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Rejoinder
Robert B. Cleveland, William S. Cleveland, Jean E. McRae and Irma Terpenning

1. Additions to STL

We are very impressed with the energy with
which the discussants probed STL and com-
pared it to other procedures. Based on these
discussions and our own thoughts we now
have a list of features — some of them “bells
and whistles” as Trewin aptly puts it — that
we would like to see added to STL. The list
will be given at the end of our rejoinder. We
hope that researchers in the seasonal adjust-
ment community will involve themselves in
these additions, just as a number of the
discussants already have done.

Nothing in the discussions leads us to
believe that the fundamental ideas of STL
are unsound. These fundamentals are

® basing all smoothing (with the excep-

tion of three equal-weight moving
averages) on loess

® basing the robust estimation on iter-

ated weighted least squares

® using the backfitting algorithm, as

X-11 does, to iterate between seasonal
and trend smoothings

® providing for seasonal cycles of any
length period, for missing values, and
for a wide and nearly continuous range
of amounts of smoothing of the trend
and seasonal components
® keeping the system as simple as possible
® designing the software in a modular,
easy-to-alter fashion.
Comments of discussants that indicated dis-
pleasure with performance characteristics
can be addressed either by using STL in
a different way or by using some of the
additions on our list.

2. Open and Closed Systems

Changing STL or adding to it is straightfor-
ward because it is an open system: one that
can be readily understood and altered if
necessary. When STL does not perform as
desired in some application, it often is poss-
ible to diagnose the problem and find a
solution. Furthermore, software imple-
mentations can have a simple, modular
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structure, so modifying or adding to STL
software is straightforward.

By comparison, X-11 is a closed system.
It is so complicated that it is exceedingly
difficult to understand its properties and
determine solutions to problems. In fact, we
conjecture that very few who use X-11
understand fully the details of how it works;
we base this on our own experiences and
interactions with others in the field. Further-
more, even if one had a solution to a problem
of X-11 that affected its internal workings,
implementing it in the current code would
be exceedingly difficult.

The problem with a closed system, even if
it works reasonably well, is that it stifles
progress. The only movement forward can
occur by treating it as a black box and
embedding it in other systems as a unit. The
great progress forward of X-11 ARIMA is
an example. X-11 has forced an intellectual
poverty on us in which our only option is to
compare it with other ideas through pure
empiricism. While empiricism is an import-
ant part of any field, having little ability to
reason theoretically makes improvement
difficult.

Unfortunately, some of the discussants
seem to have viewed STL as a closed system,
perhaps conditioned by extensive exposure
to X-11. Instead of viewing STL as a set of
basic ideas, with details to be viewed flexibly
and changed as needed, there was a tend-
ency to view STL as a set of immutable
details incapable of allowing alteration or
experimentation. The next section docu-
ments the chief example.

3. There is No Such Thing as THE Trend
Estimate of STL

Several discussants (Gray and Thomson,
‘Wallgren and Wallgren, and Ozaki) viewed
the trend component produced by STL with
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the default value of n, as something to be
used as a descriptor of trend-cycle. Such a
procedure cannot work. First, the purpose
of the default value is simply a technical
choice to keep the trend and seasonal from
competing for the same variation in the
series. Getting a desirable trend-cycle com-
ponent requires a trend post-smoothing:
subtract the STL seasonal component and
then use the basic loess smoother on the
residuals to get a desirable description of
trend-cycle. A default parameter for trend
smoothing cannot provide a general sol-
ution because just what variation should go
into the trend-cycle depends on the appli-
cation and on the goal of the analysis. For
example, Findley, Monsell, Shulman, and
Pugh (to appear) write: ““. . . the concept of
trend is use-dependent rather than fixed.
For example, analysts seeking long-term
trends expect less fluctuating trends than
investigators of short-term trends.” And
Scott states: “an individual’s notions of
the appropriate amount of smoothing for
trend may change according to the series or
intended purpose.” This is why some dis-
cussants found the STL default trend too
smooth and others found it too noisy. For
example, if the analyst does not want to
smooth away the peaks and troughs of low-
frequency cycles, which was the case for
several discussants, locally quadratic
smoothing should be used in this trend post-
smoothing; this was noticed by Wallgren
and Wallgren.

We are partially at fault here. Our descrip-
tion of this issue was buried in the second
paragraph of Section 3.6 of the paper. Also,
we plotted and discussed the default trend,
not making entirely clear that this was for
diagnostic purposes and was not a study of
trend-cycle. We also made the mistake of
not illustrating the trend post-smoothing;
in fact we had such an illustration in
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Fig. 1. Trend Post-Smoothing of Monthly Carbon Dioxide.
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a very early draft and unfortunately deleted
it. Here is a modified version of that
discussion.

The top panel of Figure 1 shows the
seasonally adjusted values of the monthly
CO, series that we analyzed in the paper.
The second panel from the top is a trend
post-smoothing using loess with no robust-
ness iterations, locally-linear fitting, and
g = 200. The resulting trend is a very low-
frequency component that describes the rise
in the level of CO, that is being caused by
the burning of fossil fuels (Kukla and Gavin
1981). The third panel of Figure 1 shows
another trend post-smoothing, this time
with locally-quadratic fitting and ¢ = 35.
This low-frequency component captures the
rise in level plus cycles with periods of
several years in length. To see the properties
of these cycles, the low frequency com-
ponent minus the very low frequency com-
ponent is graphed by the solid curve in the
bottom panel. These cycles are correlated
with the Southern Oscillation, a measure-
ment of the difference in atmospheric press-
ure between Easter Island in the South
Pacific and Darwin, Australia (Bacastow
1976). The circles in the bottom panel are
the data in the top panel minus the very
low-frequency trend. Notice that the curve
is able to climb the mountains and descend
the valleys and does not distort the pattern
in the data. This results from the use of
locally quadratic fitting; if we use locally
linear fitting, distortion occurs unless g is
small, in which case the curve is too noisy.

Thus there are at least two interesting
trend-cycle components for these data. If we
want a description of the variation in CO,
caused by fossil fuel burning, then an answer
is the curve in the second panel; if we want
a description of variation associated with
the Southern Oscillation, then the curve in
the bottom panel is an answer.
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4. Adding Locally Constant Fitting,
Locally Quadratic Fitting, and a
Hybrid

Loess smooths by fitting polynomials of
degree d locally. In our Fortran imple-
mentation of STL we used d = 1, which is
locally linear fitting, for both the trend and
seasonal smoothers. For the climatology
data sets in which we are interested, this
works quite well. But for other data sets,
including some of those analyzed by the
discussants, other degrees likely would per-
form better. For the trend smoothing it
would be helpful to add d = 2, locally
quadratic fitting; this would enable the
trend smoother to be a better facilitator for
the seasonal smoother in applications where
there are low-frequency cycles that account
for a large amount of the variation in the
data. For the seasonal smoother it would be
helpful to add both locally constant fitting
and a hybrid smoother consisting of the
average of a locally constant fit and a locally
linear fit; this would widen the range of
possibilities for the amount of smoothing, as
we will show in Section 6.

5. The Value of Theoretical Reasoning

One of the values of having at least some
ability to argue theoretically in studying
seasonal adjustment methods is that some
issues can be decided incisively and others,
while they may need some empirical work,
can at least be guided by theory. When
empirical results have no theoretical guid-
ance, they produce a morass (Kuhn 1962,
p. 16). The grasp that we have on the math-
ematical properties of STL, which is not
particularly extensive, is nevertheless enough
to make headway on issues raised by several
discussants, without turning from our desks
to the computer terminal.

-
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5.1.  Initial trend value (Trewin)

We have an argument for why, if the default
values of n, and n,, are used, the nontrivial
eigenvalues of the trend and seasonal oper-
ators have distinct sets of eigenvectors. This
means that even though we start with a
trend component identically equal to 0, we
get convergence on the first step. This is not
quite a proof for the actual STL because, as
Gray and Thomson have pointed out, we
have made a circularity assumption in the
analysis of Section 5 of the paper. Still, we
would expect this idealized setting to pro-
vide good guidance for the actual case. And
when we turned to our computer terminals
for verification, we found that convergence
was always very rapid, and never found a
case where more than two steps were needed.
The empirical results, which rest on the
theoretical foundation, lead us to believe
that it is unnecessary to use any other set of
starting values.

5.2.  Component series (Trewin)

If the robustness feature of STL is not used
- that is, n, is zero - and the values of the
smoothing parameters are kept the same for
the component series and the total, then the
adjusted total will equal the sum of the
adjusted components. Suppose, however,
that robust estimation is deemed necessary.
The following procedure would also pro-
duce equality: get the final robustness
weights from the adjustment of the total,
and then for each component series do Steps
1 to 6 a total of n;, times using these weights.

5.3.  Competition between trading-day and
seasonal components (Trewin)

The standard way to estimate a trading-day
component is to regress on independent
variables that are based on the number of

times each day of the week occurs in a
month (Young 1965). If we add the trading-
day estimation to STL as described in
Section 6.3 of the paper, the projection
matrix of the regression is the trading-day
operator. Thus we can study competition
between the trading-day and seasonal com-
ponents using the theory of Buja, Hastie,
and Tibshirani (1989).

5.4. Smoother design
(Gray and Thomson)

The basic principle of loess is easy to grasp
— to get a smoothed value at x, fit a poly-
nomial locally and evaluate it at x. It should
be appreciated that while the details of loess
are new, this basic idea goes back decades
(Macaulay 1931). The basic principle of
loess is also general in that it allows us to fit
at any value of x. This is important because
it gives fitted values at the middle of the
series, at the ends, beyond the ends, or any-
where else. We have not had to come up
with separate procedures for trend smooth-
ing, seasonal smoothing, special end-value
procedures, another special procedure for
predicting one-step beyond, and yet another
procedure for filling in missing values.
Having a basic principle allows us to gain
certain insights into the properties of the
smoother for all of the smoothing tasks
simultaneously. For example, here are two
immediate statements we can make about
bias: (1) Local fitting of a polynomial of
degree d reproduces a polynomial of degree
d, a statement so obvious as to seem trivial,
but in fact quite essential in considering bias
properties. (2) Away from the ends, locally
linear fitting to a quadratic effect results in a
constant (additive) bias.

Contrast this with X-11. Since there is
no basic principle of underlying smoother
design, each smoothing task - trend,
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seasonal, end-value, and one-step prediction
— has its own ad hoc solution. The conse-
quence is considerable difficulty in reason-
ing about the properties of the X-11
smoothers. And no one has yet devised a
solution to the problem of treating missing
values with X-11, in part because a sensible
ad hoc solution to this problem without an
underlying principle is difficult to conceive.
In other words, the ad hoc nature of X-11
contributes to its closure as a system.

5.5. Why not use component models

Parametric component models provide an
excellent mechanism for theoretical reason-
ing. Should we not then give up all filtering
approaches to seasonal adjustment such as
X-11 and STL and use component models?
We believe the answer is “‘no.” The reason is
that for general purposes, component-
model approaches do not yield sufficient
flexibility in specifying seasonal com-
ponents. Furthermore, far too many series
are not well fitted by the parametric models
that are now commonly used. Using a non-
parametric approach - that is, decomposing
by a filtering procedure and studying the
stochastic properties of the series by spec-
trum estimates based on the Fourier trans-
form - is both more flexible and easier to
carry out successfully in practice.
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6. Empirical Studies: Matching Smoothers

One difficulty that plagues purely empirical
studies of different seasonal adjustment pro-
cedures is that results are dependent on
the amounts of smoothing of the trend and
seasonal smoothers. Choosing the smooth-
ing parameters of two procedures to match
the amounts of smoothing is very tricky at
best and impossible in some cases.

6.1. Standard deviations

Suppose we have a smoother
xv = Z duv wu5
u

using the notation of Section 5.1 of the
paper. Then one measure for the amount of
smoothing at time position v is

o, = |2 .

This is simply the standard deviation of x,
when w, is white noise with variance 1. The
smaller o, is, the more the amount of
smoothing for position v. For two smoothers
to match everywhere in terms of the amount
of smoothing, the two values of o, for each
o would have to be equal. This will often be
too much to ask.

Table 1. 100 times standard deviations of three smoothers

Position Henderson 13-term Loess:d = 2,q = 17 Loess:d = 1,q = 11
1 62 71 64
2 52 52 52
3 45 41 42
4 43 36 36
5 43 36 35
6 45 38 38
7 45 39 38
8 45 40 38
9 45 42 38
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Table 2. 100 times standard deviations of
two smoothers

Position X-11: Loess: hybrid,
3 x9 qg =13
1 44 44
2 41 40
3 38 36
4 35 33
5 33 32
6 32 32
7 32 34

6.2. Matching the STL and X-11
smoothers by standard deviation

A number of discussants appeared to want
trend and seasonal components of STL
whose amounts of smoothing are closer to
those to which they are accustomed with
X-11. With the help of Brian Monsell, we
studied the standard deviations of the
smoothers of STL and X-11. The amount of
smoothing of the Henderson k-term
smoother —fork = 5,9, 13, and 23 —is best
matched, in our judgement, by the amount
of smoothing of loess with locally quadratic
fitting and ¢ = k£ + 4. The amount for the
Henderson is also reasonably well matched
by the amount for loess with locally linear
fittingand ¢ = k — 2, but only for k = 9,
13, and 23. As an example, Table 1 shows the
standard deviations of the three smoothers
for k = 13. The values in the first column
are the positions: the beginning position
is 1, the next is 2, and so forth. The 3 x k
X-11 seasonal smoother is best matched
by a hybrid loess smoother: the mean
of the locally linear fit with ¢ = k + 4 and
of the locally constant fit with ¢ = k + 4.
As an example, Table 2 shows the stan-
dard deviations of the two smoothers for
k = 9. Matching by standard deviation
does not, of course, mean that the X-11
and STL smoothers are the same. In par-

ticular they still will have different bias
properties.

6.3. Sliding-spans analysis

Sliding-spans analysis (Findley et al. 1990)
is clearly a useful diagnostic tool. However,
comparing two seasonal adjustment pro-
cedures by this method for a particular
series is a delicate matter. The ideal pro-
cedure is the following: for each method find
decompositions that are deemed adequate
for representing the seasonal variation;
choose in each case the one with the smalles®
sliding-spans measure; and compare the
result for the first seasonal adjustment pro-
cedure with the result for the second. The
next best procedure is simply to match the
amounts of smoothing of the two seasonal
smoothers and of the two trend smoothers.
Note that it is not enough to match just the
seasonal smoothers. The sliding-spans diag-
nostics depend on the amounts of smoothing
of both the trend and seasonal smoothing;
for example, Table 3 in the discussion of
Findley and Monsell shows that the diag-
nostics change with the value of n,,. The
reason is that the seasonal operator matrix,
S, depends on both S and T. It would be
interesting to do the sliding-spans compari-
sons that Findley and Monsell carried out,
matching the amounts of smoothing of
X-11 and STL as described in Section 6.2.

7. End Effects

Gray and Thomson have argued that loess
does heavier smoothing at the ends than in
the middle. We can see from the previous
section that this is not so when the amount
of smoothing is measured by the standard
deviation: loess does not ever reduce the
standard deviation appreciably more at the
ends than in the middle and usually smooths
much less. The difficulty with the second-
difference measure used by Gray and Thom-
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son is that it measured smoothness in a very
local way that depends on artifacts of the
weight function and that does not reflect
what we normally would think of as smooth-
ness when we look at a plot. However, there
is one sense in which Gray and Thomson are
correct — the potential for bias is greater at
the ends than in the middle.

Gray and Thomson have correctly
observed that our analysis in Section 5
ignores end effects. It would, however,
be possible to carry out an analysis that
includes end effects by looking at the eigen-
values of the actual trend and seasonal
operator matrices, rather than the cir-
cularized ones as we have done, and also
invoking the results of Buja, Hastie and
Tibshirani (1989).

8. SABL and STL

Nicholls has asked about the computational
aspects of STL and SABL, our first attempt
at building a seasonal-trend decomposition
procedure. SABL, like X-11, is slow. It
would have been a major computational
chore, perhaps on the order of hours rather
than seconds, to apply SABL to the daily
CO, data that we analyzed in the paper.
Furthermore, SABL, like X-11, is much
more complicated than STL. In fact, we
undertook the design of STL when certain
experiments indicated that SABL was more
complicated than necessary.

9. Accomplishments and Additions

In our paper we have described a seasonal-
trend decomposition procedure that is
considerably simpler than X-11 and yet has
many new capabilities. Still, the basic
template of STL uses a number of ideas
from X-11, and if the U.S. Bureau of the
Census did not have the claim to the name,
we might have called our procedure ““X-12.”
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We have chosen the details of our first
implementation so that the procedure
works on the data in which we are inter-
ested - climatology measurements. We fully
acknowledge that these details will not
achieve desired goals for all types of data or
perhaps even any other type of data. But
because we have devised an open system,
other researchers can attempt to modify the
details of STL to make it work for their
data. The following is a list of desirable
additions to our first implementation that
have arisen from our own observations and
from those of the discussants; we are sure,
however, that the list would grow consider-
ably if we had a round-table discussion of all
authors and discussants:

® Add locally-quadratic fitting to the

trend smoothing; add locally-constant
fitting and a hybrid of locally-constant
and locally-linear fitting to the seasonal
smoothers

® Add trading-day estimation

® Add a capability to the code for speci-

fying robustness weights a priori to
facilitate the adjustment of component
series and their total

® Write a C implementation of STL

® Write an implementation of STL that

provides for missing values
® Experiment further with STL-ARIMA
® Experiment with cross-validation to
pick 7,

® Study the eigenvalue properties of
the trend and seasonal operator
matrices without making the circu-
larity assumption

@ Study the eigenvalue properties when

trading-day estimation is included

® Carry out further sliding-spans analy-

ses of STL.

We hope that others in seasonal adjust-
ment will take the basic template of STL
and see if the details of our ﬁrsti imple-
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mentation can be modified to work on
their data, perhaps by implementing some
of the above changes. We believe one
result would be a more fertile environment
for pursuing new ideas and improvements
because, as we have emphasized, having an
open system and an increased ability to
reason abstractly would be of benefit to a
field now constrained by the closed system
of X-11.
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