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Research and Training for
Quality Improvement'
George E.P. Box®

Abstract: Quality improvement is seen as an
extension and democratization of use of the
scientific method. The domain of such
an extension has a number of dimensions
that include users, disciplines, areas of
endeavor, time (never-ending improvement)
and the evolving discovery of new factors
affecting the system. Simple tools are
described, which may be used by the whole
work force for studying the data contin-
uously generated by the process, to achieve
improvement. More sophisticated methods,

1. Introduction

Quality improvement is about finding out
how to do things better. The efficient way to
do this is by using scientific method - by
which I mean a group of techniques which
catalyze the acquisition of knowledge -
often employed in the past by only a small
elite of trained researchers. Modern quality
improvement extends and democratizes the
domain of scientific method over a number
of dimensions (Box 1989b) which include:
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particularly the basics of experimental
design, may be used by the engineer or
scientist to greatly increase the efficiency
of experimentation whether intended to
increase the mean, reduce the variation, or
to discover designs for process and product
which are robust to both component vari-
ation and environmental change.
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users: from the chief executive
officer to the janitor;

disciplines: e.g., management, statistics,
engineering, psychology,
anthropology;

areas of

endeavor: e.g., factories, hospitals,
airlines, department stores;

time: never-ending quality improve-
ment;

causative

factors: an evolving panorama of fac-
tors affecting the operation of
the system often not known
in advance but needing to be
discovered.

1.1. Users

In the past, we have rationed scientific
method and provided a license to use it only
to those having research degrees. But in fact,
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Fig. 1. (a) Frequency distribution of

workers by creativity. (b) Frequency distri-
bution of problems by needed creativity.

the single entity which divides the human
race from the rest of the animal kingdom is
its creativity and just as fish must swim and
birds must fly, it is natural for human beings
to be creative.

To understand the implications of this
(Box 1989a), imagine two frequency distri-
butions. Figure la shows the kind of fre-
quency distribution of creativity we might
expect to find among the workforce of some
organization such as a factory, a hospital, a
university, or an airline. This is the kind of
distribution usually found for human skills,
showing clustering about a modal value
with falling off in frequency on either side.
Traditionally it was assumed that the highly
qualified few fell in the right tail of this
distribution and these few were therefore the
“licensed” problem solvers.

Figure 1b shows a frequency distribution
of problems that might beset an organiz-
ation, classified by the degree of creativity
needed to solve such problems. Here one
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expects a Pareto-like distribution with a
large number of very simple problems and
the frequency falling off as the problems
become more challenging.

In the past, the designated problem solvers
were too few to deal with any but a small
proportion of the problems and were in any
case over-qualified to deal with most of
them. But, one ought not need a Ph.D. to
make sure, for example, that hospital
records are available when a patient comes
to be examined. Most of the problems that
cause inefficiency in organizations are sim-
ple problems and the vast pool of creativity
potentially available to solve them is not
used.

1.2. Disciplines

Quality does not fit into any one slot. It is
not just statistics, not just engineering, not
just management, not just psychology. Thus
we need to think always in terms of cooper-
ation, not departmentalism, and of teams,
not of lone rangers. We must listen care-
fully, because frequently what we have to
absorb is from a field other than our own.
Also while retaining our humility, we must,
at the same time, not be overawed.

1.3.  Areas of endeavor

Quality improvement is most often thought
of as applying to manufacture on the factory
floor. But even in manufacturing organiz-
ations a high proportion of the workforce
are otherwise engaged — in billing, invoicing,
planning, scheduling, for example; all of
these operations can be improved. But
outside such industrial organizations, all
individual citizens must deal with a complex
world involving hospitals, government
departments, universities, airlines, and so
forth. Lack of quality in these organizations
causes needless expense, wasted timE, and
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unnecessary frustration. Quality improve-
ment applied to these activities could free us
all for more productive and pleasurable
pursuits.

14. Time

For never-ending improvement there must
be a long-term commitment to renewal. A
commonly used statistical model links a set
of variables “known” x, with a response y
by an equation y = f(x;) + e where eis an
error term, often imbued by statisticians
with properties of randomness, independ-
ence and normality. A more realistic version
of this model is

y = f(x) + e(x)

where x, is a set of variables whose nature
and behavior is unknown. By skillful use of
the techniques of informed observation
and experimental design, as time elapses,
elements of x, are transferred into x, - from
the unknown into the known. This transfer-
ence is the essence of modern quality
improvement and has two consequences:

a. once a previously unknown variable
has been identified it can be fixed at a
level that produces the best results;

b. by fixing it we remove an element
which previously contributed to vari-
ation.

1.5. Factors and assignable causes

The field of factors potentially important
to quality improvement also can undergo
seemingly endless expansion. Problems of
mathematical optimization are frequently
posed as if they consisted of maximizing
some response y over a known k-dimensional
space of factors x,, but in practice the factor
space is never totally known and is continu-
ally developing.
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2. Requirements for Change

This extension of the dimensions and the
domain for the application of scientific
method represents a very great change from
the way that things are usually done. It
requires (see, for example, Deming 1986) the
following:

a. change in management attitudes and
structure to produce and preserve the
designed change in the organization;

b. management training to achieve this;

c. concomitant change in each employee’s
job;

d. training to equip each employee to
carry out his/her changed role.

Considerations (a), (b), (c), and (d) are all of
great importance. Nothing can happen
without getting, not only the support of
management, but its enthusiastic involve-
ment. But it is equally true that even if
management is genuinely ready and equip-
ped to move, it will not get anywhere unless
the necessary changes in employees’ roles
and the necessary new training can be put in
place as in (c) and (d) above. I will focus on
these two considerations.

2.1. Informed observation and design
experiment
Until comparatively recently technical

advance was slow — the ships of the thirteenth
century were somewhat better designed than
those of the twelfth century but the differ-
ences were not very dramatic. And then
three or four hundred years ago a process of
quickened technical change began which has
ever since been accelerating. This acceler-
ation is attributed to an improved process for
finding things out we call the scientific meth-
od.

We can, I think, explain at least some
aspects of this scientific revolution by
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considering a particular instance of dis-
covery. We are told that in the late seven-
teenth century it was a monk from the
Abbey of Hautvillers who first observed
that a second fermentation in wine could be
induced which produced a new and different
sparkling liquid, delightful to the taste,
which we now call champagne. Now the
culture of wine itself was known from the
earliest records of man and the conditions
necessary to induce the production of cham-
pagne must have occurred accidentally
countless times throughout antiquity. How-
ever, it was not until this comparatively
recent date that the actual discovery was
made. This is less surprising if we consider
that to induce an advance of this kind two
circumstances must coincide. First an infor-
mative event must occur and second a per-
ceptive observer must be present to see it and
learn from it.

Now most events that occur in our daily
routine correspond more or less with what
we expect. Only occasionally does something
occur which is potentially informative. Also
many observers, whether through lack of
essential background or from lack of curi-
osity or motivation, do not fill the role of a
perceptive observer. Thus the slowness in
antiquity of the process of discovery can be
explained by the extreme rarity of the
chance coincidence of two circumstances
each of which is itself rare. It is then easily
seen that discovery may be accelerated by
two processes which I will call informed
observation and directed experimentation.

By a process of informed observation
we arrange things so that, when a rare
potentially informative event does occur,
people with necessary technical background
and motivation are there to observe it. Thus,
when recently a supernova exploded, the
scientific organization of this planet was
such that astronomers observed it and
learned from it. A quality control chart fills
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a similar role. When such a chart is properly
maintained and displayed, it ensures that
any abnormality in the routine operation
of a process is likely to be observed and
associated with what Shewhart called an
assignable cause — so leading to the gradual
elimination of disturbing factors.

A second way in which the rate of acqui-
sition of knowledge may be increased is by
what I will call directed experimentation.
This is an attempt to artificially induce the
occurrence of an informative event. Thus,
Benjamin Franklin’s plan to determine
the possible connection of lightning and
electricity by flying a kite in a thunder cloud
and testing the emanations flowing down
the string, was an invitation for such an
informative event to occur.

Recognition of the enormous power of
these methods of scientific advance is now
commonplace. The challenge of the modern
movement of quality improvement is nothing
less than to use them to further, in the widest
possible manner, the effectiveness of human
activity.

2.2. Informed observation

The less sophisticated problems in quality
improvement can often be solved by informed
observation using some very simple tools
that are easily taught to the workforce.
While on the one hand, Murphy’s law
implacably ensures that anything that can
go wrong with a process will eventually go
wrong, the same law also ensures that every
process produces information that can be
used for its own improvement. In this
sentence the word “process’ could mean an
industrial manufacturing process, or a
process for ordering supplies or for paying
bills. It could also mean the process of
admission to a hospital or of registering at a
hotel or of booking an airline flight. _
Three simple strategies that can be used to
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defeat Murphy are Corrective Feedback,
Preemptive Feedforward, and Simplification
(Box 1989b).

Corrective Feedback occurs when the
study of system faults leads to their eradi-
cation. Preemptive Feedforward occurs
when careful forethought prevents faults
from occurring. Simplification occurs when
unnecessary complication in a process is
unravelled (see, for example, Fuller 1985).

To put such strategies into effect, the
workforce needs a simple set of tools such
as is described by Ishikawa (1976) in his
invaluable little book available in English
and written for foremen and workers to
study together. I would make a few new
additions, so that my list would read:

Check sheets and recordkeeping
Pareto charts

Flow diagrams

Cause—effect diagrams

Run charts

Histograms

Stratification

Scatter plots

Cusums

. Other graphs.

0 XN R W=

—
(=]

Cusums are here intended to be used simply
as a diagnostic graphical tool pointing to
approximate times at which changes in
mean (or in range) may have occurred, and
so helping with the assignment of cause. No
formal assessment of significance would be
needed at this stage. Various illustrations of
the use of these tools will be found, for
example, in the Ishikawa and Fuller references
above and also in Box and Bisgaard (1987).

2.3 Experimental design

The solution by the workforce of a multitude
of simple problems using the elementary
tools listed above can produce major improve-
ments in quality and productivity, but there
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is still another area where additional major
gains can be accomplished.

Although R.A. Fisher invented exper-
imental design more than 60 years ago, its
use has still not become ‘customary in
industrial experimentation. This is partly
the fault of the universities. The use of one
factor at a time experimentation to study
multifactor situations has (with rare excep-
tions) become indefensible, yet it is still
taught in departments of chemistry and en-
gineering and is still prevalent in industry.

The excuse usually advanced by engineer-
ing colleges for not teaching experimental
design is that the syllabus is already full
and that to include a course on design and
analysis of experiments would mean that
something would have to be taken out.
“What could we take out?” I am often
asked. To this I reply: “Take out almost
anything; surely nothing is more important
than to equip engineers to properly conduct
investigations and to run experiments.” As I
was told by a senior manager in a highly
successful Japanese company, “an engineer
not trained in the design of experiments is
not an engineer.”

3. Which? How? Why?

Suppose y is some quality characteristic
whose probability distribution depends on
the levels of a number of factors x. Exper-
imental design may be used to reveal certain
aspects of this dependence; in particular
how the mean E(y) = f(x) and the variance
o’(y) = F(x), depend on x. Both choice of
design and method of analysis are greatly
affected by what we know or what we think
we know about the input variables x and the
functions f(x) and F(x) (see, for example,
Box, Hunter, and Hunter 1978).

Which: In the early stages of investigation
the task may be to determine which subset of
variables x, chosen from the larger set x
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are of importance in affecting y. In this
connection a Pareto hypothesis (a hypothesis
of “effect sparsity’’) becomes appropriate
and the projective properties into lower
dimensions in the factor space of highly frac-
tionated designs (Box, Hunter, and Hunter
1978; Finney 1945; Plackett and Burman
1946; Rao 1947) may be used to find an
active subset of k active factors. Analyses
based on normal plots (Daniel 1959) or
Bayesian methods (Box and Meyer 1986a)
which take account of the Pareto hypothesis
are efficient and geometrically appealing.
How: When we know, or think we know,
which are the important variables x, we
may need to determine more precisely how
changes in their levels affect y. Often the
nature of the functions f(x,) and F(x,) will
be unknown. However, over some limited
region of interest, a local Taylor’s series
approximation of first or second order in x;
may provide an adequate approximation;
particularly if y and x, are re-expressed
when necessary in appropriate alternative
metrics. Fractional factorials and other res-
ponse surface designs of first and second
order are appropriate here. Maxima may be
found and exploited using steepest ascent
methods followed by canonical analysis of a
fitted second degree equation in appro-
priately transformed metrics (Box and Wil-
son 1951). The possibilities for exploiting
multidimensional ridges and hence deter-
mining alternative optimal processes
become particularly important at this stage
(see, for example, Box and Draper 1986).
Why: Instances occur when a mechanistic
model can be postulated. This might take
the form of a set of differential equations
believed to describe the underlying physics.
Various kinds of problems arise. Among
these are:
How should parameters (often corre-
sponding to unknown physical con-
stants) be estimated from data?
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How should candidate models be tested?
How should we select a model from
competing candidates?

What kinds of experimental designs are
appropriate? ,

Workers in quality improvement have so far
been chiefly occupied with problems of the
“which” and occasionally of the ‘“how”
kind and have consequently made most use
of fractional factorial designs and other
orthogonal arrays, and of response surface
designs.

4. Studying Location, Dispersion, and
Robustness

Experimental design has been used most
often as a means of discovering how the
process might be changed to increase the
mean of some quality characteristic. It has
also an important role to play in reducing
dispersion.

4.1. Using experimental designs to

minimize variation

High quality, particularly in the parts
industries (e.g., automobiles, electronics), is
frequently associated with minimizing
dispersion. In particular, the simultaneous
study of the effect of the variables x on the
variance as well as the mean is important in
the problem of bringing a process on target
with smallest possible dispersion (Phadke
1982).

Bartlett and Kendall (1946) pointed to the
advantages of analysis in terms of log sﬁ to
produce constant variance and increased
additivity in the dispersion measure. It is
also very important in such studies to re-
move transformable dependence between
the mean and standard deviation. Taguchi
(1986, 1987) attempts to do this by the nse of
signal to noise ratios. However, it may be
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shown that it is much less restrictive, sim-
pler, and more statistically efficient to pro-
ceed by direct data transformation ob-
tained, for example, by a lambda plot (Box
1988).

A practical difficulty may be the very
large number of experimental runs needed
in such studies if complicated designs are
employed. It was recently shown how, using
what Fisher called hidden replication, unre-
plicated fractions may sometimes be em-
ployed to identify sparse dispersion effects
in the presence of sparse location effects
(Box and Meyer 1986b).

4.2. Experimental design and robustness
to the environment

A well designed car will start over a wide
range of conditions of ambient temperature
and humidity. The design of the starting
mechanism may then be said to be “robust”
to changes in these environmental variables.
Suppose E(y) and possibly also o?(y) are
functions of certain design variables x,
which determine the design of the system
and also of some environmental variables x,,
which, except in the experimental environ-
ment, are not under our control. The prob-
lem of robust design is to choose a desirable
combination of design variables x,, at which
good performance is experienced over a
wide range of environmental conditions.
Similar problems were earlier discussed
by Youden (1961a, b), Michaels (1964), and
Wernimont (1977) and recently their impor-
tance in quality improvement has been
emphasized by Taguchi. His solution
employs an experimental design which com-
bines multiplicatively, an “inner” design
array and an “outer” environmental array.
Each piece of this combination is usually a
fractional factorial design or some other
orthogonal array. Recent research has con-
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centrated on various means for reducing the
burdensome experimental effort which cur-
rently may be needed for studies of this
kind.

4.3.  Robustness of an assembly to
variation in its components

In the design of an assembly, for example an
electrical circuit, the exact mathematical
relation y = f(x) between the quality
characteristic of the assembly, such as the
output voltage y of the circuit and the
characteristics x of its components (resistors,
capacitors, etc.), may be known from phys-
ics. However, there may be an infinite vari-
ety of configurations of x that can give the
same desired mean level E(y) = m, say.
Thus an opportunity exists for optimal de-
sign by choosing a “best” configuration.

Suppose the characteristics x of the
components vary about “nominal values” §
with known covariance matrix V. Thus, for
example, a particular resistance x; might
vary about its nominal value §; with known
variance o2. (Also variation in one component
would usually be independent of that of
another so that V would usually be diag-
onal.) Now variation in the input charac-
teristics x will transmit variation to the
quality characteristic y so that for each
choice of component nominal values &
which yield the desired output y = m there
will be an associated mean square error
E(y — n)’ = M(n) = F@).

Using a Wheatstone Bridge circuit for
illustration, Taguchi and Wu (1985) pose
the problem of choosing & so the M(n) is
minimized. To solve it they again employ an
experimental strategy using inner and outer
arrays. Box and Fung (1986), see also Mor-
rison (1957), have pointed out, however,
that their procedure does not in general lead
to an optimal solution and that it is better to
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use a simpler and more general method em-
ploying a standard numerical nonlinear op-
timization routine. The latter authors also
make the following further points:

a. For an electrical circuit it is reasonable
to assume that the relation y = f(x)is
known. But when, as is usually the
case, y = f(x) must be estimated
experimentally, the problems are much
more complicated and require further
study.

b. Itis also supposed that all of the o7 are
known and furthermore that they
remain fixed or change in a known way
(for example, proportionally) when
the &; change. The nature of the optimal
solution can be vastly different depend-
ing on the validity of such assumptions.

Taguchi’s quality engineering ideas are
clearly important and present a great oppor-
tunity for development. It appears, however,
(see, for example, Box, Bisgaard, and Fung
1988) that the accompanying statistical
methods that Taguchi recommends employ-
ing ‘“‘accumulation analysis,” ‘‘signal to
noise ratios,” and “minute analysis” are
often defective, inefficient, and unnecessarily
complicated. Furthermore, Taguchi’s philos-
ophy seems at times to imply a substitution
of statistics for engineering rather than the
use of statistics as a catalyst to engineering
(Box 1988). Because such deficiencies can be
easily corrected it is particularly unfortunate
that, in the United States at least, engineers
are often taught these ideas by instructors
who stress that no deviation from Taguchi’s
exact recipe is permissible.

4.4. Training

Instituting the necessary training for quality
is a huge and complex task. Some assessment
must be made of the training needs for the
workforce, for engineers, technologists, and
scientists, and for managers at various
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levels. We must consider how such training
programs can be organized using the struc-
ture that we have within industry,
service organizations, technical colleges,
and universities. A maximum multiplication
effect will be achieved by a scheme in which
the scarce talent that is available is employed
to teach the teachers within industry and
elsewhere.

5. Conclusions
We draw the following conclusions:

1. By organizing the workforce in problem-
solving teams trained in simple graphical
data analysis we can utilize, instead of
throwing away, an enormous resource
for creativity.

2. By equipping engineers with statistical
design and graphical analysis tools
accompanied by supporting computer
software, we can greatly catalyze the
design of new processes and improve-
ment of old ones. Formidable manage-
ment problems must be overcome to
allow this to happen.
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