6o - 0
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Thin line: The true mean value

function a+bx.

Thick line: The expected value
a+b (i+1/2)/m,
i=0,..., m—1.

Broken line: The actual value.
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Fig. 1. The simple case with five regions

The number of observations in a region is
n=NIm=~6"|No/b|*>. O

Remark 2.1. The expected mean difference
between two adjacent regions is for this case

bim=oVéln,

where the optimal value of m has been in-
serted.

The standard deviation of the difference be-
tween any two region estimates is

oV2/n.

The coefficient of variation of the difference

between two adjacent regions should thus be
the ratio 1/V3. We see that the optimal re-
gions should be so small that the differences
seldom become statistically significant. O

In practical work the true function h(x) is
seldom a straight line. Example 2.1 can easi-
ly be generalized to general differentiable
curves.

Theorem 2.1. Let h(x) have a continuous
derivative and o(x) be continuous in the area
which is given by (c, ¢ +d). Furthermore, let
the elements be uniformly distributed in the
area and let the loss function be the average
mean square error. If all regions are required
to be equally large, the optimal flumber of



Thorburn: Regional Presentation — Choice of Region Sizes 227

observations in each region is
[6N2[o*(x)dx/d>[(h' (x))*)dx]"* + o(N*?)
as N — o, 2.3)

If the regions are allowed to have different
sizes, the optimal number of observations in
the region containing x is

[6N%62(x)/d*(h' (x))*]"% + o(N*?)
as N — o, 2.4)

Proof: We prove only formula (2.3). Formula
(2.4) is proved along the same lines (c.f. also
the proof of Theorem 4.1.).

The total mean square error is

mel c+(i+dim

T (h(x)-h(x)Pax(1+1)

c+idlm

+f02(x)dx
nd ’ (2.5)

where h(x) is the average value of A(x) in the
interval containing x. The factor (1 + %) is
inserted because the squared bias and the ran-

dom location error are combined here. The
expression (2.5) tends to

%Tf(h'(x))zdx-kkzﬁggx—'m as N — o,

The standard differentiation procedure
proves formula (2.3). |

Remark 2.2. If h(x) has two continuous deriv-
atives, the error term can be replaced by
o(N #) both in formula (2.3) and (2.4). The
error term in the number of regions is then
o(1). O

Remark 2.3. It is easily seen that the random

location error is asymptotically small com-
pared to the squared bias. In the following,
the random location error will sometimes be
omitted without our calling this omission to
the reader’s attention. O

Remark 2.4. The AMSE is usually rather flat
at the minimum and practical considerations
must also be taken into account when decid-
ing the actual number of regions. This means
that the best choice is not always the exact
figure obtained by these formulas. If the num-
ber of regions lies between half and twice this
number, it'is mostly acceptable. On the other
hand, it is seldom justified to have more than
twice the number of regions obtained by the
formulas. O

Example 2.2. A labour force survey is per-
formed in Sweden (Statistics Sweden (1987))
with a sample size of 16 000. The sample is
proportionally allocated to 24 counties. The
unemployment level varied between 0.5%
and 10% in the different counties.

We shall first use the simple model with a
straight line and assume a fixed variance of
0.03, which corresponds to the total unem-
ployment level of around 3%. The optimal
number of regions is calculated to

(16 000-(0.10—0.005)2)“3z 9
6-0.03

A more realistic model is that the unem-
ployment level can be expected to follow
an approximately U-shaped curve like
(22x2— 15x + 3)/100, where x =0 in the south-
ern most part of Sweden and x=1 at the
northern end. This curve was obtained as a
free hand parable through the 24 county fig-
ures from 1985 ordered from south to north.
The model is still unrealistic since we have not
yet discussed how to handle non-uniform pop-
ulations. With this free hand curve, b? is
replaced by [ [h'(x)’dx~0.021 and o® by
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[h(x)(1-h(x))dx~0.027. The optimal num-
ber of equally large regions is then 13.

This substantial change in A(x) resulted on-
ly in a modest change in the optimal number
of regions (c.f. Remark 2.4). A more detailed
curve will only change this result slightly. The
optimal number of regions is in most cases

'fairly insensitive to minor changes in A(x).
This is discussed more in Example 3.1.

Unemployment is usually reported for both
sexes and three age groups. The optimal num-
ber of regions is then decreased by a factor of
6" t0 9, if the differences in size and employ-
ment between the groups are disregarded.

If the regions may have different sizes,
computations based on (2.4) show that the
regions should contain 1250, 1350, 5800,
1400, 1300, 1250, 1250, 1200, and 1200
sampled individuals. The optimal number of
regions is thus nine instead of thirteen. The
reason is that one large region can be made
where the mean value curve, h(x), is flat
(0.16<x<0.52). O

3. Discussion of the Assumptions
3.1. Average mean square error

If an element is taken at random and its value
is represented by the region average, there
will be an error. The size of this error is

h(x) +e(x)-h(x),

where ¢(x) is a random variable with mean
zero and variance o°(x). The variance of this
error is

[(h(x)=h(x))dx+[o*(x)dx.

It is now easily seen that this variance and the
AMSE are minimized simultaneously.

The average mean square error is thus a
natural measure of how close the estimated
and the true curves are. There are other pos-
sible choices. The average mean absolute er-
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ror is less sensitive to large deviations. The
optimal region size increases as N** in that
case too, but it is normally a little larger than
the size given by (2.3).

Another possible criterion is maximum
mean square error which minimizes the mean
square error at its largest point. With this
choice the region sizes are determined by the
part which is most difficult to describe. This
often gives an unnecessarily bad description
in a large part of the total area. However, a
formula corresponding to (2.3) can easily be
derived

n=2N22(x)ld*(h' (x))))"* +o(N*?),

where x, is the point with maximum value of
(h'(x))*-o*(x). With the criterion, maximum
mean square error, it is impossible to derive
an analogy to formula (2.4) for areas of differ-
ent sizes, without further specification, since
the maximum mean square criterion deals on-
ly with the point x,,. With this criterion one has
a wide range of possible region sizes where
these deviations are small.

All criteria so far measure the fit of the level
and not of differences between neighbouring
regions. One criterion that does measure dif-
ferences between adjacent regions is

c+d
—d_ [ (h(x)-h(x-a)-h(x) + h(x-a))dx,
d-a cta
where q is a fixed small number. If & is twice
differentiable, h'(x) is replaced by a-h'’(x) in
the optimal formulae of Theorem 2.1. The
regions should thus be larger if the differences
between points, which are rather close, are
important. This follows from the fact that in
this case a is a small number. However, it is
our experience that the level is always an es-
sential property. Thus this loss function may
possibly be used in combination with the aver-
age mean square error, but may not be used as
the only criterion. -
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Moreover, if one is interested in changes
over time in different regions, our method can
easily be modified. The variance 6%(x) is re-
placed by the variance of the difference which
is 20°(x) if the two samples are independent.
The function A(x) should be replaced by a
guess of the magnitude of the change. For
unemployment statistics, a magnitude pro-
portional to A(x) may be a fair guess. We use
the proportionality factor 0.5, but the choice
should, of course, depend on the time scale.
With this proportionality factor, the optimal
presentation regions become twice as large.
This was to be expected, since larger areas are
usually needed to reveal significant changes.

In many surveys, several variables are pre-
sented simultaneously for the same regions. If
the criterion is a weighted sum of the average
mean square errors, formulas (2.2), (2.3) and
(2.4) can still be used if 6*(x) and (h'(x))* are
replaced by the corresponding weighted
sums. However, we think that it is a better
practice to do the computations separately for
each variable. If the calculations give similar
partitions, anyone of these would seem a sen-
sible choice. If the calculations give different
partitions, then different presentation regions
should be considered for different variables.

There exist other goodness-of-fit criteria
than those mentioned here. But we believe
that the AMSE is a good choice that has most
of the desirable properties.

3.2.  Mean value function

In Theorem 2.1 we assumed that A(x) is abso-
lutely continuous. If it is known that A(x) is
very smooth or even belongs to a certain para-
metric family, one might argue that the data
ought to be presented in a way that reflects
this knowledge rather than as constant aver-
ages in a couple of regions. However, we do
not believe that the user of the statistics would
be interested in the unemployment level given
by a spline function of the latitude and the
longitude. We believe that smoothness prop-

erties may be used in the estimation phase,
but that often regional figures are the only
acceptable presentation form.

If h(x) is not absolutely continuous, the
regions should be smaller. For instance, let
h(x) be a self-similar fractal of dimension p
(Mandelbrot (1983)). This can be interpreted
as saying that i(x) and b”~*h(b(x+a)) have
the same type of irregularities for all positive a
and b. A differentiable function is self-similar
with dimension p = 1.0, a Wiener process with
p=1.5,and white noise with p =2.0. The opti-
mal number of regions is then asymptotically
of the order N*®-%") This can be shown us-
ing the self-similarity property in (2.5).

In practice A(x) is unknown and must be
guessed. This can often be done from previ-
ous knowledge but also from the sample itself.
Theorem 2.1 is fairly robust against misspeci-
fication of A(x). This is illustrated in the fol-
lowing example. It shows that details smaller
than the interval width should not be included
in h(x). Hence, even if the true A(x) is quite
irregular one could safely assume it to be
smooth.

Example 3.1. Consider the labour force sur-
vey once more. Suppose that the true func-
tion is

h(x)=

{ (22x-15x+3+0.3 sin(20mx)), 0.1<x<0.6
(22x-15x + 3 +5in(20nx)), x<0.1 or x>0.6.

The asymptotically optimal formula (2.3)
now gives 13 regions if the age-sex grouping is
considered. The sine curve has a period of 0.1
which means that at least 20 regions are neces-
sary to describe the small fluctuations. Thus
the analysis in Example 2.2 is more adequate.

O

Note that Remark 2.1 for adjacent regions
holds also when formula (2.4) is uset for the
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optimal number of observations in regions of
different sizes. If the regions are chosen so
that the coefficients of variation for the differ-
ences are close to 1/V/3, a reasonable parti-
tioning is obtained.

3.3.  Population distribution

In Theorem 2.1 we assumed that the sampling
points were evenly spread over the whole
area. If the population density p(x) is non-
uniform, the calculations may be changed for
two reasons.

1. The density of the sample can also be p(x).
2. The average mean square error may be
taken over the population rather than the
area,i.e.,

[ (h(x)-h(x))*p(x) dx.
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If both these changes are made (/'(x))? in
formulae (2.3) and (2.4) must be multiplied
by p(x). If only the first change is made and
the initial average mean square error formula
is used, one should divide o(x) by p(x) in
(2.3) and leave (2.4) unchanged.

It is also possible to take into account the
importance of different areas with other
weights than p(x). However, the optimal for-
mula (2.4) will not change at all if this change
is made. The results given in subsequent sec-
tions would change, but we will not discuss
that problem in this paper.

3.4. Nongeographical partitioning and other
estimates than the average

Our methods can be used for other back-
ground variables than geographical regions.

Table 1.  Salary per month (SEK) according to date of birth for JUSEK-members employed
by the public sector (born 1936-1959)

Date of Government Municipalities

birth number median salary number median salary
1936 200 12545

1937 208 12732

1938 195 12350 311 13437
1939 242 12345

1940 247 12796

1941 234 11954 84 13437
1942 329 11493 116 12755
1943 403 11578 123 13085
1944 464 11578 125 12755
1945 434 11178 125 12437
1946 398 10889 121 12153
1947 456 10512 130 11877
1948 391 10325 115 11611
1949 351 10024 100 11115
1950 320 9712 84 10741
1951 269 9380 82 10741
1952 250 9435 55 10225
1953 220 8948 48 10067
1954 218 8807 45 10067
1955 238 8469 44 9789
1956 217 8257 45 9789
1957 226 8257 36 9156
1958 258 8082 30 8876
1959 239 7924 34 8614
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This is best illustrated with an example.

The example will also illustrate that our
method is not confined to estimates of an
average level or proportion. It deals with
monthly salaries and it is well known that the
median works better for that variable, since it
is not so influenced by extreme elements.

Example 3.2. JUSEK, a Swedish labour orga-
nization, produces statistics for its members
on the median monthly salary according to
age (JUSEK (1986)). For governmental em-
ployees the statistics are based on about 300
members in each one year age group with year
of birth between 1936 and 1959. The figures
are given in Table 1.

A rough, data-based estimate for A(x) is
(550+290x) SEK, where x is the age. The
standard deviation of the median can be esti-
mated to be (90x-1800)/u SEK (based on da-
ta not presented here) where u is the number
of persons in that age group. Restricting the
partitioning to regions of equal size, Formula
(2.3) gives the optimal n=265. In other
words, it is quite sensible to report the median
salary for each age group.

JUSEK also reports the monthly salary for
municipal employees in a similar table. In that
table there are only 70 persons in each age
group. The optimal formula now gives the
sample size 165 in the optimal classes. Thus,
that presentation is not adequate. 0

3.5. Finite populations and design-based
versus model-based sampling

To describe a true mean value function as well
as possible, we have used a model-based ap-
proach where the model parameter is the true
value. These methods can be used for finite
populations where the object is to estimate
the average over the whole population. One
must, however, add different corrections for

finite populations to the three components of
the error. In practical examples the method
works well without the correction factor. If
the correction is used when the sampling frac-
tion is 100 % , the minimum is obtained when
m=N. To have as many regions as there are
individuals is, however, not realistic. We re-
commend that the method be used without
corrections even when the sampling fraction is
considerable.

In this paper we used a model for an obser-
vation at a single point. The main reason for
this is mathematical convenience. With in-
tegrals and differentiable functions, all dis-
crete boundary problems can be avoided. But
similar results can also be proved in a classic
design-based case.

Let the total population contain Q objects.
Each object is characterized by its location x;
anditsvalue h,,i=1,2, . . ., Q. As before h(x)
denotes the estimate in the region containing
x. The average mean square error criterion is
in this case

Q A
= (h-h())”

In other words, we want to minimize the
variance of the error that is generated by rep-
resenting the individual values 4, by the corre-
sponding region estimates.

The results in this paper are still approxi-
mately true if all regions are connected (and,
in higher dimensions, convex). The function
h(x) must then be interpreted as a suitable
smooth moving average of the 4;,. With this
interpretation our results are independent of
whether the statistician has used model or
design-based sampling.

4. Stratified sampling

So far, simple random sampling has been used
and the sample size has been fixed. The opti-
mal size of the regions was then derived. It is
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possible to derive similar formulae for other
fixed sampling schemes (e.g., pps or cluster
sampling) and other estimation techniques
(e.g., regression estimates). The derivations
and the results are similar, but the formulae
and notations become more complicated.
Here we will not derive such formulae.

In this section we shall assume that neither
the sampling fractions nor the design are
given. Instead we shall use a flexible strati-
fication scheme. We may change not only the
presentation regions but also the stratum
widths and the sampling fractions. Only the
total sample size N is fixed and we still assume
that the loss function is the AMSE

1
[ (h(x)-h(x))*dx,
0

where I;(x) is the estimated level in the stra-
tum that contains x. For simplicity, and with-
out loss of generality, we assume that the
whole area is the unit interval.

Let m(x) be the number of intervals per
length unit at x and N#(x) be the sampling
intensity. The length of the presentation re-
gion containing x is thus around /m(x). The
optimal function m(x) varies with N, but it will
turn out that m(x)- N~ tends to a limit as
N — . An approximate expression for the
average mean square error is

f(h’(x))2 dx+ a*(x)m(x) dx
12m*(x) Nt(x) 4.1)

with the restriction f(x)dx=1. These terms
correspond to the first two terms in (2.1). This
expression is minimized in the appendix. The
following theorem is obtained.

Theorem 4.1. Let h'(x) and o(x) exist and be
continuous. Let the loss be the average mean
square error. The asymptotic results on the
optimal sampling intensity Nt(x) and the
number of presentation intervals are given
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through

t(x) = ' @) o (x) I |0 ()P0 (7)*dy

and

|h )[*
o (076" ( fl ) o(y)Bdy)®”
O

N m(x)=

Example 4.1. (Continued from Example 2.2.)
Suppose that the unemployment level ap-
proximately follows the model given in Exam-
ple 2.2 with hA(x)= (22x%-15x+3)/100 and
0%(x) = h(x)(1-h(x)). The invariant functions
m(x)N™? and t(x) and the region width
1/m(x) are calculated in Table 2.

Table 2. The optimal asymptotic region size
when h(x) = (22x*~15x +3)/100, N =16 000

Location, x m(x)N? t(x) 1/m(x)
0 0.53 1.19 0.074
0.1 0.45 0.83 0.088
0.2 0.34 0.51 0.118
0.3 0.14 0.24 0.281
0.4 0.19 0.30 0.213
0.5 0.36 0.57 0.110
0.6 0.47 0.90 0.085
0.7 0.55 1.26 0.072
0.8 0.61 1.64 0.065
0.9 0.67 2.03 0.059
1.0 0.72 2.43 0.055

By interpolating in Table 2, we may easily
find that a suitable size of the southern most
stratum is roughly (0, 0.08) with a sample size
of about 16000x0.08x1.1~1400 individu-
als. In this way it is seen that a good partition-
ing is the following (0, 0.08, 0.19, 0.38, 0.50,
0.60,0.68,0.75,0.82,0.88,0.94, 1.00) with 11
regions. The corresponding optimal stratum
sample sizes are 1400, 1200, 1 000, 800, 1150,
1300, 1450, 1750, 1750, 2000, and 2200,
respectively.

These results make sense. It is more effi-
cient to use stratified sampling compared to
simple random sampling. It is thus possible to
get a more informative presentation than in
Example 2.2, where nine intervals were best.

- O
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5. Two or More Dimensions

So far we have considered only one dimen-
sion. It has mostly been a geographical dimen-
sion such as latitude but also non-physical
dimensions such as age (Example 3.2) have
been mentioned. We now turn to two and
more dimensions. When more than two di-
mensions are studied at least one of them
must be non-geographical.

In geographical problems with two dimen-
sions the regions may have any shape. On the
other hand, non-geographical regions are of-
ten one-dimensional and it is natural to use
rectangular regions. The most common exam-
ple is ordinary cross tabulation between two
variables. In this section we first concentrate
onrectangular regions, but in the last theorem
we shall also mention arbitrary shapes.

If only one variable is studied, the optimal
regions will be long bands along the isolines
where h(x) remains constant. In order to par-
tition the country so that the optimal regions
do not form long and narrow bands, we shall
assume that several variables are studied and
shall be presented for the same regions. We
shall assume that there are at least as many
variables as there are dimensions, even
though this restriction is necessary only for
arbitrary shapes.

Example 5.1. Let us first consider the simple
case where k£ mean value functions are each a
linear function of one distinct coordinate on
the k-dimensional unit cube. Furthermore we
also assume that the elements are uniformly
spread in the unit cube. Our objective is to
divide the cube into m;xXm, X ... Xm, rect-
angular areas.

The average mean square error loss func-
tion is

k 2 2
- bl w, 0/ W,
j=1\ 12 j2 k ’
Ni(Ilm,)
i=1 5.1)

where b]., w;, and 0? are the slope, the impor-
tance (weight), and the variance of the jth
variable, respectively. Here we have omitted
the random location error corresponding to
the last term of (2.1) since that term is negli-
gible.

A maximization of (5.1) leads to the opti-
mal number of regions

m.

k
=1 /

]

— gHk+D) (I bf(x)j) 1(k+2) = 0]gwj)-k/(kn) NKk+2)
5.2)

and

m; _ by(w)"
m,  b(w)?’ (5.3)
] JNTT D

The rectangular areas are not optimal, but
may sometimes be natural to use, e.g., in
cross tabulation. It may be shown that in two
dimensions the asymptotically optimal shape
is an affine image of a regular hexagon. In
higher dimensions we believe that the optimal
shape is an affine image of a regular poly-
hedron with k(k+ 1) sides, but we have not
been able to prove that.

Remark 5.1. In Section 2.1 we noted that the
coefficient of variation of the difference be-
tween two one-dimensional adjacent regions
should be 1/V/3. The same result also holds
here if the shapes are rectangular. The coeffi-
cient of variation is slightly smaller for opti-
mal region shapes. |

Example 5.2. All Swedish farms are annually
registered in the Swedish farm register and
classified according to size (Statistics Sweden
(1985)). A transition matrix for flows between
size groups is calculated. -
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In a transition matrix many entries are
reported, so this case is certainly not one-
dimensional. A typical transition probability
may vary between 0.10 in southern Sweden
and 0.15 in northern Sweden. The differences
in the transition probabilities between east
and west can be estimated to about half this
size. There are about 25000 farms in a typical
class. Using the simple formula (5.2) we get
that the optimal number of regions is

(25 000- (0.15-0.10)(0.15—0.10)/2) 2 s
6-(0.125-0.875+0.125-0.875) ’

Statistics Sweden reports transition matrices
for eight production areas. In Remark 2.4 we
said that a ratio in the interval 1/2 to 2 is quite
acceptable. The present partition is thus prob-
ably rather good. O

Formulas (5.2) and (5.3) are generaliza-
tions of Example 2.1. It is also possible to
extend Theorem 2.1 to more general cases.
We still concentrate on rectangular areas and
assume that the elements are uniformly dis-
tributed. The following theorem can easily be
proved in the same way as (5.2) and (5.3).

Theorem 5.1. Let the total region have the
area d and let there be [ variables whose true
values are differentiable functions 4;(x) and
suppose that the variance function of(,g) are
continuous. Further suppose that each mar-
ginal must have a constant interval length. Let
the interval length for the kth marginal be
1/m,.

The optimal number of regions is then
given by

k 1
IIm= (N/(6 > Sg))k/(k+2)(d2HB?)1/(k+2)
j=1"' i=1 ' /

and

m;/m;=B,/B, ,
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where
1 h(X) !
2_ i\2 /)92
B/= El(ff[g—(xj) ] kl;ll dx,)o;
and .
!
=[]0} 1 deo,. 0

It is possible to generalize this result to rectan-
gular areas where the marginals may have
varying interval lengths. We will not do so.
Instead we will state Theorem 5.2, which is a
generalization of Theorem 4.1. Theorem 4.1
treated stratified sampling with varying
probabilities from a population which was
uniformly spread over the whole area. The
proof of Theorem 5.2 is omitted but can be
performed along the same lines as in the Ap-
pendix, but it is more intricate.

Theorem 5.2. Suppose that a survey shall
measure [ variables on a k-dimensional
background space with the area d (I=k).
The observation of variable i at location
x=(x;, ..., x;) is a random variable with a
differentiable mean 4,(x) and variance oX(x).
The loss function is

S, k@)~ (0 Pdx.

The asymptotically optimal sampling inten-
sity, Nt(x), is given by
) = 4 (B0 00
7 J1detH@)"0 (S0 7(w)* ¢ Ody”

where |detH(x)| is the absolute determinant
of a matrix H(x) with the element at place p, g
equal to

i ox, Ox,
The asymptotically optimal number of pre-
sentation regions per unit area is
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|detH (x)|¥4+0

( N )2k/(4+k)
mx) = dc,

where c, is a constant depending on the shape
of the region. When we restrict ourselves to
rectangles or generalized parallel epipeds its
value is 6. The optimal value of c, is 18 V/3/5.
It is also true that

k+2(__(k2)~ [(k+1)R)kn 2k
6<c, <t-—= 2
Ck 2 (7\2 )

for the optimal ¢, (k>1), where [-] denotes
the integer part. O

Theorem 5.2 seems to model a more rea-
listic case than Theorem 5.1. However, it is
more difficult to use and larger samples are
needed before the asymptotics work. It is also
seen that the formal gain with nonrectangular
shapes is small for all dimensions encountered
in practice.

Theorem 5.1 is probably too simple for
many cases where the elements are not uni-
formly distributed and where the variances
and derivatives vary considerably. It is, of
course, possible to derive theorems corre-
sponding to most practical situations. We be-
lieve that in many situations where several
variables are encountered, it is not evident
that all variables should be presented for the
same regions. Thus we believe that rectan-
gular areas often are sufficient, but that the
sizes of the rectangles may vary considerably
between different parts of the area and differ-
ent variables.

6. Smoothing Between Small
Regions—Kernel Estimators

Adjacent

When the regions are small it is often possible
to improve the estimators by using adjacent

[?wjol({)]k/@-i-k) [fldetH(,X)Ill(4+k) (§(Dj0,]?(x))2/(4+k)dx]2/(4+k)

regions. If the function A(x) is smooth it may

. be a good idea to incorporate the sampled

elements from adjacent regions in the estima-
tors but with smaller weights. This technique
is called kernel estimation and is sometimes
used in small area estimation.

In this section we shall only consider the
very simple one-dimensional case on the in-
terval (0,1) where statistics are reported for
the intervals (i/m, (i +1)/m). The estimates for
these regions are the simple averages over the
interval ((i-p)/m, (i+p+1)m). (In this sim-
ple example we neglect all boundary effects.)
The mean value function is assumed to be
h(x).

The average mean square error is given by

m-1 (@ Dim (i+p+1)m 2
Eo ,f/m (hx)- 21,’_:11 (i—{))/m h(z)dz) dx
m ) m-1 m (i+p+1)im
+X/_(2PT1)[0 " ,'=20 2p+1 (i—;;/)‘/m (h(x)

(i+p+1)m
Iz '+ (f—{)/m ey ds). (6.1)

The last term corresponding to the random
location error is, as usual, negligible com-
pared to the random reporting error. The ex-
pression within brackets in the first term can
be written

[{h()=h((i + 1/2)Im)} + {h((i + 1/2)/m)

(i+p+1)m
- [ h@adn).

(i-p)im -
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Expanding h(x) in a Taylor series using only
first order terms in the first part and second
order terms in the second part gives after
some calculation that (6.1) is approximately
equal to

41
= f 0o+ L [
(8] m
N(2p+1) (6.2)

This expression is maximized for fixed N by

_ 144¢°
(2p -+ Dim=( Nf(h"(;))fdx " 63

with m as large as possible, for instance N %3 or
N°8. The width of the wider intervals should
thus decrease as N2,

This expression is based on the fact that all
regions are equally long. However, the
asymptotic order will be the same if the re-
gions may have different lengths, if the vari-
ance o° may vary in the interval, and if strat-
ified sampling is allowed. The relevant
formulas can in that case be shown to be

m(x) _ |h/r(x)|4/9Nl/5
2p(x)  144%(a(x)(f11" 0) o) dy) "

and

|h' r(x)|2/9o(x)8/9

) ) Pty Py

where p(x) and m(x) are the obvious general-
izations of p and m when they are allowed to
depend on x.

These results are further improved if dis-
tant observations carry less weight than obser-
vations close to each other, i.e., more bell-
shaped kernéls are used instead of

K(x)={1/2 iy <1
0 if |x|=1,

which was used in (6.1).
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These one-dimensional results can be gen-
eralized to k dimensions with rectangular
areas in the same way as in previous sections.
One must, however, remember that the
boundary effects seldom may be totally
neglected, since formula (6.3) often give
large values for (2p +1)/m.

7. Estimation of Functions
7.1. General

If one is interested only in a total figure for the
whole population, there is no need to report
statistics for regions. Sometimes, however, it
is better to use regions in the calculations and
to sum the figures in the final report. This can
be illustrated by an example.

Example 7.1. Suppose that we want to make
forecasts using a Markov chain technique.
The forecast for the total region is XP”, where
X is a row vector with the observed numbers
in each state, P is the observed transition ma-
trix for the whole country based on previous
years, and T is the time horizon of the fore-
cast. If the forecast is based on m regions,

the formula will be 2 X,P, where P,

is the observed matrices for the regions. We
will see that this expression sometimes yields
a smaller mean square error than XP”. O

In other words, we want to estimate
f g(h(x))dx with mean square loss, where gis a
known function and where an observation at
point x gives the results 4(x) plus a random
quantity.

7.2. One-dimensional regions

Suppose that the expected value is h(x) for
elements observed at the point x and that the
variance is 6. We shall estimate the integral

1
'g g(h(x))dx, where g is a twice differentiable
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1 m-1
o = 8(z) where Z; is
i=0

the mean of the observations in the region
- (@i/m, (i+ 1)/m).
The mean square error is given by

function, by the sum

1
(E[E [ g(h(x))dx-Zg(2)])?
0

+3 Var[g(z;)/m]

. [G+))im _
z{z%g"az(#))[ I hx)-hydx

. 2
+%Var(z,~>]}2+2;12g'(h(#))2 o,

(i+1)/m
f h(x)dx. To obtain

ilm

where h,=E(z)=m

this approximate equality, g(x) was expanded
in a Taylor series with second order terms.
After approximating also A(x) and perform-
ing the integral we get

1, i |W&)? o’m
{Eﬂg (h(m))[ o +7]}2

+Zlg G

1
— ’ ’ 2 1
~[{ 8" (h()( () dv, —

1 2
+ {g"(mx))dx‘%’" (@' () Px S,

2
_ ﬁ_,_sz ﬁ
N N’ (7.1)

Note here that the first term of (7.1) corre-

sponds to the square of the ordinary AMSE
which was introduced in Section 2 when g'’(x)
is a constant (i.e., if g is a second order poly-
nomial).

If the number of regions increases with a
rate between N* and N'?, the second term
will dominate asymptotically. All such choices
will thus lead to asymptotically optimal solu-
tions. This holds in particular for formulas
(2.2)-(2.4). It is also possible to generalize
the results of Section 6 to this problem.

7.3 Two or more dimensional regions

In the previous subsection, the number of
regions could vary considerably without af-
fecting the asymptotic optimality. This result
is special to one-dimensional problems. In the
simple case with a function of k independent
variables and rectangular regions, the formu-
la corresponding to (5.1) is

k
R IIm. K
(= £12+Kp__'_"_1)2+_0 i
i=1 M N N (7.2)
where K|, ..., K|, Kp’ and K, are constants

which can be expressed in g, h;, and o,
i=1,..., k. Thefirst term here is the square of
the ordinary AMSE given by formula (5.1) for
a suitable choice of g.

If k=2 and if the m, are chosen optimally
the first and second terms of (7.2) are of the
same order. If k>2 the first term dominates
asymptotically. The optimal number of re-
gions are in both cases proportional to N kitk+2)
which corresponds to (5.2) These results on
the asymptotic order hold also for other cases,
such as non-rectangular regions or stratified
sampling with varying shapes and sizes. Let us
collect our results so far in a theorem.

Theorem 7.1. Suppose that we shall estimate
[e(h(x))dx by —;I—Zg(z’,) where Z, is the

mean of the observations in the ith of m re-
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gions. If g is twice differentiable and 4 contin-
uous the optimal region sizes in Theorems
2.1, 3.1, 5.1, and 5.2 are still asymptotically
optimal for this estimation problem. a

Remark 7.1. We noted above that in one di-
mension all solutions with rate increases be-
tween N2 and N'* are asymptotically opti-
mal. In higher dimensions the optimal sizes
are essentially unique. d

Remark 7.2.In Section 6 we found that
smoothed or kernel estimates improved the
average mean square error. When estimating
functions, as we do here, kernel estimates are
unnecessary in one-dimensional problems,
since the error is determined by the last term
of (7.2). In higher dimensions, however, they
can improve the mean square error. Instead of
minimizing (7.2), the following formula
should then be minimized

k 4
(% CP, L Cmip G
i, m! NIIP,’ N

where Cy, .. ., C,, C,, and C, are constants. If
this expression is minimized, the sizes,
I1(2p + 1)/m,, of the regions are of the order
NXk+9 “The order of the first terms of the
mean square error are then N This is
smaller than N™', as long as the number of
dimensions is smaller than four.

One might believe that kernel estimates
are not useful in this context since estimates
from adjacent areas are added anyway. As we
noticed above, the asymptotic mean square
error is of the order N™#**2 without kernel
estimates when k is at least 2. For kernel
estimates, the corresponding error is
Nin8k+9) \When there are more than two
dimensions, the gain with smoothed estimates
is substantial. O
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Example 7.2. (Continued from Examples 5.2
and 7.1.) Suppose that one wants to forecast
the Swedish farm structure using the forecast

m
S X,P, where X, is the actual structure this
i=1
year and P, the observed transition matrix.
The forecast is linear in X, but non-linear in Pi,
so the situation in this section applies.
Sweden is rather oblong, which means
that the problem is essentially one-dimension-
al. The number of regions can thus vary within
wide limits. When T is two, the function g is
second order and the first term of (7.1) is
proportional to the square of (2.1). If the
appropriate values are inserted into the opti-
mal function (2.2), it is seen that between 5
and 10 regions are suitable. If the problem
was considered two-dimensional the same
number of regions would follow from Exam-
ple 5.2. O

8. Final Comments

We have developed a method of finding the
optimal number of regions that describe as
well as possible the geographical variation.

To give the best description of the regional
variation the number of regions should in-
crease with the sample size. If the region or
stratum is k-dimensional, the number of re-
gions should increase as N kIk+2) (Section 5).
For example, if the sample size in a two-
dimensional problem is doubled, the optimal
number of regions only increases by 41%.
This result holds true when simple random
sampling, optimal stratification or other sam-
pling plans are used even though the propor-
tionality factor varies.

Although the formulas are asymptotic in
nature, the results work fairly well for the
sample sizes of most surveys. For one or two
dimensions it is seldom justified to use more
than twice the number given by the optimal

-
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formula. However, when partitioning after
many background variables, the boundary
problems may become serious. In those cases,
both three and even four times as many re-
gions may be good for common sample sizes.
But the boundary problem may have the op-
posite effect too, so the best number may be
only one third of that given by the formula.

We have calculated the optimal number of
regions for many surveys. Some examples
were given in this article where the optimal
value agreed fairly well with that actually
used. We have also identified many surveys

where there obviously were too many regions,
but these examples have not been discussed
here.

In this paper, we have generalized the
method in a number of ways. Other possible
generalizations remain to be done. We have
not discussed what to do when supplementary
information exists as in ratio or regression
estimates. Another problem is the general-
ization of Sections 6 and 7 to macro databases
where the regions are not used by themselves
but as buildingstones in larger regions spec-
ified by different users.

Appendix 1
)2 2
The minimization of (A (J;)) dx+ f o~ (x)m(x) dx subject to the restriction f t(x)dx=1.
12m~(x) Nt(x)

It is well-known that in optimal allocation ¢(x) = o(x) Vm(x)/ f o/(y)yVm(y)dy.

It remains now to minimize

[ (n'(x))’

o ()dx+ (f(O(y) Vim(y))dy)*.

(A1)

Using variational calculus we differentiate with respect to m(x) (x€(0,1)) and get

o’ (x))
6m’(x)

— f0(y)\/ m(y)dy-o(x)/Vm(x).

If this is set equal to zero, we get
N(h'(x))?

2 _
") S TPV dy-0 (o)
and
O(X) m(x _ Nl/Slh/(x)|2/50(x)4/5

6"(fo(y) Vm(y)dy)"”

(A2)

(A3)
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An integration shows that

(o) VimGdy)™ = ’6V—,': [1h ()5 o(y)*dy.
When this is inserted into (A1) and (A3) we get
m(x)= N1/3~|h’(x)|4/5
o,(x)2/561/3(f|h1(y)|2/5(0(y))4/5dy)1/3

and
PN © (6

JIR )P (a(y))*dy

Differentiating Formula (A2) once more gives

YL o) Vimady o) m(x)

2m'(x) 2N
1 (K@) 1
2m(x) di ) N [o()Vm(y)dy - o(x)/ Vm(x)] + ——=-
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(A4)

(AS)

S @)’
12m(x )

The inequality follows from (A2) which is set equal to zero.

This shows that (A4) and (AS5) give the unique minimum.
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