
Rejoinder

Jan F. Bjørnstad

I would like to thank the discussants for many insightful and constructive comments,

definitely enlarging the scope of my article. Especially, I find the many suggestions for

future research relevant and interesting. In this rejoinder I will concern myself only with

comments about multiple imputation (MI) methods as such. Some comments deal with

situations where there is doubt about the appropriateness of using MI at all in estimating

variances and constructing confidence intervals. This can obviously happen, but since the

article is only concerned with cases where imputation is used to handle nonresponse and

repeated imputations are feasible and can be applied, I shall only discuss such cases in this

rejoinder.

Skinner describes in a very clear way the problems with different approaches using MI

in official statistics, referring to several interesting additional articles. Skinner points out

the important fact that using Rubin’s combination formula may lead to biased variance

estimation even with Bayesian MI for some estimation problems that may be of interest in

official statistics, for example domain estimation as shown by Kim, Brick, Fuller, and

Kalton (2006). This underlines even more so the need for adjusting Rubin’s formula with

regard to the specific estimation problem at hand.

One important comment by Skinner concerns Section 6 and the Theorem. As mentioned

earlier in Section 6, I am only considering the MCAR case and hot-deck imputation, which

comprise the simplest situation in order to categorize when it is possible to use k as the

inverse of the response rate. I should have stated these two assumptions in the Theorem as

well to avoid any misunderstanding. I regard this result more as an illustration of how to

approach the problem mentioned in the title of Section 6. As mentioned by Skinner, a

number of dimensions of generality would certainly be useful to research further regarding

this issue. In the last paragraph Skinner points the way to future possible research and

makes several important points with which I agree.

Skinner mentions the need to compare this non-Bayesian MI method to alternative

methods for variance estimation with imputed data. I think it is especially interesting to

make a comparison with resampling methods for single imputation since that is the typical

case in many NSIs. Münnich discusses the practical issue of computational burden,

important in large-scale surveys, and shows that it is possible to reduce the computational

burden by a significant amount by using the non-Bayesian MI method instead of more

direct bootstrap methods for single imputation.

An essential point discussed by Münnich concerns the sensitivity of the variance

inflation constant k, whether one can apply the MI method to a set of estimators

simultaneously based on one overall constant for a given problem and m data sets.
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This problem is addressed in Section 6 in the simplest case. The simulation study by

Münnich to address this problem in a realistic survey, using two hot-deck methods, is very

interesting. Münnich is able to show that, with a calibration estimator, it is indeed possible

to use k ¼ 1=ð1 2 f Þ for more complicated cases and estimators than considered in

Section 6. In the survey presented by Münnich 1=ð1 2 f Þ ¼ 1:33 while the k-value from

Formula (5), kopt, for the six different situations, lies between 1.25 and 1.43. In four cases

kopt is less than 1.33. In fact, since the ratio kopt/k lies in the interval (0.94, 1.07) for all six

cases, one would expect that with the simple 1=ð1 2 f Þ, the MI method would give quite a

good approximation of the standard error for the calibration estimator. The two cases,

where kopt is larger than 1.33, deals with a more heterogeneous population than in the other

four cases. This is to be expected, since using 1=ð1 2 f Þ as a measure of missing

information is better suited for homogeneous populations.

The study by Münnich is encouraging for the non-Bayesian MI approach and it may

seem that in many complicated situations one can use k ¼ 1=ð1 2 f Þ when using a “good”

estimator. On the other hand, using an estimator like the Horvitz-Thompson estimator,

Münnich shows that this simple value of k is inappropriate. So the issue should certainly be

studied further.

An important point made by Chambers is that the variance formula (1) is variable

specific, in that k will depend on the response rate for the specific variable or something

similar. This cannot be avoided with non-Bayesian imputations. So a secondary analyst

needs this variable specific information when imputations are nonproper. Chambers also

mentions the fact that NSIs mostly use single imputation strategies and one has to work out

the actual variance and variance estimate. This is, of course, correct and the point of

combining several imputed data sets by standard analyses is exactly that, there is then no

need to work out the actual variance for the imputed estimator. One has a simple

“bootstrap” type method of variance estimation. So the recommendation to NSIs should be

to use MI when feasible in order to do valid statistical analysis.

I agree with Chambers’s contention that most nonresponse mechanisms are MAR

(at best) and that there is a need for a general development of this case, even though

Section 5 deals with four specific MAR cases.

Laaksonen gives a good description of the current state of affairs at NSIs with respect to

MI and the problem of finding good single imputation methods. As he correctly points out,

the difficult and most important task is to create imputations that reduce nonresponse bias

and display variability close to the true one, before attempting to repeat the imputations.

Laaksonen mentions that one reason that MI is not used in NSIs is that it is difficult to

find any good imputation method for many practical situations. This is, of course, true

regarding unit nonresponse which is typically handled by weighting approaches like

poststratification and calibration. For item nonresponse, however, I do believe that most

NSIs use some sort of imputation even though it may be a rather simple method like

stratified hot-deck or nearest neighbour imputation. Then non-Bayesian MI gives us a way

to estimate the variance that includes uncertainty due to imputation.

An important issue raised by Laaksonen is how to make imputations in such a way that k

is easily determined. For example, for the simple k being the inverse of the response rate,

what kind of imputations would be “correct?” The Theorem in Section 6 says that hot-deck

typically is OK in the case of nonresponse being MCAR, but we also have the same k for
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the residual hot-deck imputation under the ratio model in Section 3.2. So the result in

Section 6 can be generalized. As also mentioned by Skinner and Münnich, this type of

problem should be an important task for future research.

Laaksonen presents two interesting examples. The case with the continuous variable

seems to show, if the imputation-based estimates and reweighted estimates are comparable,

that for the type of nearest neighbour imputation methods used here, k should be larger than

the inverse of the response rate.

The second example concerns binary variables with nonignorable response mechanism.

It is a case of follow-up sampling with no nonresponse at the second phase and can be

described as follows.

A simple random sample of size n from a finite population of size N is assumed. The

variable of interest y is binary, 0 or 1, with u being the “success” rate in the population,

u ¼
PN

i¼1yi=N. Nonignorable response mechanism is assumed; the response indicators Ri

are independent and the probability of response is assumed to depend on the y-value. Let

p1 ¼ PðRi ¼ 1jyi ¼ 1Þ and p0 ¼ PðRi ¼ 1jyi ¼ 0Þ. The response sample is sr with size nr

and the observed sample mean is �yr. At the second phase we take a follow-up sample sf of

the nonrespondents; a simple random sample of size nf. It is assumed that there is no

nonresponse in the follow-up sample. Let �yf be the sample mean in the follow-up. Now the

nonresponse rate is equal to f ¼ ðn 2 nrÞ=n. The “response rate” in the follow-up is given

by nf =ðn 2 nrÞ. Let the corresponding planned “nonresponse rate” among the missing

observations at the first phase be denoted by f mis ¼ 1 2 nf =ðn 2 nrÞ. The imputation

method is hot-deck from the follow-up sample. That is for each unit i outside the follow-up

sample the imputed value y*
i is drawn at random from respondents of the second phase

sample.

Laaksonen lets k be 1=ð1 2 f Þ. However, as will be shown, for this case we in fact have

k ¼
n 2 nr

nf

¼
1

1 2 f mis

ðIÞ

This result holds both for the design-based and model-based approach. In the example

given by Laaksonen, f ¼ 1=3 and f mis ¼ 0:6 such that 1=ð1 2 f Þ ¼ 1:5 while the correct

value of k is 1=ð1 2 0:6Þ ¼ 2:5. This means that the estimated variance of �u* should

be about 6,600 with SE ¼ 81:2 compared to Rubin’s method which gives an estimated

SE-value of 73.5. With k ¼ 1:5, SE ¼ 76:2.

Proof of (I), Design Approach

In this case, the basic estimator is û ¼ �ys ¼
P

s yi=n and the imputed estimator is given by

û* ¼ {nr �yr þ nf �yf þ ðn 2 nr 2 nf Þ�y
*}=n

where �y* ¼
P

s2sr2sf
y*

i =ðn 2 nr 2 nf Þ. Clearly, EðY*
i jyobsÞ ¼ �yf and VarðY*

i jyobsÞ ¼

�yf ð1 2 �yf Þ. It follows that Eðû*jyobsÞ ¼ {nr �yr þ ðn 2 nrÞ�yf }=n and Varðû*jyobsÞ ¼

ðn 2 nr 2 nf Þ�yf ð1 2 �yf Þ=n2.
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Conditional on (s,sr), sf is a simple random sample from (s 2 sr). Hence, with

�ymis ¼
P

s2sr
yi=ðn 2 nrÞ, then

E{ðn 2 nrÞ�yf js; sr} ¼ ðn 2 nrÞ�ymis and

Varð�yf js; srÞ ¼
�ymisð1 2 �ymisÞ

nf

·
n 2 nr 2 nf

n 2 nr 2 1
<

�ymisð1 2 �ymisÞ

nf

·f mis

We see that û* is unbiased: Eðû*Þ ¼ n21EE{nr �yr þ ðn 2 nrÞ�yf js; sr} ¼ Eð�ysÞ ¼ u.

This also means that (3) is satisfied, since V̂* ¼ û*ð1 2 û*Þð1 2 n
N
Þ=n and VarðûÞ ¼

uð1 2 uÞð1 2 n
N
Þ=n: The terms in Formula (5) needed to determine k are now

ðiÞ VarEðû*jYobsÞ ¼ n22½VarE{nr �yr þ ðn 2 nrÞ�yf js; sr} þ EVar{nr �yr

þðn 2 nrÞ�yf js; sr}� < VarðûÞ þ n22E{ðn 2 nrÞ�ymisð1 2 �ymisÞf mis=ð1 2 f misÞ}

ðiiÞ EVarðû*jYobsÞ ¼ n22E{ðn 2 nrÞf mis �yf ð1 2 �yf Þ}

¼ n22EE{ðn 2 nrÞf mis �yf

ð1 2 �yf Þjs; sr} < n22E{ðn 2 nrÞ�ymisð1 2 �ymisÞf mis}

It follows from Formula (5) that we can use k ¼ 1=ð1 2 f misÞ.

Proof of (I), Model-based Approach

Model assumption: u ¼ PðYi ¼ 1Þ and the Yi’s are independent. In the model-based

approach the statistical analysis is conditional on s. Now u ¼ EðT=NÞ, with T ¼
PN

i¼1Yi,

is to be estimated. Now, VarðûÞ ¼ uð1 2 uÞ=n: V̂ ¼ ûð1 2 ûÞ=n and V̂* ¼ û*ð1 2 û*Þ=n.

Eðû*Þ ¼ n21
X

s

EðRiYiÞ þ E{ðn 2 nrÞ �Yf }

" #
¼ n21 nup1 þ E{ðn 2 nrÞEð �Yf jnrÞ}

� �
Let p ¼ PðRi ¼ 1Þ ¼ up1 þ ð1 2 uÞp0. Then the Ri’s are Bernoulli variables (n, p). This

implies that

PðRi ¼ 1jnrÞ ¼ nr=n. Let Ii be the indicator for the second phase sample sf. Then

Eð �Yf jnrÞ ¼ n21
f E

X
s

Iið12RiÞYijnr

 !
¼ n21

f nPðIi ¼ 1jnrÞPðRi ¼ 0jnrÞPðYi ¼ 1jRi ¼ 0Þ

Let PðYi ¼ 1jRi ¼ 0Þ ¼ uð12p1Þ=ð12pÞ ¼ u0. Then we see that

Eð �Yf jnrÞ¼n21
f n

nf

n2nr

·
n2nr

n
u0 ¼u0 )E{ðn2nrÞEð �Yf jnrÞ}¼u0ðn2npÞ¼nuð12p1Þ

and Eðû*Þ¼u: This also means that (3) holds. It is readily seen that

EVarðû*jYobsÞ¼n22E{ðn2nr 2nf Þ �Yf ð12 �Yf Þ}

¼n22EE{ðn2nrÞf mis
�Yf ð12 �Yf Þjnr}<n22u0ð12u0ÞE{ðn2nrÞf mis}
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It can be shown that Covð �Yr; �Yf jnrÞ¼Covð �Yr; �YmisjnrÞ¼0: Moreover, Eð �Yf jnrÞ¼

Eð �YmisjnrÞ¼u0: Then

VarEðû*jYobsÞ2Varð �YsÞ¼n22E ðn2nrÞ
2{Varð �Yf jnrÞ2Varð �YmisjnrÞ}

� �
Now, it is easily shown that Varð �Yf jnrÞ¼u0ð12u0Þ=nf and

Varð �YmisjnrÞ¼u0ð12u0Þ= ðn2nrÞ:

It follows that VarEðû*jYobsÞ2 Varð �YsÞ ¼ n22u0ð1 2 u0ÞE ðn 2 nrÞf mis=ð1 2 f misÞ
� �

.

From Formula (5) we find that

EðkÞ <
n22u0ð1 2 u0ÞE{ðn 2 nrÞf mis=ð1 2 f misÞ}

n22u0ð1 2 u0ÞE{ðn 2 nrÞf mis}
< E{1=ð1 2 f misÞ} q:e:d: for ðIÞ

A major part of Thorburn’s discussion compares the suggested MI approach to Rubin’s

MI method. The main purpose of my article is to give an alternative approach when

Rubin’s method is not applicable. I think I make that very clear in Section 1 of the article. In

this regard we note, as mentioned by Skinner, that even with Bayesian imputations Rubin’s

combination formula may lead to biased variance estimation. Therefore, comparisons with

Rubin’s method are not very relevant when it comes to evaluating the suggested approach

in this article. As mentioned by other discussants, it is, however, important in future

research to assess the applicability and performance of this non-Bayesian MI approach

and make comparisons with other non-Bayesian variance estimation approaches.

The article deals with situations where imputations are the preferred approach to

handling nonresponse. Typically, unit nonresponse is treated with weighting methods

while imputations are used for item nonresponse. Therefore, it is a misunderstanding when

Thorburn claims that the article only considers unit nonresponse. In fact, the article deals

mainly with item nonresponse in the sense that unit nonresponse would require

simultaneous imputations for all variables in the survey.

In official statistics, imputation is typically done to fill in the missing holes in the

data matrix of respondents. Some kind of stratified hot-deck or neighbour imputation

are the most common imputation methods, implicitly assuming an MAR response

mechanism. Weighting procedures are not really alternative approaches to imputation, but

may instead be the full sample estimator. For example, a post-stratified estimator can be a

basis estimator û for the imputation-based estimator û*, see e.g., Belsby, Bjørnstad, and

Zhang (2005).

Thorburn makes several interesting points about Rubin’s MI method in his Section 3.

However, it is not correct that in hypothesis testing you get the correct p-value by taking

the average of the m p-values. Even with Bayesian MI each complete sample does not

display sufficient variation, resulting in p-values that are too small. See e.g., Li,

Raghunathan, and Rubin (1991) and Pedlow and Meng (1994). The same happens, of

course, in non-Bayesian MI. One simply has to do one hypothesis test on the m combined

data sets using (5) to determine the correct standard error.

Thorburn discusses in his Section 4.1 the same type of sampling and nonresponse

mechanism as Laaksonen. So Formula (I) in this rejoinder is here the correct value of k in

the case of binary variables. Note that (I) holds also for continuous variables, provided (3)

holds.
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Regarding the issue in Section 6 of the article, for the two estimation problems

considered by Thorburn in Section 4.4 we note that k ¼ 1=ð1 2 f Þ for both estimands in

the case of hot-deck imputation. The value 1=ð1 2 f XÞ for the first estimation problem is

when we use residual hot-deck imputation. This notwithstanding, the point made is

important. The value of k may differ for different estimands and, as mentioned earlier, this

issue should be studied further.

In Section 5.3 of his discussion, Thorburn observes what the covariance matrix of the

imputed values needs to be in order to use Rubin’s combination formula. This can be

achieved by drawing from Bayes posterior or using methods like the MV method

suggested by Rubin and Schenker (1986). Of course, a regular hot-deck method does not

achieve this. However, also the suggestion by Thorburn does not work when it comes to

achieving the desired covariance matrix. In fact, it does not make any sense since it

requires that the response sample and nonresponse sample be of the same size and even

then it does not achieve the desired covariance matrix. However, the following

imputations will work, letting �Y0
i be the hot-deck values from Example 3.1,

Y
*

i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nr=ðnr 2 1Þ

p
{Y 0

i þ �yr 2 ð1 þ
ffiffiffiffiffiffiffiffiffi
n=nr

p
Þ �Y 0} where �Y 0 ¼

X
s2sr

Y 0
i=ðn 2 nrÞ

Mass imputation is mentioned as a possible area for multiple imputation. First of all, I

think a better term is mass prediction, since each value outside the sample is given

a predicted value. Clearly, this is not feasible in most surveys by NSIs. Moreover, the

question really is whether it is desirable to do multiple predictions for units outside

the sample. One should keep in mind that the multiple imputations are done to handle

uncertainty due to item nonresponse in the sample. Also it may cause complications that

the conditional distribution for the values outside the sample, given the observed data, is

typically not the same as for the missing data in the sample.

In order to develop a theory for non-Bayesian MI it is natural to start by studying the

problem with simple response mechanisms such as MCAR and MAR even though, as

Thorburn mentions, valid statistical analyses can be performed by ignoring the missing

values in these cases. In fact, the MI method for such simple cases may serve as a valid

approximate method for more complicated situations as shown in the Comment by

Münnich. It is also important to note that imputation is common in survey practice –: for

example in surveys done by NSIs imputation is typically done to achieve a complete units-

by-variables data matrix for all survey variables. Hence, one needs to develop statistical

methods that take into consideration imputation uncertainty whether or not the assumed

response mechanism is ignorable. The analyst can then, with a valid MI procedure,

combine standard statistical analyses on the complete data sets. Being able to use standard

statistical analysis was historically one important reason for imputing for missing data

(see e.g., Scheuren 2005), and achieving valid inference with standard methods was, of

course, also the main reason for developing the Bayesian MI method.

Thorburn draws attention to several interesting areas not discussed in the article, like

multivariate imputations preserving covariance structure and imputations for item

nonresponse using other survey variables that also may be missing, as auxiliary variables.

These are certainly important cases for future studies.
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