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This article is concerned with relating questionnaire design to estimation accuracy and item
response rate in sample surveys, in the context of the Respondent-Generated Intervals (RGI)
protocol for asking questions. One RGI procedure for asking survey questions is concerned
with recall of facts (“How many times did you visit your doctor in the last year?”). The
research addresses the problem that respondents’ unequal memory abilities may lead to large
nonsampling errors (bias). The novelty of this question protocol is asking respondents both for
an answer to the recall question and also for the smallest and largest possible values they think
the true answer might be. We find that a Bayesian estimator of the population mean is given
by a weighted average of the basic responses, where the weights assigned to respondents’
estimates are larger for smaller interval lengths. We summarize four record-check surveys for
which the RGI protocol has been applied. We find that interval length is related to the
respondent’s confidence in his/her answer, and that fine-tuning the way the question is worded
is directly related to the response rate, and to the accuracy of population parameter estimates.
So by placing strong emphasis upon the questionnaire design we can improve the importance
and usefulness of the survey.
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1. Introduction

We are concerned in this article with relating questionnaire design to survey accuracy and

response rate. We take up these issues with respect to a new survey questioning protocol

called Respondent-Generated Intervals (RGI) (see Press 1996; 1999; 2002; 2004). In this

procedure we ask respondents to provide a basic answer (we call the basic answers the

usage quantities, since they often refer to the frequency of usage of some behavior) to a

question involving recall of a factual question. But we also ask the respondent to provide a

lower and an upper bound to where he or she thinks the true value to the question lies. For

example, we might ask, “How many times did you visit your doctor last year?” The

respondent might then answer, say, six times. But then the respondent might also indicate

that the true value is surely no larger than seven times, but also, it is surely larger than four

times. So the respondent has now also provided a coverage interval for his/her response.
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It is assumed that the respondent knew the true value at some point (or had sufficient

information to construct a correct answer) but because of imperfect recall, he or she is not

certain of this value. This article addresses the important issues of how the population

parameters should be estimated, the questionnaire design issues of how the bounding

questions should be asked, and how the design of the questionnaire affects the estimation

accuracy of population parameters and the item response rate.

The population parameter that is often of greatest interest in a survey is the

population mean. We derive an estimator for this parameter by using a hierarchical

Bayesian model. The derivation was originally developed in Press (2002), and for

convenience, it is repeated in the appendix to this article. In Section 2 we discuss the

characteristics of the Bayesian point estimator of the population mean. In Section 3 we

relate the design of the questions to the properties of the estimator. In Section 4 we

describe some experiments in which we (and others) have used the RGI protocol, and

summarize some results from them. In Section 5 we discuss what we have learned from

these experiments.

2. The Bayesian Point Estimator

2.1. Vague prior for the population mean

For a sample of n independent respondents in a survey, let yi, ai, bi denote the basic usage

quantity response, the lower bound response for where the true value to the question lies,

and the upper bound response for where the true value to the question lies, respectively, of

respondent i, i ¼ 1; : : : ; n: Suppose that the yi’s are all normally distributed. Suppose also

that we adopt a vague prior distribution for the population mean, u0, to represent knowing

very little, a priori, about the value of the population mean. It is shown in the Appendix,

using a hierarchical Bayesian model, that in such a situation, the posterior distribution of

u0 is given by:

ðu0jdataÞ , Nð ~u;v2Þ ð2:1Þ

where the posterior mean, ~u; is expressible as a weighted average of the yi’s, and the

weights are dependent upon the intervals defined by the bounds, the smaller the interval

the larger the weight. The posterior variance is denoted by v 2. The posterior mean is

expressible as:

~u ¼
Xn

1

liyi ð2:2Þ

where the li’s are weights that are given approximately by:
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where: a0 ;
1#i#n
minðaiÞ; b0 ;

1#i#n
maxðbiÞ: The interval (b0 2 a0) represents the full range of

opinions the n respondents have about the possible true values of their answers to the

question, from the smallest lower bound to the largest upper bound. In Equation (2.3),

k1 and k2 denote pre-assigned multiples of standard deviations that correspond to how the

bounds should be interpreted in terms of standard deviations from the mean. For example,

for normally distributed data it is sometimes assumed that such lower and upper bounds

can be associated with 2 standard deviations below, and above, the mean, respectively.

With this interpretation, we could take k1 ¼ k2 ¼ 4 to represent the length of the interval

between the largest and smallest values the true value of the answer to the recall question

might be for respondent i. If desired, we might take k1 ¼ k2 ¼ k; and then we would make

a choice among reasonable values, such as: k ¼ 2; 4; 5; 6; 7; 8; and study how the estimate

of the population parameters vary with k. This issue relates to questionnaire design and is

discussed further in Section 3.

2.2. Normal prior for the population mean

In some situations we are not entirely ignorant of the possible value of the population

mean. We may have some preconceived notion of what this mean might be, even though

we are still uncertain about its true value. For analysis of such situations where we can take

advantage of such prior information, we have also studied the case of a normal prior

distribution for the population mean, u0 : u0 , Nðu* ; r2Þ: In this case, it is shown in the

Appendix that the posterior distribution for u0 becomes:

ðu0jdataÞ , Nðg;h2Þ ð2:4Þ

where for j ¼
1

v 2

1

v 2 þ
1

r 2

; 0 # j # 1; and ~u ¼
Xn

1

liyi

g ¼ j ~uþ ð1 2 jÞu* ð2:5Þ

and

h2 ¼
1

1

r2
þ

1

v2

ð2:6Þ

and the li’s are the same weights as for the vague prior; 0 # li # 1;
Pn

1 li ¼ 1: The yi’s

are of course the data (usage quantities).

We note the following characteristics of these estimators:

(1) The weighted averages are simple and quick to calculate, without requiring any

computer-intensive sampling techniques. The weighted average point estimator may

be used nonparametrically, even when the data are not normally distributed, but

interval estimation does require normality in small samples.

(2) In the special case in which the interval lengths in Equation (2.3) are all the same, the

weighted average in Equation (2.2) reduces to the sample mean, �y; where the weights

all equal (1/n). The weighted average estimator will result in a more accurate estimate

of the population mean than will the sample mean when some respondents who are

accurate give short bounding intervals and the others who are inaccurate give longer

bounding intervals.
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(3) The longer the interval a respondent gives, the less weight is applied to that

respondent’s usage quantity in the weighted average. The length of respondent i’s

interval is a measure of his/her degree of confidence in the usage quantity he/she

gives, so that the shorter the interval, the greater degree of confidence that respondent

seems to have in the usage quantity he/she reports. (Of course a high degree of

confidence does not necessarily imply an answer close to the true value.)

(4) Since the weights sum to one, and must all be nonnegative, they can be thought of as a

probability distribution over the values of the usage quantities in the sample. So li

represents the probability that y ¼ yi in the posterior mean.

(5) We see that if we take k1 ¼ k2 in Equation (2.3), the k’s cancel out and the li weights

no longer depend upon the k’s.

(6) If we define the precision of a distribution as its reciprocal variance, the quantity
ðbi2aiÞ
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may be seen (from the analysis in the Appendix) to be the

variance in the posterior distribution corresponding to respondent i, and therefore, its

reciprocal represents the precision corresponding to respondent i. Summing over all

respondents’ precisions gives:

total conditional posterior precision ¼
Xn
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So another interpretation of li is that it is the proportion of the total precision in the

data attributable to respondent i.

3. The Bounding Questions and Their Relationship to Characteristics of the

Estimators

In all surveys, the wording of a question strongly drives the estimation accuracy and

response rate for that question and perhaps more broadly across the survey instrument. The

relationships are usually quite subtle, however, and it is difficult to know how to determine

the effects and implications of alternative wordings, though the movement to study

cognitive aspects of survey methodology has offered us some principles (e.g., Schwarz

and Sudman 1994; Sudman, Bradburn, and Schwarz 1996; Sirken et al. 1999; Tourangeau,

Rips, and Rasinski 2000). In an RGI-based survey, there is a clear and overt relationship

that can be separately studied to improve the effectiveness of the survey. We need to

understand fully how the wording of the bounds question or questions affects respondents’

interpretation of how broad the interval they supply should be.

This type of question relates closely with the literature about how to assess prior

probability distributions. In Bayesian assessment procedures an entire prior distribution

(and/or a utility function) for an individual is assessed by connecting a collection of points

on the individual’s subjective probability distribution obtained by means of a sequence of

elicitation questions (see for example Schlaifer 1959, Ch. 6; and Hogarth 1980,

Appendices B and C). Berry (1996, pp. 347–348) assumes the person’s belief distribution

is normally distributed, and that a person whose prior probability he is trying to assess

(the respondent) “would not be very surprised” if there were a 10% chance that the true

value exceeds a given stated amount (an upper bound).
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In RGI there is a fundamental tension between the way we would ideally like to extract

information from respondents and how questions can be asked so that ordinary

respondents with no special training can understand them and answer appropriately. If we

were to follow the approach typically taken by probability assessors to assess someone’s

prior distribution for some unknown quantity, such as the true value of some item a

respondent is trying to recall, we might ask a sequence of questions (“ethically neutral

propositions,” to use the terminology of Ramsey 1931), such as:

(1) “Give a number such that it is equally likely that the true value is less than that

number, and that the true value is larger than that number.” Call the number given,

B(0.5). B(0.5) is then the median of the respondent’s recall distribution.

(2) “Next suppose I tell you that your true value is really less than B (0.5). Now give

another number that is less than B (0.5), and such that it is equally likely that the true

value is less than that new number, and the true value is larger than that new number.”

Call the number given now B (0.25). B (0.25) is the 25th percentile of the

respondent’s recall distribution.

(3) Now ask the analogous question first advising the respondent that his/her true value is

actually larger than B (0.5). The number given now, B (0.75), is the 75th percentile of

the respondent’s recall distribution.

The three points just found, plus the fact that the respondent’s recall cumulative

distribution function (cdf) must be bounded by 0 and 1, give us 5 points that define the

recall cdf quite well. We can now readily develop the corresponding probability density

function. The resulting prior density could ideally now be combined with the likelihood to

generate a posterior distribution from which we could estimate the population parameters

of interest. The problem, of course, is that most respondents have not been specially

trained to be able to address the above three questions with any dependable degree of

cognitive ability. Some respondents might be totally confused when faced with such a

task. While they might be able to deal with the first question, the remaining two questions

would probably be very confusing. In spite of the fact that the answers to these three

questions would provide the analyst with the precise information required, we need to

formulate alternative ways of developing the required information that would be within

the cognitive grasp of ordinary respondents, but would still provide sufficient information

to the analyst so that at least a close approximation to the required information becomes

available. We have found that a reasonable alternative is available by asking respondents

for lower and upper bounds on their true values. While this alternative does provide

analogous information to the analyst, it is not itself without some remaining interpretive

difficulties, as explained below.

We saw above that under a vague prior on the population mean, the posterior mean

estimator of the population mean is a weighted average of the usage quantities. We also

saw that under a normal prior on the population mean, the posterior mean estimator of the

population mean becomes a weighted average of the prior mean and the Bayesian

estimator of the population mean under a vague prior. In fact, the weights in the posterior

mean associated with the usage quantities depend explicitly on the intervals defined by the

bounds on these quantities. In addition, the weights depend upon two interpretation
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constants, k1,k2, which relate to how the respondents interpret the bounds questions, or how

we assume they do. For simplicity, we will be taking k1 ¼ k2 ¼ k throughout this article.

We know that as long as the data are normally distributed, for example, it is unlikely that

we would find more than 5% of the observations beyond 2 standard deviations away from

the mean. But what does this mean to the typical respondent? Does it mean that the analyst

would be safe in assuming that the bounds proffered by the respondent can be placed at

plus and minus 2 standard deviations and conclude that the true value the respondent is

being questioned about lies in an interval of length 4 standard deviations? In the first test of

RGI, described below, we phrased the bounds question, e.g., “Please fill in the blanks,”

“There is almost no chance that the number of credits I had earned by the beginning of this

quarter was less than ______ and almost no chance that it was more than _______.”

Assuming a normal distribution, we took the interval length given by a respondent to cover

the middle 95% of the distribution and thus took k ¼ 4: We seek to refine this process of

assigning values to k.

Perhaps the way each bounds question is worded signals most respondents to give

bounds that exclude just 1% of the chances of finding the true value in the associated

interval; perhaps 3% or 5% or 10%. While we have studied the wording of the bounds

questions, as detailed below, we have not yet obtained results that permit us to determine

how to relate the interpretation of the length of the interval to the question wording. For

purposes of this article we use normality and interpret the interval defined by the bounds as

a 2 standard deviation interval ðk ¼ 4Þ:

We are also concerned about the possibility that the respondent’s recall distribution is

not normally distributed. For example, suppose the respondent provides a bounding

interval (a,b) for which the usage quantity given is close to one of the bounds. The

respondent is clearly thinking in terms of some sort of asymmetric recall distribution,

certainly not a normal distribution. In such a case we recommend a preliminary

transformation of both the usage quantity and the bounds to approximate normality, such

as the Box-Cox transformation (see Box and Cox 1964). There is a pull-down menu in

MINITAB 13 that will carry out the transformation readily (under “Stat” ! “Control

Chart”). But all values being transformed must be positive.

For k1 ¼ k2 ¼ k; the value of a Bayesian point estimator does not depend upon k.

Moreover, regardless of whether k1 ¼ k2 or not, we see from Equation (A24) in the

Appendix that the posterior variance of our estimator (and hence the lengths of credibility

intervals) depends on the values assigned to k1 and k2, or to k. The higher the value

assigned to k ¼ k1 ¼ k2; the smaller the posterior variance. Thus, much depends on what

values we see as justifiable for k1 and k2.

4. Some Empirical Studies

In this section we describe four experiments we have carried out to explore the usefulness

of the RGI protocol and one experiment carried out by others (Schwartz and Paulin 2000,

at the U.S. Bureau of Labor Statistics). The first two experiments were carried out on two

university campuses. The third was carried out together with the U.S. Census Bureau, and

the last described here was carried out in conjunction with a Health Maintenance

Organization (called the HMO experiment).
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Both the theory and the estimation procedure for the RGI estimator have evolved during

the years we have been studying the procedure. While we have published results using an

earlier model than that detailed here, and a different estimation procedure (e.g., Press and

Tanur 2000; Press and Marquis 2001), those results are now outdated. In addition, in the

lapse of time since the data were collected some data availability has been lost.

In particular, because of concerns about confidentiality, individual level verification data

for the Census experiment were never released to us. With changing methods of

estimation, differing sets of respondents are appropriate for analysis, but because of further

concerns about confidentiality, the data set containing the verified values has been

destroyed. Hence we can present no formal analysis of the Census data here, though we do

present some results from the cognitive testing.

On a somewhat less dramatic note, we find that some of the data files for the campus

data have been separated from the demographic information for the respondents that

would allow us to assess a realistic proper prior for the population mean. Hence we report

findings only for six variables of State University New York at Stony Brook (SUSB) and

four at the University of California at Riverside (UCR).

The data collection for the HMO experiment has only recently been completed, so no

analysis is possible for that as yet.

There are also a couple of new UCR campus experiments that are currently being

fielded; those results will be reported at a later date.

4.1. The two campus surveys

Our first empirical effort was primarily to determine whether respondents were willing to

use the new method in a paper-and-pencil survey, but also, it was to explore the accuracy

that can be achieved, and to see if the technique reduced item nonresponse (see Press and

Tanur 2000).

We carried out a paper-and-pencil survey in spring of 1997 at each of our campuses,

UCR and SUSB. We asked students questions about the amounts of fees they paid,

registration fee, recreation fee, student activities fee, and health fee, their SAT math and

verbal scores, their number of on-campus traffic tickets, their number of library fines,

their grade point average, their number of credits earned, their number of grades of C or

less, and their expenditures on the food plan during the previous month. All of these

quantities could be verified by the appropriate campus office and they were verified for

those student respondents who gave permission for us to do so and who supplied an

identification number that made such checking possible. For both of the campus surveys

the usage question was always asked before the bounds question.

We were able to analyze the following ten items in terms of the accuracy of the RGI

procedure for analyses not involving Bayesian estimation we were able to use the full set

of 18 items (see e.g., Table 2).

For both campuses: GPA, SAT verbal and math scores, TICKETS.

For SUSB only: CREDITS, FINES.
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Before considering the results, it will be useful if we describe in some detail how we

derived the prior mean and standard deviation for the variable CREDITS at SUSB.

(Far less detailed accounts will be given of how we derived the other prior means.)

Respondents had told us the year in school they were in. Of course, some people who

said “first year” are in their first semester of their freshman year, some in their second, and

similarly for other years. From conversations with undergraduate directors, we assumed

that a student takes about 17 credits a semester for each semester of the first two years and

15 credits a semester for the third year. (We ignored 4th year, as it did not figure into our

calculations because we had no 4th year respondents.) Thus we estimated that a first

semester 2nd year student would have finished 34 credits, a second semester 2nd year

student would have finished 51 credits, a first semester 3rd year student would have

finished 66 credits and a second semester 3rd year student would have finished 81 credits.

Taking into account that most students start school in the fall and that the survey was

carried out in a spring semester, we estimated that 80% of the students were second

semester in their respective years and 20% first semester. Thus we took the mean of the

credits completed by those students reporting 2nd year status to be :8*51 þ :2*34 ¼ 47:6

and the mean of the students reporting 3rd year status as :8*81 þ :2*66 ¼ 78: Since the

mean “year in school” reported by respondents who answered the credits question was

2.68 we took .68 * the difference between 78 and 47.6 and added that to 47.6 to get our

prior mean for credits as 68.27 or 68.3.

We chose to set the prior standard deviation at 20% of the prior mean or 13.65. Three

times 13.65 or 41 credits above and below our prior mean (27.3–109.3) seemed to

encompass almost all likely numbers of credits students might have earned. It was because

we did not have the year in school for respondents from UCR that we were unable to derive

a prior mean and hence unable to use the current model for estimation.

We took a prior mean for GPA ¼ 2:5; since a “C” average (2.0) is required to remain in

school, and most students achieve a somewhat larger GPA. We took the standard deviation

of the prior distribution to be 10% of the prior mean.

For TICKETS and FINES we assumed that many respondents would have no instances

(either because they are law abiding or because they do not own a car or never borrow a

book from the library). We understood that these “true zero” students would probably use

a different strategy to derive their estimates than would those who had actual instances to

retrieve and count (see Conrad et al. 1998; Gentner and Collins 1981). Thus the actual

recall distribution would be a mixture. Nevertheless, we decided to use a normal prior, and

used a mean of 1 in order to account for those with multiple instances. We used a standard

deviation of 0 for all these variables.

For the SAT scores we used a prior mean of 575 for the math scores (because both

campuses attract students who hope to major in technical subjects) and 475 for verbal

scores (because both campuses attract a large number of students who are not native

English speakers). In all cases we assumed a standard deviation of 50.

Table 1 shows the accuracy results. It compares the RGI estimate with the sample

average as estimators of the true mean and a 95% credibility interval around the posterior

mean with a 95% confidence interval around the sample average. The estimate that is

closer to truth is shown in boldface; the interval estimates that cover truth are also in

boldface.
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We see in Table 1 that in eight of the ten cases we were able to examine, the RGI

posterior mean was closer to truth than was the sample average. Moreover, the 95%

credibility intervals covered truth for all 10 out of the 10 items, whereas the 95%

confidence intervals covered truth for only 6 of the 10 items. The two items for which

the sample mean out-performed the point RGI estimator were for the same item at the

two campuses: “TICKETS.” Our explanation is that the distribution of the data for

TICKETS was so nonnormal as to severely violate the fundamental assumptions of the

RGI modeling (which assumes normal distributions throughout). A histogram of the

TICKETS data for the SUSB data is the very nonnormal distribution displayed in

Figure 1. The TICKETS data for UCR are analogously nonnormally distributed. In

nonnormal data situations, transformations to normality may help, although in this

situation, the data are largely zeroes, so the Box-Cox transformation described above

does not help.

Fig. 1. Histogram of tickets data at SUSB

Table 1. Comparing sample and RGI posterior means for estimating population means in

Campus experiments using normal priors (boldface point estimates denote winners; boldface

interval estimates denote intervals that cover truth)

truth �x postmean conf_int cred_int

SUSB
credits 67.53 63.13 63.69 (56.12, 70.14) (55.54, 71.84)
gpa 2.91 2.99 2.97 (2.89, 3.09) (2.85, 3.09)
satm 570.80 593.72 591.97 (572.40, 615.00) (553.15, 630.79)
satv 503.20 526.00 519.01 (503.80, 548.20) (478.52, 559.50)
tickets 0.53 0.92 0.95 (.56, 1.28) (.32, 1.58)
fines 1.52 2.25 1.00 (0, 5.41) (.03, 1.96)

UCR
gpa 3.05 3.10 3.04 (3.00, 3.20) (2.88, 3.21)
satm 574.1 572.60 574.05 (549.50, 595.60) (537.54, 610.56)
satv 485.40 503.00 500.38 (481.20, 524.80) (463.74, 537.02)
tickets 0.21 0.51 0.63 (.27,.75) (.09, 1.16)
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The campus experiments also permitted us to check our assumption that interval length

is related to accuracy. For this analysis we were able to use all the data from the campus

experiments, and we reported the results in Press and Tanur (2003). The key result of that

analysis appears in Table 2. Note that in Table 2 the correlations are between interval

length and absolute error (the absolute value of the difference between the respondent’s

answer and verified “truth”), so positive correlations indicate that our expectations are

fulfilled. Also note that in Table 2 outliers in the distribution of interval lengths have been

deleted because they tend to be influential observations unduly inflating the correlations.

Here we have defined an outlier as any observation more than 1.5 times the inter-quartile

range above the third quartile or below the first quartile. We see that the correlations were

not terribly high, nevertheless the RGI procedure was often able to improve on the

performance of the sample average. If we can find ways to improve the questioning so as to

improve the correlation, we should also be able to improve the accuracy of the RGI

estimator.

Note that in Table 2 the highest correlations are for the variables that constitute

frequencies – number of grades below C, traffic tickets, and library fines. Exploring

these data shows us that those respondents who had zero or one occurrence were almost

always quite accurate and gave short intervals, while those who had a large number of

occurrences were less accurate and had longer intervals. This is what would be

expected if respondents with few (and especially no) occurrences were using an actual

recall strategy and those with many occurrences were actually estimating (see Conrad

et al. 1998; Gentner and Collins 1981). Part of this potential bias can be taken into

account, as detailed above, by a strategic choice of a prior mean, but the data in Table 1

suggest that in most cases of frequency variables both the sample mean and the RGI

estimator overestimate truth.

The campus experiments also let us examine the effects of the RGI protocol on item

nonresponse. These results are reported in Press and Tanur (2001). Those respondents who

Table 2. Rank order correlations between length of interval and accuracy

with outliers deleted

UCR SUSB

VARIABLE n r sig n r sig

Credits 116 .25 .008 124 .21 .021
C’s 108 .69 , .001 125 .33 , .001
GPA 121 .37 , .001 137 .16 .064
SATM 102 .34 .001 76 .07 .524
SATV 90 .36 , .001 79 .26 .023
Tickets 130 .52 , .001 139 .39 , .001
RegFee 618 2 .17 , .001
RecFee 651 .12 .002
SAFee 407 2 .20 , .001
Health 407 2 .13 .010
Food 63 .02 .901
Fines 124 .42 , .001
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gave an interval but did not give a usage quantity constitute an appreciable percentage of

those who did not give a usage quantity and thus were potential nonrespondents to each

item. Indeed, those percentages are never less than 4% and twice are over 40%. We can

interpret these results as estimated conditional probabilities of giving an interval among

those who did not give a usage quantity. We can use the midpoint of the RGI as a point

estimator and the interval from the average of the lower bounds to the average of the upper

bounds (the Average Respondent-Generated Interval, ARGI) as an interval estimator, for

those respondents who offered interval but no usage quantity responses. We can then

inquire into the accuracy of these estimates for the fee data (where sample sizes are large

and verification data unnecessary because of the uniformity of the fees across

respondents). We find that the average midpoints overestimate usage for 3 of the 4 cases,

but the ARGI covers the true value in all cases.

Thus in the Campus Experiments in a substantial proportion of cases, respondents who

do not supply an estimate of usage quantities do supply intervals which are reasonably

accurate, thus reducing the amount of item nonresponse appreciably.

There were both advantages and disadvantages to using university students as

experimental subjects. The advantages were that such subjects were conveniently

available to the experimenters, and record checks of the accuracy of their answers were

readily available from campus administrators. The disadvantages were that there was

internal evidence that a few students were not completely cooperative in terms of giving

serious or truthful answer, and that only about half the students were willing to let us check

their academic records. So we were eager to try out the RGI technique with more mature

respondents, as well as to vary some other conditions.

4.2. The Census experiment

This experiment was designed to test for any differences in the order of asking the bounds

and usage quantity questions, to test whether the technique can be used in a telephone

interview, and to test the usefulness of the RGI proceedure for sensitive questions, such as

a respondent’s income (see Marquis and Press 1999; and Press and Marquis 2001). As

detailed above, we are unable to report on the accuracy of the performance of the RGI

estimator for this experiment because the verification data have been lost. But we can shed

some light on the effects of question wording.

A frame of households was developed from the U.S. Census Bureau’s commercial and

administrative records containing households that filed joint tax returns having wage and

salary income for the previous five consecutive years. The frame covered the four states in

which the American Community Survey (ACS) held its first pilot tests. A sample of about

2,000 households was drawn from this frame, and each household was assigned to an

experimental interviewing treatment. From this sample the U.S. Census Bureau’s

Hagerstown Telephone Facility obtained a quota of 500 completed CATI interviews,

eliminating households that had become ineligible through retirement, death, divorce or

other circumstances that precluded observing the joint wage and salary income on the tax

return. Respondents answered questions about their income from salary and wages and

from interest and dividends for each of the past two years, and for the change in both these

types of income over the previous five years. Since the frame information also included
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data from administrative records about household income, we eventually linked the survey

responses to the administrative records to evaluate the validity of the telephone survey

responses, but those data have been lost.

This experiment used extensive cognitive pretesting for the form of the interval

question. There had been some hope that sometimes the upper bound question could

be asked before the lower bound question, but it was found that such an ordering

made pretest respondents uncomfortable, so the experiment was designed to always

ask for the lower bound before the upper bound. Also as a result of the cognitive

testing the final instrument asked for the usage quantity as a “best estimate” in order

to reinforce the notion that respondents might well be uncertain about their answers.

One other outcome of the cognitive testing was to add a question about how confident

the respondent was about his/her best estimate, as a way of introducing the intent of

the bounds questions that immediately followed. This was done in a split-panel

experiment in which 75 percent of the cases were asked the two bounds questions

first, followed by the usage question. The other 25 percent of the cases were asked

the usage question first, then the confidence rating, followed by the two bounds

questions. This 25% sample enabled us to test our assumption that interval length is

related to confidence. The results appear in Press and Tanur (2002) and are

summarized in Table 3. These correlations do suggest that, except for the change

variables which were very difficult for respondents to calculate, relative interval

length (interval length/usage quantity) is a good proxy for confidence.

This cognitive testing showed that some telephone respondents had difficulty

understanding and holding in memory a single question that asked for both lower and

upper bounds. The solution was to split the question into two and ask, e.g. “What is

the highest dollar amount you think this could have been?” and “What is the lowest

dollar amount you think this could have been?” Interviewers reported considerable

difficulty for some respondents in understanding this question, but the large majority

of respondents were able to carry out the task successfully, supplying a lower bound

that was lower than the usage quantity and an upper bound that was higher than the

usage quantity.

In the Census Experiment, although many respondents did not supply usage quantities,

in only a few such cases did they supply bounds information. Hence in this case RGI did

little to reduce item nonresponse.

Table 3. Correlations between relative length of interval and

confidence in the 25% Census sample

Item r n

Salary/Wages last year .287** 102
Salary/Wages previous year .247* 106
5-yr Change Salary/Wages 20.014 95
Income/Dividends last year .450** 81
Income/Dividends previous year .319** 83
5-yr Change Income/Dividends .155 71

**p , .01; *p , .05.
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4.3. The HMO experiment

A fourth experiment has been fielded (see Miller and Press 2002) in order to test whether

respondents are willing to answer the bounds question without being offered the usage

question at all, and to explore which option they will choose if they are permitted to choose

between the bounds question and the usage question. We are, of course, also interested in

the accuracy of the responses in both these new situations.

Mail questionnaires were sent to 3,000 female members of an HMO (Health

Maintenance Organization) asking questions about the length of their membership in the

HMO; dates on which they had their most recent pap smear, mammogram, and influenza

vaccination; date their most recent child was born in the HMO, and the birth-weight of that

child; date of most recent blood test to measure cholesterol and the level of that cholesterol

measurement. There were five groups of respondents: a control group that was asked the

usage quantity only, another control group which was asked the questions in the form

currently used by the HMO (respondents classify themselves into one of several interval

options predetermined by the questionnaire designer), one group that received only the

bounds questions, and two groups that were offered a choice of answering either the

bounds question or the usage question (with the bounds question being offered first to one

group and the usage question being offered first to the other group).

In the HMO experiment we modify RGI for one experimental group by deleting the

requirement for respondents to give both a usage quantity and bounds information and

asking them only for bounds information. (Two other groups can choose between the

bounds and usage questions.) How will this affect the results? Respondent burden would

certainly be reduced. A reasonable estimator of the population mean, might be a weighted

average of the average of the lower bounds, �a; and the average of the upper bounds, �b: Such

a weighted average, with weights j* , could be expressed as

~u ¼ j* �a þ ð1 2 j* Þ�b ð4:1Þ

Of course with a proper (normal) prior, we would need a further weighted average of the

prior mean and the posterior mean with respect to a vague prior (given in Equation (4.1)).

But how should the j*-weights be selected? If they are chosen to be equal, the result is the

“midpoint estimator” as used in our study of item nonresponse in the Campus experiments

(see Press and Tanur 2001). (The same result is obtained by choosing the midpoints of all

ranges given, and averaging these midpoints.) Another choice would be to select j* to

depend on the saliences of the questions to the respondents, and on the respondents’

demographic characteristics. Yet another choice would involve the variances (and

precisions) of the bounds information. Define the variances of the bounds:

ŝ 2
a ¼

1

n

Xn

1

ðai 2 �aÞ 2; ŝ 2
b ¼

1

n

Xn

1

ðbi 2 �bÞ2

Reasonable j*-weights could be taken to be:

j* ¼

1

ŝ 2
a

1

ŝ 2
a

þ
1

ŝ 2
b

; ð1 2 j* Þ ¼

1

ŝ 2
b

1

ŝ 2
a

þ
1

ŝ 2
b
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Now ~u weights �a and �b by precision proportions, as with the ordinary RGI estimator

developed in the Appendix. Which estimation procedure would be best for such a modified

RGI protocol? Analyses of the results of the HMO experiment may offer some information

here.

4.4. The Schwartz-Paulin Bureau of Labor Statistics experiment

In face-to-face mock Consumer Expenditure Quarterly Survey interviews that compared

RGI with unfolding brackets and conventional survey-designer-generated ranges,

Schwartz and Paulin (2000) report some interesting findings. They used the following

wording: “While we’re talking about income, what I’d like you to do is tell the range

within which you would feel almost certain that your actual income would fall. This is like

completing the sentence, ‘Oh yes, during the past 12 months, I must have earned between

______ and ______. During the past 12 months did you receive any money in wages or

salary? What do you think the range would be?” These authors found (p. 969):

“: : :participants liked the RGI technique primarily because it afforded them some degree

of control over their disclosures. Surprisingly, when respondents were given freedom to

choose their own ranges, they did not opt for huge, relatively meaningless ranges that

obscured their real financial situation. Instead respondent-generated intervals tended to be

smaller than those generated by researchers. In this study, RGI was the only technique that

resulted in respondents providing an exact value rather than a range.”

Schwartz and Paulin (2000) found that the use of an interval technique reduced

item nonresponse from 18.1% to 9.5%, though their sample size is too small to report

these percentages separately for each of the three interval techniques they compared. They

do note, however, that this improvement in item nonresponse came exclusively from those

whose response to the usage quantity question were “don’t know” rather than a refusal.

5. Discussion

We have seen that the RGI protocol (in the Campus experiments, at least, where we can

test this assertion) quite often improves on the sample average as an estimator of the

population mean. While we see that the correlations between interval length and accuracy

(Table 2) seem to be reasonable, we are exploring the use of a form of asking the questions

that results in a stronger relationship between accuracy and interval length. Such a higher

correlation would ensure the success of the RGI protocol in reducing bias. An experiment

is currently in the field that aims to direct those respondents most confident of their recall

to give short intervals and those less confident to give longer ones. If confidence is related

to accuracy then we should be able to improve the RGI procedure by this strategy. While

we assume such a relationship exists, at least to some extent, evidence from the literature is

mixed – for reviews see Bothwell, Deffenbacher, and Brigham (1987); Wells (1993);

Wells and Murray (1984). We hope to be able to differentiate the kinds of questions for

which this strategy will be effective from those for which it will not.

It may still be possible to improve the calibration of the wording of the bounds question

in such a way that we can communicate its intended coverage more clearly to respondents.

We have done some informal cognitive testing, asking respondents, for example, to choose

an interval which they would be as sure of as they would be sure of drawing a white ball
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from an urn containing 99 white balls and 1 black ball. Respondents tended to stare at us in

puzzlement. We should not be surprised at this outcome – not only does common sense

suggest that such question wording would be puzzling to respondents, but much of the

literature on probability estimation in surveys demonstrates the difficulty respondents

experience in trying to estimate probabilities (and the resulting inaccuracy). See, for

example, Tversky and Kahneman (1974) and Tversky and Koehler (1994). While this

question asks for an application of probability, the difficulty should be similar.

Our next steps in investigating question wording will be to do more systematic

empirical work to try to determine what respondents see as inclusion probabilities for the

intervals they offer.

We have also seen differences across experiments in the effectiveness of RGI in

reducing item nonresponse. Why? There may be an effect of the sensitivity of the

questions interacting with mode of interview. There were sensitive questions about

income in the Census experiment and in the Schwartz and Paulin (2000) experiment, less

sensitive questions in the Campus experiments. In the paper-and-pencil Campus

experiments it was easy to fill in part of a question, whether sensitive or not; it is less easy

to answer part of a question, especially a sensitive one, posed by an interviewer over the

telephone. In the Schwartz and Paulin (2000) experiment, respondents were interviewed

face-to-face at a lab; such a setting might well encourage extra effort for questions in

which the immediate recall is difficult. The type of respondent, type of interviewer, and

survey sponsor may matter. Compared to the laboratory situation using paid respondents

described by Schwartz and Paulin (2000), the Campus experiments involved

undergraduate student respondents, students distributing questionnaires, and an

“academic” survey. The Census experiment interviewed respondents from established

households, who were presented with questions by professional interviewers representing

the U.S. Census Bureau. Overall, there was greater respondent cooperation in this

government survey by telephone than we found in our earlier campus-based experiments.

Thus, while several empirical questions remain open, we believe that the RGI protocol

has demonstrated its usefulness in improving the accuracy of estimation of a population

mean. In some cases it also is useful in reducing item nonresponse. The forthcoming

results of the HMO experiment and of the currently fielded experiment encouraging

shorter intervals from confident respondents and longer ones from less confident

respondents should serve to answer some of the outstanding questions and to make the

technique even more useful.

Appendix

In this Appendix we develop a hierarchical Bayesian model for estimating the posterior

distribution of the population mean for data obtained in a sample survey by using the RGI

protocol.

Suppose as his/her answer to a factual recall question respondent i gives a point

response yi, and bounds (ai, bi) for the true value of the answer, such that ai # yi # bi;

i ¼ 1; : : : ; n: Assume:

yi uij ;s 2
i

	 

, N ui;s

2
i

	 

ðA1Þ
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The normal distribution will often be appropriate in situations for which the usage

quantity, yi, corresponds to a change in some quantity of interest. Assume the means, ui, of

the usage quantities are themselves exchangeable, and normally distributed about some

unknown population mean of fundamental interest, u0, so that:

ðuiju0; t
2Þ , Nðu0; t

2Þ ðA2Þ

Thus, respondent i has a recall distribution whose true value is ui (each respondent is

attempting to recall, say, a different number of visits to the doctor last year). We would

like to estimate u0. Assume s 2
1 ; : : : ;s

2
n ; t

2
	 


are known; they will be assigned later.

Denote the column vector of usage quantities by
~
y ¼ ðyiÞ; and the column vector of means

by
~
u ¼ ðuiÞ: Let

~
s 2 ¼ s 2

i

	 

denote the column vector of data variances. The joint density

of the yi’s is given in summary form by:

pð
~
yj

~
u;

~
s2Þ / exp 2

1

2

� �Xn

1

yi 2 ui

si

� �2
( )

ðA3Þ

The joint density of the ui’s is given by:

pð
~
uju0; t

2Þ / exp 2
1

2

� �Xn

1

ui 2 u0

t

� �2
( )

ðA4Þ

So the joint density of ð
~
y;

~
uÞ is given by:

pð
~
y;

~
uju0; t

2;
~
sÞ ¼ pð

~
yj

~
u;

~
s 2Þpð

~
uju0; t

2Þ

or, multiplying (A3) and (A4) gives:

pð
~
y;

~
uju0; t

2;
~
s 2Þ / exp 2

1

2

� � Xn

1

yi 2 ui

si

� �2

þ
Xn

1

ui 2 u0

t

� �2
" #( )

/ exp 2
Að

~
uÞ

2

 !( ) ðA5Þ

where:

Að
~
uÞ ;

Xn

1

yi 2 ui

si

� �2

þ
Xn

1

ui 2 u0

t

� �2

ðA6Þ

Expand (A6) in terms of the ui’s by completing the square. After some algebra, we find:

Að
~
uÞ ¼

Xn

1

ai ui 2
bi

ai

� �2

þ
gi

ai

2
b2

i

a2
i

� �" #( )
ðA7Þ

where:

ai ¼
1

s 2
i

þ
1

t2
; bi ¼

yi

s 2
i

þ
u0

t2
; gi ¼

u 2
0

t2
þ

y2
i

s 2
i

ðA8Þ

Now find the marginal density of
~
y by integrating (A5) with respect to

~
u: After rearranging

terms, the required integral is given in (A9), below. We find:
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pð
~
yju0; t

2;
~
s 2Þ / Jðu0Þexp 2

1

2

Xn

1

aidi

 !( )
ðA9Þ

where:

Jðu0Þ ;
ð

exp 2
1

2

� �Xn

1

ai ui 2
bi

ai

� �2
( )

d
~
u; di ¼

gi

ai

2
b2

i

a2
i

� �

Rewriting (A9) in vector and matrix form, to simplify the integration, we find that if

f ;
bi

ai

� �
; K 21 ; diagða1; : : : ;anÞ

ð
~
u2

~
f Þ0K 21ð

~
u2

~
f Þ ¼

Xn

1

ai ui 2
bi

ai

� �2

ðA10Þ

Carrying out the (normal) integration gives:

pð
~
yju0; t

2;
~
s 2Þ /

1

jK 21j
1=2

exp 2
1

2

Xn

1

aidi

 !( )
ðA11Þ

Now note that jK 21j ¼
Qn

1 ai ¼ constant and the constant can be absorbed into the

proportionality constant, but di depends on u0. So:

pð
~
yju0; t

2;
~
s 2Þ / exp 2

1

2

Xn

1

aidi

 !( )
ðA12Þ

Now applying Bayes’ theorem to u0 in (A12) gives:

pðu0j
~
y; t2;

~
s2Þ / pðu0Þexp 2

1

2

Xn

1

aidi

 !( )
ðA13Þ

where p(u0) denotes a prior density for u0. We consider two cases for the prior distribution

for u0, a vague prior and a normal prior.

Vague prior for u0

Our prior belief (prior to observing the point estimates of the respondents) is that for the

large sample sizes typically associated with sample surveys, the population mean, u0,

might lie, with equal probability, anywhere in the interval (a0, b0), where a0 denotes the

smallest lower bound given by any respondent, and b0 denotes the largest upper bound.

So we could reasonably adopt a uniform prior distribution on (a0, b0). To be fully confident

that we are covering all possibilities, however, we adopt the (improper) prior density on

the entire real line. We therefore adopt a (vague) prior density of the form:

pðu0Þ / constant ðA14Þ

for all u0 on the real line. Inserting (A14) into (A13), and noting that pðu0Þ / constant;

gives:

Press and Tanur: Respondent-Generated Interval Questionnaire Design 281



pðu0j
~
y; t2;

~
s 2Þ / exp 2

1

2

Xn

1

aidi

 !( )
ðA15Þ

Next substitute for di and complete the square in u0 to get:

pðu0j
~
y; t2;

~
s 2Þ / exp 2

u

2

� �
u0 2

v

u

� �2
� �

ðA16Þ

where:

u ¼
Xn

1

1

t2
2

1

ait4

� �
; v ¼

Xn

1

yi

ais
2
i t

2

� �
ðA17Þ

Thus, the conditional posterior density of u0, under a vague prior for u0, is seen to be

expressible as:

ðu0j
~
y; t2;

~
s 2Þ , Nð ~u;v2Þ ðA18Þ

where:

~u ;
v

u
; and v2 ;

1

u
ðA19Þ

But these terms may be simplified, as shown below.

Conditional posterior mean of u0, under a vague prior, as a convex mixture of usages

The appropriate measure of location of the posterior distribution in Equation (A18) to use

in any given situation depends upon the loss function that is appropriate. For many cases of

interest the quadratic loss function (mean squared error) is appropriate. For such situations,

we are interested in the posterior mean (under the normality assumptions in the current

model, the conditional posterior distribution of u0 is also normal, so the posterior mean,

median, and mode are all the same). It can be readily found by simple algebra that if:

li ;

1

s 2
i þ t2

� �
Xn

1

1

s 2
i þ t2

� � ;
Xn

1

li ¼ 1 ðA20Þ

then:

~u ¼
Xn

1

liyi ðA21Þ

Equation (A13) may now be reexpressed as:

pðu0j
~
y; t2;

~
s 2Þ / pðu0Þexp 2

1

2v2
ðu0 2 ~uÞ2

� �� �
ðA22Þ

Thus, the mean of the conditional posterior density of the population mean, under a

vague prior, is a convex combination of the respondents’ point estimates, that is, their
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usage quantities. It is an unequally weighted average of the usage quantities, as

compared with the sample estimator of the population mean, which is an equally

weighted estimator, �y: If we interpret s 2
i þ t2

	 
21
as the precision attributable to

respondent i’s response, and
Pn

1 s 2
i þ t2

	 
21
as the total precision attributable to all

respondents, li is interpretable as the proportion of total precision attributable to

respondent i. Thus, the larger his/her precision proportion, the larger the weight that is

automatically assigned to respondent i’s usage response.

Normal prior for ui

In some survey situations the same survey is carried out repeatedly so that there is strong

prior information available for providing a realistic finite range for u0; in other situations

we may have substantial information about the hyperparameters from other sources.

In such cases we could improve on our estimator by using a proper prior distribution for u0

instead of the one given in Equation (A14). This is done explicitly below using a normal

prior.

Suppose that for preassigned hyperparameters (u *, r2), a priori,

u0 , Nðu*; r2Þ ðA23Þ

Substituting into Equation (A22) gives:

pðu0j
~
y; t2;

~
s 2Þ / exp 2

1

2r2
ðu0 2 u* Þ2

� �
exp 2

1

2v2
ðu0 2 ~uÞ2

� �� �
ðA24Þ

Expanding the quadratic terms in the exponents, combining terms, and completing the

square in the form of a single quadratic term gives:

pðu0j
~
y; t2;

~
s 2Þ / exp 2

1

2h2
ðu0 2 gÞ2

� �
ðA25Þ

where:

g ;

u*

r2
þ

~u

v2

1

r2
þ

1

v2

; h2 ;
1

1

r2
þ

1

v2

ðA26Þ

Equivalently,

ðu0j
~
y; t2;

~
s 2Þ , Nðg;h2Þ ðA27Þ

Just as under a vague prior the posterior mean could be written as a convex mixture

(Equation (A21)), similarly, under the normal prior the posterior mean, g, in Equation

(A26) may also be rewritten as the convex mixture:

g ; j ~uþ ð1 2 j Þu* ðA28Þ
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where:

j ;

1

v2

1

v2
þ

1

r2

; ð1 2 j Þ ;

1

r2

1

v2
þ

1

r2

ðA29Þ

0 # j # 1; with ~u as given in (A20) and (A21). The posterior precision, h22, is the sum of

the precision of the data information under a vague prior, v22, and the precision of the

prior information, r22.

Assessing the variance parameters

To assess the variance parameters when they may all be dissimilar, define k1 ¼ k2 ¼ k and

obtain si and t from:

(a) k1si ¼ ðbi 2 aiÞ; for all i ¼ 1; : : : ; n; for some k1, such as k1 ¼ 2; 3; 4; 5; 6; 7; 8:

Typically, we would take k ¼ 4 (2 standard deviations on either side of the mean).

Define, as above:

(b) �a ¼ 1
n

Pn
1 ai; and �b ¼ 1

n

Pn
1 bi: Then,

(c) k2t ¼ b0 2 a0 for some preassigned k2, a0 ;
1#i#n
minðaiÞ; and b0 ;

1#i#n
maxðbiÞ: t is the same

for all respondents. We use an interval of 2 standard deviations on either side of the

(normal) mean of the individual recall distribution means for the respondents. We

need an assessment that will be reasonable for all respondents. We use the sample

range over all respondent’s intervals.

Different analysts might interpret the k’s somewhat differently. Using these variance

assessments, the weights become approximately:

li 8

1
ðbi2aiÞ

2

k2
1

þ
r2

0

k2
2

0
@

1
A

Xn

1

1
ðbi2aiÞ

2

k2
1

þ
r2

0

k2
2

0
@

1
A

;
Xn

1

li ¼ 1 ðA30Þ

where: r0 ; b0 2 a0: Note that in the special case that k1 ¼ k2; the k’s cancel out in

numerator and denominator of (A30), so that the weights do not depend upon the k’s.

Then, the weights become:

li 8

1
ðbi2aiÞ

2þr2
0

� �
Xn

1

1
ðbi2aiÞ

2þr2
0

� � ðA31Þ

Conditional posterior variance of u0

It is straightforward to check that the conditional posterior variance of u0 under a vague

prior is given by:

v2 ¼ 1Xn

1

1
s 2

i
þt 2

� �8 1Xn

1

1
ðbi2aiÞ

2

k2
1

þ
r2

0

k2
2

0
@

1
A

ðA32Þ
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the reciprocal of the total precision for all respondents in the sample. For k1 ¼ k2 ¼ k;

v2 8
1Xn

1

k 2

ðbi 2 aiÞ
2 þ r2

0

� � ðA33Þ

so that in this case, while the conditional posterior mean does not depend upon k, the

conditional posterior variance does. So the conditional posterior distribution of the

population mean, under a vague prior, is given approximately by:

ðu0j
~
y; t2;

~
s 2Þ , Nð ~u;v2Þ ðA34Þ

where ~u and v2 are given in (A21), (A30) and (A31), and (A32) or (A33). Results are

analogous for the normal prior.

Credibility intervals

Let z1=2 denote the 1=2-percentile of the standard normal distribution. Then, for a vague

prior on the population mean, a (100-1)% credibility interval for the population mean, u0 is

given by:

ð ~u2 z1=2v; ~uþ z1=2vÞ ðA35Þ

That is,

P{ ~u2 z1=2v # u0 # ~uþ z1=2vj
~
y; t2;

~
s 2} ¼ ð100 2 1Þ% ðA36Þ

For a normal prior Nðu*; r2Þ on the population mean, a (100 2 1)% credibility interval for

the population mean, u0 is given analogously by:

P{g 2 z1=2h # u0 # g þ z1=2hj
~
y; t2;

~
s 2} ¼ ð100 2 1Þ% ðA37Þ
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