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Although there is a substantial literature on revisions to data published by official agencies,
relatively little work has been undertaken on multivariate aspects of the data measurement
process (DMP) producing different vintages of the GNP variable. This is particularly so for
nonstationary time series. With a focus on U.S. real Gross National Product (GNP), we show
that a number of interesting questions can be answered within a multivariate framework.
Defining a “well-behaved” DMP as one generating a single stochastic trend in a multiple
vintage data set, we can then assess whether this is the case for GNP. We also consider
whether the short-run properties of the different vintages share the same dynamic structure.
Further, given multiple vintages on the same “generic” variable, is it the case that one vintage,
for example the final vintage, in a well defined sense, dominates the others, and that alone can
be used? We show that the idea of single (final) vintage representation is related to the idea
that data revisions arise through measurement errors, and contrast this with the interpretation
of revisions as forecast errors. Also, the existence of multiple vintages of GNP enables a
different approach to the much-researched question of whether GNP has a unit root. This can
be formulated as the null hypothesis of trend stationarity in the multivariate Johansen
framework. Inter alia we show the importance of the concept of weak exogeneity, and how
tests for stationarity of revisions and homogeneity of vintages can be formulated and tested.

Key words: Data measurement process; cointegration; common trends; common features;
weak exogeneity.

1. Introduction

1.1. Preliminary discussion of issues

Much of the data used to analyse aggregate relationships in the economy is first published

in preliminary form and then revised, sometimes quite extensively, before it becomes what

can be regarded as the “final” data. Revisions to data, and particularly to GNP, the focus of

this study, arise for several reasons. For example, given constant definitions and

methodology, the Bureau of Economic Analysis (BEA) has to balance timeliness and

incomplete information and therefore in due course, as more source data is incorporated,
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to us a copy of his report, with Karl-Gustav Hansson, on an international comparison of data revisions. Comments
from Jesus Gonzalez and Tommaso Proietti on the permanent-transitory decomposition were invaluable.

Journal of Official Statistics, Vol. 20, No. 4, 2004, pp. 573–602



this gives rise to revisions. (See, for example, Seskin and Sullivan (2000) and Grimm and

Parker (1998).) Thus, a figure for GNP is published as quickly as possible after the period

has ended, with the knowledge that some components of GNP have been based on less

than complete information and, as a result, will be revised as the missing information

becomes available. This leads to the view that revisions arise from measurement errors;

another view is that the preliminary data is constructed as an efficient forecast of later data.

These topics are discussed in greater detail in Section 3.4.

In addition, especially in recent years, there have been a number of important

developments in the structure of the macroeconomy that have had implications for the

measurement of GNP – see Landefeld and Fraumeni (2001) on measuring the “new”

economy. Thus, together with the regular process of revision given constant definitions,

there are changes arising out of the development of the “new” economy; for example,

computer software has been reclassified from intermediate production to investment, thus

increasing GNP. In a related development, the practice of keeping weights fixed for five

years or so in constructing price and quantity indices when new products, for example,

cellular phones, computers and computer games, are being introduced is likely to distort

the decomposition of value into price and quantity. A recent important methodological

change was the move to chained price and quantity indices; a move that has been echoed in

developments in many European countries.

What is clear from this process is that the data for GNP is not constant; what is the data

at one point in time is not necessarily the data at a later point. This creates a need for an

awareness of the properties of the data. For example, in terms of topical comment and

policy-making a particular downturn in GNP, as shown in the latest published figures,

would have different implications if, in due course, the GNP figures were expected to be

revised up to show that the downturn was not as severe as at first indicated. Economic

research directed at explaining trends and cycles in aggregate output may well be sensitive

to which version of the data is being used in the analysis; and where several variables are

used, there may be differences in revision patterns amongst the variables. As a further

example, European harmonisation of systems of national accounts for different countries,

because budget contributions are based on measures of real (constant price) GNP/GDP,

should take notice of the effects of data revisions on the indicator variables.

In general terms, we are interested in two characteristics of different measurements of

data on a particular variable. (The terminology we adopt is that revisions give rise to

different “vintages” of data on a “generic” variable, for example GNP.) These relate to the

central tendency or trend of the series of data measurements and to the short-run or

cyclical movements about the trend. A user might reasonably anticipate that at whichever

point in the production of the data the generic variable is measured, the trend will be

common to different measurements (vintages). Perhaps, but with less certainty, the same

anticipation may be held for short-run movements about the trend. The trend/cycle

distinction is a critical one in econometrics related to the distinction between nonstationary

and stationary variables, and this distinction is a key part of our analysis.

The study of data revisions on National Accounts data is well established – see, for

example Holden and Peel (1982a, b), Mork (1987), Patterson (1995), Patterson and Heravi

(1991a, b, c), Siklos (1996), Young (1987) and Zellner (1958). For an extensive survey

and assessment of revisions in an international context, – see Öller and Hansson (2002).
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Steel and McLaren (2000) consider the revision of trend estimates when the X11 and

X11ARIMA procedures are used. There are also regular articles by BEA staff on the

revisions process in the Survey of Current Business (SCB) – see, for example Parker

(1997), Moulton, Seskin, and Sullivan (2001), Moulton, Parker, and Seskin (1999), Seskin

and Sullivan (2000), Seskin (1998, 1999). And there is recent interest in the use of “real

time” data in econometrics – see, for example, Croushore and Stark (2001).

The present study differs from previous ones in developing an explicitly multivariate

approach for nonstationary time series, to solve a number of related problems. Central to

this is the concept of the data measurement process, denoted the DMP, which we briefly

describe and is used in Patterson (1995, 2002a) to model the widely scrutinised and revised

UK Index of Production. The number of revisions to a particular variable, regarded as the

generic variable of the process, is denoted m – 1, arising from the m different vintages of

data on that variable. Each of these m vintages is a random variable, viewed as part of a

multivariate system, resulting in a realisation or outcome, which is published in the case of

GNP in the Survey of Current Business (SCB).

The DMP defines a multivariate distribution for the m random variables corresponding to

the m vintages of data on the generic variable. Because there are multiple vintages of data,

the DMP is multivariate even though a single variable, GNP in this case, is being

considered. As an example of the process of revision, and the realisations it generates,

consider GNP for 1996q1. This was first published in the Survey of Current Business in

June 1996 as 6,811.6 ($U.S. 1992, seasonally adjusted at annual rates). This is a realisation

from the first vintage of the DMP for GNP. The first vintage was then revised to 6,818.6

in the July 1996 Survey of Current Business, which is a realisation from the second vintage

of the DMP; and then to 6,814.9 in the August 1996 Survey of Current Business. (See

Grimm and Parker (1998) for further details on the timing of “estimates” of GDP. The first

publication of GNP lags behind GDP by one publication month in the SCB.) This figure

was then subject to a number of further revisions and a change in the base year to 1996.

The download for 1996q1 from the BEA website in November 2001 was 7,703.1, which is

taken as the “final” value, although in principle further retrospective revisions are still possible.

It is clear from previous work on the time series properties of macroeconomic aggregates,

and GNP in particular, that a multivariate framework must allow for nonstationary time

series. We use the standard notation that a series that becomes stationary after differencing

once is denoted I(1); a series stationary without differencing, and nonstationary when

summed, is denoted I(0). An I(1) series has a stochastic trend driven by the cumulation of

past shocks rather than a deterministic trend. A related key concept for I(1) variables is that

of cointegration, the idea that whilst short-run deviations are possible, in the long run the

series are tied together. Thus, we might observe different vintages not drawing the same

picture in the short run. For example, if we take a thin “slice” out of a graph of the different

vintages of GNP, we may observe differences between the series; but taking two points

distant in time, the series have mapped out the same general picture.

1.2. Questions of interest

The existence of multiple vintages of data on the same generic variable, here GNP, raises

some interesting questions about the relationships between the vintages. It may be helpful
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if at the outset we summarise the key areas that are considered in detail in the remainder of

the article.

1.2.1. Do different vintages share the same long-run movements?

Is the DMP for multi-vintage GNP “well-behaved” in the sense of providing a single

stochastic trend (sometimes also referred to as a common trend), and hence a single

permanent – that is, I(1) long-memory – component for GNP? It is probably the implicit

presumption of most users that this is the case; however, this is a testable assumption and

a recent analysis of multiple vintages of UK GNP (Patterson 2002b) revealed two

stochastic trends, with obvious difficulties of interpretation. The possibility of multiple

stochastic trends may well increase with the changes in methodology and definition arising

from recent developments in the way GNP is calculated. Hence, we separate those

vintages that are part of the regular revisions process from the (conditionally) final vintage,

which incorporates major changes. The final vintage is conditional in the sense that later

revisions may be undertaken that will result in further changes to the data. We are then

interested in whether the cointegration “bond” between and amongst vintages is

maintained in the light of such changes.

1.2.2. Do different vintages share the same short-run movements?

Whereas the previous question is concerned with the existence of a common trend

(or trends), involving a focus on the long run, it is also of interest to know if there are

common short-run properties in the data. In particular, are there common features of serial

correlation? That is, can the I(0) cycles be removed analogously to the way that

cointegration removes the I(1) property in the levels of the data? Key articles in this area

are those of Engle and Kozicki (1993) and Vahid and Engle (1993, 1997) and recent

applications include Mills and Holmes (1999) and Issler and Vahid (2001). The question

of the existence of a single common trend relates to whether different vintages are giving a

consistent picture of sustained movements in GNP, whereas the question of the existence

of a common cycle relates to concerns around the particular timing of short-run

movements.

1.2.3. Can we use just one vintage of the data?

Can a single vintage be taken to represent, in a well-defined sense, the properties of the

complete m-vintage data set? The implicit assumption of most users is probably that the

final vintage should be used, with others discarded. The permanent-transitory (P-T)

decomposition due to Gonzalo and Granger (1995) (see also Stock and Watson (1988),

Granger and Haldrup (1997) and Proietti (1997)) is developed to provide an answer to this

question. We show that, in general, the long-memory component(s) of GNP is a

combination of all vintages of data, but that it is possible to formulate a set of testable

restrictions to assess whether a single vintage alone is responsible for the long-memory

component of a time series. Also related to this line of analysis is whether subsystems of

the variables can be separated so that the permanent components of each subsystem

depend only upon variables in the individual subsystem – see Granger and Haldrup

(op. cit.).
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1.2.4. Do data revisions arise from measurement error or efficient forecasts?

We show that the P-T decomposition can also be used to develop the measurement error

hypothesis (MEH) and the efficient forecast hypothesis (EFH) extended to nonstationary

variables as an explanation of the existence of data revisions. The MEH captures the idea

that different vintages of data arise because initial and preliminary vintages contain

measurement errors that are removed later in the process. This description matches a key

part of the official explanation for data revisions – see, for example, Seskin and Sullivan

(2000). On the other hand, as a large part of the literature on data revisions indicates, the

MEH is contrasted with the efficient forecast view that the preliminary vintage is an

optimal forecast of a later vintage. In this view the revisions are news relative to the

information set available at the time of the preliminary vintage. See for example Mankiw,

Runkle, and Shapiro (1984) and Mankiw and Shapiro (1986) for the U.S. and Patterson

and Heravi (1992) for the UK.

1.2.5. Can we say more about the “Is there a unit root in U.S. GNP?” debate?

Can any light be thrown on the question of whether there is a unit root in U.S. GNP?

The seminal study was that of Nelson and Plosser (1982), with continuing interest

represented by Murray and Nelson (2000); other studies are too numerous to list, but would

include, for example, Mocan (1994), Perron and Phillips (1987), Rudebsuch (1992, 1993),

Stock and Watson (1986), and Walton (1986). Despite continuing research, none (to our

knowledge) has considered the implications of the multivariate process generating the data

for the tests that have been undertaken. There are two particularly interesting consequences

of modelling published data as realisations from a multivariate DMP for GNP, as follows.

Panel unit root tests

Given that a multivintage data set generates T observations on m vintages, what is

effectively available is a panel data set on which to base unit root tests, with likely gains in

efficiency. For example, in our sample there are 130 £ 4 ¼ 520 observations rather than

the 130 available from a single vintage. Panel unit root tests have been used in a number of

other areas to improve the power of standard univariate tests – see, for example, Abauf

and Jorion (1990) and Taylor and Sarno (1998) on pooling country data on real exchange

rates and Balz (1998) on pooling different term interest rates. In the panel context, we

show not just that GNP may have one unit root but also that a set of vintages for GNP may

have more than one common trend, a possibility that could not be considered with

univariate unit root tests.

The null hypothesis of trend stationarity

We can ask whether as the null rather than alternative hypothesis, trend stationarity of each

vintage is in the cointegration space. The framework to answer this question is the

cointegrating VAR or vector equilibrium correction model, VEqCM (see for example

Johansen (1995a) and Hendry (1995)).

Overall, Question 1.2.1 is at the centre of the analysis. It proposes a plausible

behavioural motive of the data production agency. That is, even though several vintages of

data are provided to users at different stages in the publication process, the aim, whether

by refinements to reduce measurement errors, or forecasts that are efficient, is to provide
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vintages that are linked by having a single trend and, perhaps more hopefully, common

short-run (cyclical) movements.

This article is organized as follows. Section 2 defines the notation and data for this

study. Section 3 describes the analytical framework and Section 4 reports the empirical

results. A summary and some concluding remarks are provided in Section 5.

2. Data and Notation

2.1. Data

An initial analysis of the data suggested that the first three vintages of data on GNP are part

of a process of regular revision. These revisions are, for example, primarily due to the

incorporation of information from more source data, and tend to be in the nature of

refinements to the originally published data and, generally, do not incorporate definitional

changes, or if so these are relatively minor. Where definitional changes are present they

result in what we have referred to elsewhere (see especially Patterson and Heravi (1991b))

as a “traceback” effect due to the retrospective application of a revised definition. In this

respect, a redefinition has the same practical effect as a rebasing; that is, it changes the

constant price reference period, which implies changes to the expenditure weights. Under a

fixed base period scheme, the opportunity afforded by regular rebasing, usually every five

years, is often taken to include redefinitions. Where redefinitions have been coincidental

with rebasing for the first three vintages, they will have been treated as a rebasing effect.

(The rebasing method we use is described in Patterson and Heravi (1991b).)

The data for the first three vintages of GNP in constant prices was obtained from

successive issues of the Survey of Current Business, giving a usable sample of 130

observations from 1965q4 to 1998q1, and expressed on a common base period of 1992

$U.S. (The change from “headlining” GDP rather than GNP led to a minor change in the

publication schedule starting with the October 1991 issue of the Survey of Current

Business (SCB).)

The “final” series for GNP was downloaded from the BEA website in November 2001,

and is expressed in 1996 $U.S. This download represents a “real time” data set, typical of

what researchers and economic commentators would refer to for comment and analysis.

There will be some heterogeneity in the vintages included in this and similar downloads,

since data for earlier quarters has been revised more than that for later quarters. This data

incorporates conceptual and definitional changes that have been described in a series of

articles in the SCB – see, for example, Moulton (2000), Moulton and Sullivan (1999) and

Seskin and Sullivan (2000). It was apparent from the data that the 2001 download

incorporated changes that could not be handled by standard rebasing methods (to enable

all series to be expressed in the same reference period in terms of constant price units).

The final series was, therefore, left on its original base and is an example of the

incorporation of changes made outside the regular revisions process. The question of

comparability across different base years turns out to be one that can be resolved within

the analytical framework proposed in Section 3, with empirical results as shown in

Section 4.4.
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2.2. Notation

For convenience we use the following notation: the generic variable of interest is denoted

y; in Section 3 this will be the natural logarithm of constant price GNP for the United

States. Use of upper case Y refers to the level of a series. A particular vintage is indicated

by the addition of a superscript denoted v, where v ¼ 1; : : : ; m; thus m is the

(conditionally) final vintage. The subscript indicates the period to which the data

refers. In the data analysis the first three vintages for a particular time period are, therefore,

y1
t , y2

t , and y3
t : As noted, we take the November 2001 BEA website download as the final

for the present study and, for simplicity and conformity with the vintage notation, this is

denoted y4
t :

The notation yt without a superscript is the m by 1 column vector of different vintages of

data, that is yt ¼ y1
t ; y2

t ; : : : ; ym
t

� �
0; we use m to denote the final vintage in an analysis,

which may be y3
t or y4

t depending on whether three or four vintages are used. f ( yt) is the

joint probability density function of yt. A sample of observations and vintages, that is

realizations or outcomes of the process f yv
t

� �
for t ¼ 1; : : : ; T ; and v ¼ 1; : : : ; m; can be

arranged into a matrix of dimensions T £ m corresponding to the number of observations

and the number of vintages. A total, or cumulative, revision is defined as ym
t 2 yv

t and

a sequential revision is defined as yvþ1
t 2 yv

t ; relative percentage measures are defined by

dividing the revisions by yv
t and multiplying by 100. In the tables reporting empirical

results, a number without decimal places indicates a normalisation or imposed restriction.

2.3. Scale of revisions relative to the 3rd vintage

To give an indication of the scale of the initial revisions, Table 1 reports the %mean and

the %mean absolute revision, %mar, relative to the 3rd vintage, respectively. The positive

mean revision reflects the tendency for GNP to be revised up over time, that is on average

Yv
t , Y3

t for v ¼ 1; 2: However, there are oppositely signed revisions, as indicated by the

difference between the mean revision and the mean absolute revision, with the latter just

below 1/3%. The % cumulative revisions decline; the larger % sequential revision is

between the second and third vintage rather than the first and second vintage.

3. Analytical Framework

3.1. Cointegration and common trends

This section sets out the analytical framework for a multivariate DMP generating m

potentially nonstationary variables, with a view to addressing the five areas of interest

Table 1. %Mean and %mean absolute revision (%mar) to real GNP relative to

the 3rd vintage

v ¼ 1 v ¼ 2

%mean revision 0.138 0.106
%mar 0.315 0.253

Notes: %mar ¼ 100j Y3
t 2 Yv

t

� �
j=Yv

t for v ¼ 1; 2:
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highlighted in the introduction. By way of preliminaries, we first consider the central idea

that different vintages should be cointegrated.

As is well known, a linear combination of I(1) variables is in general also I(1), the

exception being where the variables share a stochastic trend resulting in a reduction in the

order of integration from I(1) to I(0) for a particular linear combination (more precisely for

a space of transformations that are observationally equivalent). Cointegration of I(1)

vintages makes sense from the perspectives of a data production agency and users for

different vintages of data pertaining to a single generic variable, in this case GNP. It says

that whichever vintage of data is used, it should be tied through cointegration to all other

vintages.

We expect not only that yv
t and yvþd

t should be cointegrated but also that if they are

on the same constant price basis, then yvþd
t 2 yv

t ; that is the revision, should be stationary.

If cointegration exists in the vector yt ¼ y1
t ; y2

t ; : : : ; ym
t

� �
0; then by the Granger

Representation Theorem (see Engle and Granger 1987, and Johansen 1995a), yt has vector

autoregressive (VAR), vector equilibrium correction model (VEqCM) and vector moving

average (VMA) representations. Each of these can be useful in providing information

about the process generating the data vintages, and we consider the VAR, VEqCM and

VMA in turn.

An appropriate analytical framework is the m-variate, pth order cointegrating VAR due

to Johansen (1988, 1995a); that is:

Dyt ¼ Pyt21 þ
Xp21

i¼1

GiDyt2i þCDt þ 1t ð1Þ

where 1t , iidð0;VÞ and V is positive definite. The role of the vector Dt is to allow

specification of the deterministic terms. Cointegration is associated with a reduced rank for

P ¼ ab0; where a and b are each of dimension m £ r and of rank r, with 1 # r #

ðm 2 1Þ; the cointegrating rank is r. The r vectors given by b0yt are the cointegrating – or

equilibrium correction – vectors. Hence, with cointegration, (1) is referred to as the vector

equilibrium correction model or VEqCM.

Dual to the r-dimensional cointegration space is the s-dimensional space of common

trends, where r þ s ¼ m: The common trends – see Stock and Watson (1988) – arise from

the vector moving average, VMA, representation, given by:

yt ¼ Cð1Þmt þ Cð1Þ
Xt

i¼1

1t þ C * ðLÞð1t þ mÞ ð2Þ

where C * ðLÞ is a matrix polynomial; the VAR is assumed to have a constant so

that CDt ¼ m; and Cð1Þ ¼ b’ða’
0 I 2

Pp21
i¼1 Gib’

� �21

a’
0: The symbol ’ indicates the

orthogonal complement of a matrix. Whilst b defines the cointegration space, a’ defines

the space of the stochastic trends.

If r ¼ m; then there are no unit roots, hence yt is I(0) not I(1); for yt to be I(1) there must

be at least one stochastic trend and r , m: If Dt ¼ ð1; tÞ0; then the testing procedure allows

for the possibility that yt is I(0) about a deterministic trend. With an appropriate

specification of the cointegrating vector when 1 # r # ðm 2 1Þ; we can also ask whether
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individual series in yt are I(0). In the case s ¼ m; none of the stochastic trends are common,

and there is no cointegration given that m ¼ r þ s:

3.2. Common factors and a permanent-transitory decomposition

In a development due to Gonzalo and Granger, hereafter GG, (1995) (see also Granger and

Haldrup (1997) and Johansen (1998)) the s common trends are given a representation in

terms of the m observable variables in the system. The GG representation is very useful

from the perspective of multiple vintages of data since it may be possible to associate

particular vintages with the common trend – or common factor as it is referred to in terms

of observables (see also Patterson (2000b)). Below we show that when s ¼ 1; the

condition of weak exogeneity of the vth vintage allows a representation in terms of that

vintage alone.

The GG decomposition is a permanent-transitory decomposition (a P-T decomposition

into separate I(1) and I(0) components) of the m vector yt in terms of the observable

variables. In particular the P-T decomposition is yt ¼ yP
t þ yT

t ; where the permanent, or

long memory, component is yP
t ¼ b’ða

0
’b’Þ

21a 0
’yt and the transitory, or short memory,

component is yT
t ¼ aðb0aÞ21b0yt: For reference define G1 ; b’ða

0
’b’Þ

21 and F1 ;
aðb0aÞ21; and note that since the rank of a matrix product cannot exceed the smallest rank

in the product, G1 is of rank s and F1 is of rank r. The common factors are Ft ; a 0
’yt and

G1 is the loading matrix on these. It is evident that yP
t is I(1) because a’ defines the space

of common trends, and that yT
t is I(0) because b0yt are the cointegrating vectors and, hence,

I(0). The factor model exists provided ðb;a’Þ has full rank, so that P ; ab0 has no more

than m 2 r eigenvalues equal to 0 – see GG (op. cit., Proposition 3) and Johansen (1998).

The essence of the P-T definition is that the transitory component does not Granger-

cause the permanent component and the transitory component is covariance stationary

whereas the permanent component is difference stationary. Under specific conditions, it is

these aspects that enable us to relate the revisions to the measurement error hypothesis.

This is discussed further below in Section 3.4.

What do we expect to find in the case of multi-vintage data? In what we might term

a “well-behaved” DMP, r ¼ m 2 1 and there is, therefore, one common trend, that is

s ¼ 1: We also term this full inter-vintage cointegration. This single common trend can be

interpreted as “driving” the process that generates m . 1 vintages of data. In terms of

observables, the corresponding single common factor is f 1t ¼
Pm

v¼1b1vyv
t ; where b1v is the

vth element of the 1 £ m weighting vector a 0
’: The permanent component of the vth

vintage is, therefore, gv1

Pm
v¼1b1vyv

t ; where G1 ¼ ðg11; : : : ; gm1Þ
0; which is the common

factor scaled by gv1:

It is as well not to take the well-behaved property of the DMP for granted. There is some

evidence that controverts this presumption. For the UK, Hendry (1983, 1994) notes

problems with different vintages of data used in modelling the consumption function.

Caplan and Daniel (1992), Cook (1994) and Jenkinson and Brand (2000) report some of

the initiatives taken by the UK’s main data agency following considerable difficulties of

interpretation with the scale of changes to different vintages of National Accounts data.

This was confirmed by Patterson (2002b), who found two stochastic trends in some

measures of UK GNP. For the U.S., the results in Siklos (1996) cast doubt on uniform
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acceptance of well-behaved DMPs in the National Income and Product Accounts; and the

recent set of changes in the comprehensive revision to GNP – see Moulton and Sullivan

(1999) – must leave this an open question a priori.

3.3. Identification of the cointegrating vectors and weak exogeneity

3.3.1. Identification

We next consider identification of the cointegrating vectors (Johansen and Juselius (1992),

Johansen (1995b)). A sufficient condition for just identification of the cointegrating

vectors is that there are r 2 1 independent restrictions on each vector. Restrictions in

excess of this number are overidentifying, and can be tested using a likelihood ratio test

statistic asymptotically distributed as x2ðqÞ; where q is the number of overidentifying

restrictions.

Just-identifying restrictions follow from the view that all pairs of vintages should

cointegrate. One could, for convenience, regard all vintages as pairwise cointegrating with

the final vintage. Equivalently, the sequential vintages could be regarded as cointegrating.

This follows from the transitivity of the cointegrating relations, or we can simply show that

the implied cointegrating vectors from either parameterisation give rise to the same

cointegration space. That is P can be written as P ¼ ab0 or P ¼ ak21kb0; where k is a

full rank matrix. Whichever, this then implies that vintage i pairwise cointegrates with

vintage j.

We illustrate this argument for the case m ¼ 4; r ¼ 3 and r 2 1 ¼ 2: Thus if, for

example, we take b parameterised to reflect pairwise cointegration of vintage v with

vintage v þ 1 and a normalisation of the ith column of b on the ith vintage, i ¼ 1; 2; 3; then

k, and the connection between parameterisations, is given as follows.

kb0 ¼

1 2b21 b21b32

0 1 2b32

0 0 1

2
664

3
775

1 b21 0 0

0 1 b32 0

0 0 1 b43

2
664

3
775 ¼

1 0 0 b41

0 1 0 b42

0 0 1 b43

2
664

3
775 ð3Þ

It is evident that pairwise cointegration of vintages provides a sufficient set of 2

(independent) identifying restrictions for each cointegrating vector.

Note that although (3) implies that the different vintages are cointegrated, it does not

imply that the revisions are stationary, or equivalently that the levels are homogenous of

degree 1. This requires, in addition, b21 ¼ b32 ¼ b43 ¼ 21: (The transformation matrix k

above will now be a matrix with 1’s on the diagonals, nonzero upper triangular elements

and 0’s elsewhere.) With m ¼ 4; stationarity of the revisions provides 3 testable

restrictions and, in general, m 2 1 restrictions that can be tested with a likelihood ratio test

statistic distributed as x2ðqÞ where q ¼ m 2 1:

3.3.2. Weak exogeneity

The permanent component (and the common factor) is not generally a single vintage but a

linear combination of the m vintages. However, the situation is simplified in the case of

full inter-vintage cointegration if one of the vintages – let us take as an example the final
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vintage – is weakly exogenous (for the parameters of interest a and b); for brevity we

refer to this as weak exogeneity, see, for example, Johansen (1992).

For example, if r ¼ m 2 1 then weak exogeneity of the final vintage corresponds to the

restriction that the last row of a is a 1 £ ðm 2 1Þ zero vector, which can be tested with a

likelihood ratio test statistic asymptotically distributed as x2ðm 2 1Þ: The matrix a’ can

then be constructed with a 0 in each of the first m 2 1 rows and a nonzero element in the

mth row, normalised at 1. This construction satisfies a 0
’a ¼ 0 and ða;a’Þ of full rank and

the common factor is Ft ¼ a 0
’yt ¼ ym

t : Simple calculations then show that the permanent

component is a just a function of the final vintage.

We illustrate this result with m ¼ 4 and r ¼ m 2 1 ¼ 2; then the P-T decomposition,

assuming the just-identification parameterisation in (3) and weak exogeneity of the final

vintage, is:

y1
t

y2
t

y3
t

y4
t

0
BBBBB@

1
CCCCCA ¼

0 0 0 2b41

0 0 0 2b42

0 0 0 2b43

0 0 0 1

2
666664

3
777775

y1
t

y2
t

y3
t

y4
t

0
BBBBB@

1
CCCCCAþ

1 0 0 b41

0 1 0 b42

0 0 1 b43

0 0 0 0

2
666664

3
777775

y1
t

y2
t

y3
t

y4
t

0
BBBBB@

1
CCCCCA ð4Þ

Stationarity of the revisions implies b41 ¼ b42 ¼ b43 ¼ 21; which combined with weak

exogeneity of the final vintage implies that the final vintage is the common factor, and that

the permanent component and the transitory component are the cumulative revisions.

That is, yt ¼ yP
t þ yT

t with y
p
t ¼ ym

t ; : : : ; ym
t

� �
0 and yT

t ¼ ð y1
t 2 ym

t ; : : :; ym21
t 2 ym

t ; 0Þ0.

Thus (4) becomes

y1
t

y2
t

y3
t

y4
t

0
BBBBB@

1
CCCCCA ¼

0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1

2
666664

3
777775

y1
t

y2
t

y3
t

y4
t

0
BBBBB@

1
CCCCCAþ

1 0 0 21

0 1 0 21

0 0 1 21

0 0 0 0

2
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3
777775

y1
t

y2
t

y3
t

y4
t

0
BBBBB@

1
CCCCCA ð5Þ

This analysis shows that the implicit presumption that the final vintage is the permanent

component rests upon a number of testable conditions. The decompositions in (4) and (5),

and their generalisations, are not unique because it is only the dimension of the

cointegration space, and hence the common trends space, that is unique. The choice of a

particular rotation is reflected in k, with that choice guided by potentially interesting

interpretations of the resulting cointegrating vectors and adjustment coefficients, as is the

case with (4) and (5). Further, we can relate these conditions to the measurement error

hypothesis, which is a leading explanation for data revisions.

3.4. The Measurement Error Hypothesis (MEH) and the Efficient Forecast Hypothesis

(EFH)

The idea that data revisions are due to measurement errors is central both to research and

official explanations for multiple vintages – see, for example, Mork (1987) for the U.S.

and Patterson and Heravi (1992) for the UK. Preliminary vintages have to satisfy the need
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for timely data but they contain errors due to inaccurate measurement, which are reduced

by subsequent revisions. Seskin and Sullivan (2000) note of the revisions process that later

“estimates incorporate source data that are more complete, more detailed, and otherwise

more appropriate than those that were previously incorporated.” According to the

measurement error hypothesis, which has hitherto been stated in the literature for I(0)

variables, the preliminary vintage(s) is(are) equal to the final vintage plus an orthogonal

measurement error.

In contrast to the MEH, the efficient forecast hypothesis, EFH, views the preliminary

data as an efficient forecast of later vintages. For example, on this view a preliminary

vintage is optimal in a mean squared error sense in predicting any succeeding vintage

given information available at the time that the preliminary vintage is formed. As a result,

revisions relative to later vintages should be orthogonal to the preliminary vintage.

For stationary data it is possible to draw out a number of contrasting implications of the

MEH and EFH that allow them to be distinguished – see, for example, Patterson and

Heravi (1992). The MEH implies that yv
t is inherently noisier than yvþd

t for d . 0; as

indicated, for example, by their respective variances, whereas the reverse is true for the

EFH. The MEH implies that the regression of the revision yvþd
t 2 yv

t on yvþd
t should yield a

statistically insignificant coefficient on yvþd
t (because the measurement error is orthogonal

to the conditionally final vintage); on the other hand, yvþd
t 2 yv

t is correlated with yv
t :

In contrast, the EFH implies that the regression of yvþd
t 2 yv

t on yv
t should yield an

insignificant coefficient on yv
t (because the revision is “news” as far as yv

t is concerned); on

the other hand yvþd
t 2 yv

t is correlated with yvþd
t :

However, when the time series are generated by nonstationary processes, this

framework is invalid. Both the MEH and the EFH imply that yvþd
t 2 yv

t is I(0) given that

yvþd
t and yv

t are each I(1), thus the proposed regressions involve regressing an I(0) variable

on an I(1) variable, which will result in a regression coefficient of zero asymptotically.

Further, typically variances are estimated by the ensemble counterpart. For example,

suppose we wanted to compare the variance of yv
t with the variance of yvþd

t : For stationary

variables, it is sensible to estimate these variances by the corresponding sample variances

for t ¼ 1; : : : ; T ; on the assumption that this is an ensemble of realisations from the same

process for each value of t; however, when the variables are (second-order) nonstationary

the concept of a single variance no longer makes sense, the variances are indexed by t and

the sample variance does not estimate any of these variances.

When the data are nonstationary, we can exploit the GG decomposition to distinguish

between the MEH and the EFH. A defining feature of the GG decomposition is that shocks

to the transitory components are orthogonal to the permanent components in the long run,

in the sense that they have no long-run effect on the permanent components, and hence no

effect on the level of yt: Thus, they may have a short-run effect but the total multiplier of

Dy p
t with respect to yT

t is zero. In the previous section we derived the conditions that enable

the transitory components to be interpreted as the cumulative revisions, with no transitory

component – or in this context no measurement error – on the final vintage.

A straightforward implication of these conditions is that the revisions are measurement

errors, which are in the long run orthogonal to the final vintage. The conditions for this

orthogonality, and hence the MEH interpretation, to hold are, therefore, stationarity of the

revisions plus weak exogeneity of the final vintage.
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On the other hand an implication of the EFH is that transitory components should be

orthogonal in the long run to the initial vintage not to the final vintage. That is, yt ¼

yP
t þ yT

t but now with y
p
t ¼ y1

t ; : : : ; y1
t

� �
0 and yT

t ¼ 0; y2
t 2 y1

t ; : : : ; ym
t 2 y1

t

� �
0: In the

EFH interpretation, y1
t is the permanent I(1) component and the revisions relative to y1

t are

the transitory components and hence I(0). Thus the revisions, which are the transitory

components, can be interpreted as “news” relative to y1
t : More complex situations, where

some vintages fit the MEH and some fit the EFH, can arise and are dealt with below; it

helps to understand these if we first consider the case where y1
t is the permanent component

in greater detail.

The conditions for y1
t to be the permanent I(1) component and revisions to be “news” are

obtained as follows. First, return to (3) and choose (a rotation) ~k such that ~kb0 is in the

observationally equivalent form given by:

~kb0 ¼

b11 1 0 0

b12 0 1 0

b13 0 0 1

2
664

3
775 ð6Þ

If y1
t is weakly exogenous and b11 ¼ b12 ¼ b13 ¼ 21; then (5) becomes, as required:

y1
t
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t

y3
t

y4
t

0
BBBBB@

1
CCCCCA ¼

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

2
666664

3
777775
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t
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t
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t
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t

0
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1
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0 0 0 0

21 1 0 0

21 0 1 0

21 0 0 1

2
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3
777775

y1
t

y2
t

y3
t

y4
t

0
BBBBB@

1
CCCCCA ð7Þ

That is y1
t is the permanent I(1) component and the revisions are the I(0) components.

Of note is that the (homogeneity) restriction b1j ¼ 21; i ¼ 1; 2; 3; is observationally

equivalent to the MEH restriction b4j ¼ 21; i ¼ 1; 2; 3; and just reflects the fact that

according to both the MEH and EFH the linear combinations given by any pair of vintages

are stationary. Thus, the essence of what distinguishes the MEH and the EFH is whether,

given that homogeneity is not rejected, the final vintage or the first vintage is weakly

exogenous, respectively. This is a testable distinction.

Now consider the situation in which y2
t is the permanent I(1) component so that

y
p
t ¼ y2

t ; : : : ; y2
t

� �
0 and yT

t ¼ y1
t 2y2

t ; 0; : : : ; y4
t 2 y2

t

� �
0: Then:

y1
t

y2
t

y3
t

y4
t

0
BBBBB@

1
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0 1 0 0

0 1 0 0

0 1 0 0

0 1 0 0

2
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How is this structure to be interpreted? Now y1
t is no longer an efficient forecast of later

vintages since the revision y2
t 2 y1

t is orthogonal to y2
t rather than y1

t ; so that the revision is

a measurement error. However, y2
t is an efficient forecast of y3

t and y4
t in the sense that the

corresponding revisions y3
t 2 y2

t and y4
t 2 y2

t ; respectively, are orthogonal to y2
t : Tests to

distinguish the MEH and EFH are reported in Section 4.
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3.5. Serial correlation common features and common cycles

In Section 3.1, we considered how to assess whether there were common long-run features

in the multi-vintage data set, the central question of that section being whether there was

one common (stochastic) trend in m vintages of data. In this section we move the focus to

short-run movements in the data. In this case the central idea is that the short-run

correlations amongst the vintages may (also) be common. These common aspects, whether

referring to the long run or the short run, are referred to as common features.

A serial correlation common feature is said to exist if there exists a linear combination

of Dyt which is an innovation with respect to information prior to t, (Vahid and Engle,

hereafter VE, 1993). Intuitively, a common feature occurs when the Dyt move together; it

refers to short-run movements rather than the long-run tendencies in yt that are captured by

cointegration. There can be k , m independent linear combinations, individually called

cofeature vectors, with this property. Together they form an m £ k matrix, say F, of rank k,

such that F0Dyt is a k £ 1 vector of innovations. VE (1993, Propositions 1 and 2) show that

these linear combinations remove the same number, k, of cycles in the VMA given by (2),

that is F0C * ðLÞ1t ¼ 0: Removing k cycles means that m 2 k cycles rather than m are

common. Given this equivalence, a test for a serial correlation common feature of at

least order k in Dyt is a test for at most m 2 k common cycles. Just as cointegration in an

m-vector of I(1) series reduces the number of common trends, so the presence of common

features reduces the number of I(0) cycles.

In the present context we note the following. If r ¼ m 2 1; that is, the number of

stochastic trends has been reduced from m to 1, a description we characterised as a well-

behaved DMP, then k can only be 0 or 1. If k ¼ 0 there is no reduction in the maximum

number m of common cycles, whereas if k ¼ 1 there are m 2 1 common cycles, which is the

same as the cointegrating rank. (This is an application of Vahid and Engle’s Theorem 1.)

The cofeature vector, if it exists, will be independent of the cointegrating vectors.

Vahid and Engle (op. cit.) suggest the following test statistic:

Cð p; kÞ ¼ 2ðT 2 p 2 1Þ
Xk

i¼1

lnð1 2 r2
i Þ

The r2
i are the squared canonical correlations, in increasing order, between

Xt ¼ ðDy1t; Dy2t; : : : ; DymtÞ
0 and Wt ¼ ðDy1t21; Dy2t21; : : : ; Dymt21; : : : ; Dy1t2p;

Dy2t2p; : : : ; Dymt2p; b̂1
0yt21; : : : b̂r

0yt21Þ
0 where ^ denotes a consistent estimator, here

the Johansen estimator. The test statistic is asymptotically distributed as x2ðdf Þ with

degrees of freedom given by df ¼ kðk þ mp þ r 2 mÞ: The sequence of test statistics

Cð p; 1 # k # k maxÞ; is used to determine the number of serial correlation common

features. The r2
i can be calculated by exploiting the dual eigenvalue problem (see Johansen

1995a, Lemma A9).

Alternatively, and of use if it is found that k . 0; VE show that a likelihood ratio test

can be constructed by first carrying out FIML estimation of the system given by:

Ik f* 0

0ðm2kÞxk Im2k

2
4

3
5Xt ¼

0kxðmpþrÞ

~G1; : : : ; ~Gp; ~a

" #
Wt þ ~mþ nt ð9Þ
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and then comparing it with the unrestricted reduced form VEqCM, which differs only in

replacing the first k equations by equations analogous to the last m 2 k equations. A test of

the restrictions has df degrees of freedom and is equivalent to C( p, k).

4. Empirical Analysis

This section provides the results of a number of hypothesis tests related to the previous

analysis. It may be helpful at the outset to give a brief summary of the issues of interest.

In Section 4.1, we address the central question of how many stochastic trends there are

in the data given by the first three vintages in the first instance, and then with inclusion of

the final vintage, taken as a download from the BEA website for the purposes of this study.

For example, in the first case a cointegrating rank of two implies one stochastic trend,

whereas a cointegrating rank of one implies two stochastic trends.

In Section 4.2, a multivariate perspective is used to consider the question of whether real

GNP has a unit root and is, therefore, difference stationary or trend stationary. In Section

4.3, we assess whether any variables can be excluded from the analysis; that is, do any of

them play no part in the cointegrated system? The analysis in these two sections is related

by consideration of whether a deterministic trend can be excluded from the system; we

conclude that it can be excluded.

In Section 4.4, we assess two component issues related to the distinction between the

measurement error hypothesis and the efficient forecast hypothesis; a necessary condition

for both is that the (log) revisions should be stationary. Then the distinction hinges on

which vintage, if any, is weakly exogenous.

In Section 4.5, the empirical analysis relates back to the question of how to compare the

relatively homogenous first three vintages with the last. The latter is on a different constant

price basis from the former, owing to the methodological change from a constant base year

to a chained index. We show how this can be achieved using the results of the previous

empirical analysis.

Finally, in Section 4.6, we consider whether the short-run movements in the different

vintages share a serial correlation feature (analogous to the idea that in the long run the

different vintages share a single stochastic trend). This hypothesis is firmly rejected, so

that whilst the different vintages trace out the same long-run movement, there are

departures in short-term behaviour of the vintages.

When a number of hypothesis tests are undertaken, as in this section, the cumulative, or

overall, size of the testing procedure will, in general, exceed the individual size (that is,

type one error) for each test. For example, two separate tests that are independent, each

carried out at the a significance level, will result in a cumulative type one error of

1 2 ð1 2 aÞ2; for example 9.75% for a ¼ 5%: As, in general, we do not know the extent of

dependence between tests, one strategy to reduce the cumulative size is to reduce the size

of each of the tests in the sequence, for example carry out each of n tests at a size of a=n

(using the Bonferroni equality). Alternatively a single joint test, where available, could be

used. (We are grateful to a referee for drawing attention to these points.) Although we are

carrying out a number of tests, the results are unambiguous and robust in this respect; for

example, often the p-values associated with the test statistics are virtually zero.
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4.1. Cointegrating rank and number of common trends

The starting point is the VEqCM given by (1), with a lag order of 2 determined by standard

techniques –both AIC and SIC lead to this choice (see, for example, Johansen (1995a) and

Patterson (2000a)). The VEqCM allows a trend in the data space, which is not necessary in

the cointegration space as suggested by application of the Pantula (1989) principle – see

Hansen and Juselius (1995, especially Section 6.2). We also return to the question of the

inclusion of the trend in Sections 4.2 and 4.3, in assessing the hypothesis of trend

stationarity for individual data vintages.

We first briefly consider the situation with the first three vintages, with the test statistics

for cointegrating rank reported in Table 2a. Consideration is also given to small sample

corrections to the trace test statistic, which have been suggested by Ahn and Reinsel

(1988) (see also Reimers (1992)), Hansen and Rahbeck (2000) and Johansen (2001). Ahn

and Reinsel suggest multiplying the trace statistic by T 21ðT 2 kpÞ ; CFAR; Hansen and

Rahbeck suggest T 21ðT 2 ðk 2 1ÞpÞ ; CFHR; where p is the lag length, k is the number of

variables in the analysis, (k ¼ m for the cases considered here), and T is the effective

sample size. For m ¼ 3; CFAR ¼ 0:95 and CFHR ¼ 0:97; for m ¼ 4 these are 0.94 and

0.95, respectively. The conclusions drawn from the test statistics in Tables 2 and 3 are

robust to these small sample adjustments.

Johansen (2001) shows that small sample adjustments of this kind are one part of an

adjustment based on the Bartlett (1937) correction principle; in particular the correction

factor is also a function of the number of common trends. Following Johansen (2001), we

simulated the finite sample distributions using the empirical model as a base. In the first

instance we generated simulations using the multivariate normal distribution to draw the

Table 2a. Test statistics for cointegrating rank (first three vintages)

Rank l̂ Trace Quantiles

null 95% 95%(simulated)
r ¼ 0 0.35 84.98 29.7 33.0
r # 1 0.21 30.39 15.4 16.7
r # 2 0.00 0.12 3.76 4.09

Note: l̂ are the estimated eigenvalues and, throughout, asymptotic 95% quantiles are from Osterwald-Lenum

(1992); simulated quantiles are indicated by 95%(simulated).

Table 2b. Univariate diagnostic tests

Equation 1 Equation 2 Equation 3

Normality
Jarque-Bera 18.92 [0.00] 18.13 [0.00] 30.88 [0.00]
kurtosis 1.76 [0.00] 1.81 [0.00] 2.44 [0.00]
skewness 20.37 [0.10] 20.23 [0.29] 20.10 [0.65]
ARCH 4.14 [0.13] 4.69 [0.10] 3.14 [0.21]

Note: Kurtosis and skewness statistics are from Kendall and Stuart (1958), programmed in RATS. Marginal

significance level ( p-value) of test statistic shown in [.].
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“errors.” We refer to this as the mnid (multivariate normal, independently distributed)

case. For a variation on this bearing in mind the diagnostic tests reported below, which

show excess kurtosis in the residual distributions relative to the normal distribution, we

drew the 1t from the empirical distribution function (that is, the distribution of the

residuals from the estimated equations), a procedure known as “bootstrapping.”

The simulated quantiles in the mnid case, based on 25,000 replications, were about 10%

larger than the asymptotic quantiles (an example in Johansen (2002) based on fewer

observations than in our case, T ¼ 53; resulted in an increase of about 16% in the

quantiles). For the variation with bootstrapped errors, we found the 95% quantiles were

between 8% and 12% smaller than in the mnid case. Thus, the bootstrapped variation had

the effect of returning the 95% quantiles to close to where they were before the small

sample adjustment was made. In view of this we report the 95% quantiles from the

simulated distributions in the mnid case in Tables 2 and 3, along with the standard

asymptotic quantiles. It is clear that use of the small sample adjusted quantiles rather than

the quantiles from the asymptotic distribution does not affect the force of the results

reported here. Some diagnostic test statistics for nonnormality and ARCH effects are

reported in Table 2b.

Diagnostic tests for residual autocorrelation suggest no problems at conventional

significance levels; for example, the Lagrange Multiplier, LM, test for first order residual

correlation in the four-equation system resulted in LMð1Þ ¼ 7:79½0:56� and the test for

fourth order resulted in LMð4Þ ¼ 5:85½0:76�: (Throughout, the p-value of the test statistic

is shown in [.] following the test statistic.)

There are also no indications of ARCH effects. The Jarque-Bera tests indicate

nonnormality in the residual distributions and separate test statistics for (excess) kurtosis

and skewness suggest that this nonnormality is due to leptokurtic residual distributions

with symmetry being maintained; in turn, this leptokurtic property is inherited from the

revisions. Johansen (1995a) notes that the asymptotic properties of the maximum

likelihood estimation and testing methods depend on an assumption of independent and

identically distributed errors rather than Gaussian errors. And, as reported above, our

simulations to obtain small sample adjusted quantiles indicate that our results are robust to

the excess kurtosis.

The test statistics in Table 2a unambiguously suggest a cointegrating rank of 2. For

example, the null of r # 2 against the alternative of r ¼ 3 is not rejected, with a test

statistic virtually 0 compared to the 95%(simulated) quantile of 4.09; however, the trace

test statistic for r # 1 is 30.39 compared to the 95%(simulated) quantile of 16.7. There is a

very clear distinction between the first two eigenvalues and the last eigenvalue.

In summary, these results suggest that:

(i) the hypothesis that all the series are stationary can be rejected: there is at least one

stochastic trend driving the first three vintages; obversely, there is at least one linear

combination of the three nonstationary series that is stationary.

(ii) the nonrejection of a cointegrating rank of two implies that just one stochastic trend

is responsible for the I(1) component in each of the three vintages. This is reassuring

from a data user’s point of view, since the chance selection of one vintage rather than

another will not lead to a series with different long-run characteristics. In a sense

Patterson and Heravi: Revisions to Official Data on U.S. GNP 589



the revisions are benign in not producing series that will wander apart given

sufficient time.

In starting with m ¼ 3; we can consider whether adding the final vintage, so that m is

increased by one, increases the cointegrating rank. The hypothesis here relates to the idea

that because of the substantial nature of some recent revisions to GNP, particularly the

reclassification of computer software and the move to current rather than base weighted

indices, the final vintage whilst still nonstationary is separated from the first three vintages.

(On the concept of separation in general, see Konishi and Granger (1992) and Granger and

Haldrup (1997).)

The results for m ¼ 4 are reported in Table 3. These results are again unambiguous: the

null hypothesis r # 2 is rejected with a trace statistic of 25.67 compared to the 95%

quantile (simulated) of 16.7; however, the null hypothesis of r # 3 is not rejected. Thus,

there is a firm indication that adding the final vintage increases the rank of the three

variable system from 2 to 3, so separation is rejected. Thus, despite the nature of recent

definitional and methodological changes to GNP, the final vintage does still have a

relationship – that is it is cointegrated with – the earlier vintages. The substantial changes

did not break the cointegration “bond” amongst vintages.

The diagnostic test results for residual autocorrelation, reported in Table 3a, again

suggest no problems at conventional significance levels with the four-equation system; for

example, LMð1Þ ¼ 14:235½0:58� and LMð4Þ ¼ 13:693½0:62�: There are also no indications

of ARCH effects. The nonnormality arises from leptokurtic residual distributions with

Table 3a. Cointegrating rank: first three vintages and final vintage (2001 download)

Rank l̂ Trace Quantiles

null 95% 95%(simulated)
r ¼ 0 0.36 116.0 47.2 52.1
r # 1 0.22 58.01 29.7 33.0
r # 2 0.18 25.67 15.4 16.7
r # 3 0.00 0.06 3.76 4.09

Note: l̂ are the estimated eigenvalues and, throughout, asymptotic 95% quantiles are from Osterwald-Lenum

(1992); simulated quantiles are indicated by 95%(simulated).

Table 3b. Univariate diagnostic tests

Equation 1 Equation 2 Equation 3 Equation 4

Normality
Jarque-Bera 12.20 [0.00] 11.69 [0.01] 24.27 [0.00] 12.72 [0.00]
kurtosis 1.44 [0.00] 1.41 [0.00] 2.05 [0.00] 1.44 [0.00]
skewness 20.27 [0.22] 20.27 [0.23] 20.239 [0.29] 20.31 [0.16]
ARCH 3.31 [0.19] 2.97 [0.23] 2.28 [0.32] 0.025 [0.99]

Note: Kurtosis and skewness statistics are from Kendall and Stuart (1958), programmed in RATS. Marginal

significance level ( p-value) of test statistic shown in [.].
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symmetry being maintained. Figure 1 shows the estimated density functions for the

standardised equation residuals, which illustrate the broad retention of symmetry but excess

kurtosis relative to the normal distribution.

Thus, in summary, we do not reject the hypothesis of one common trend, and so one

common factor, in the four vintages. This corresponds with the description, proposed in

the Introduction, that the data measurement process is “well-behaved,” despite a number

of recent changes. Given this finding we can consider whether the common factor can be

expressed in terms of a single vintage. We return to this and other issues of specification

after considering tests for trend stationarity.

4.2. Testing for trend stationarity of real GNP

There has been a considerable debate about whether real GNP has a unit root and is,

therefore, difference stationary or is stationary about a deterministic trend. Partly, the

importance of this debate centres on the different implication of the persistence of shocks

in the two classifications, shocks being infinitely lived in the former case but finitely lived

in the latter case; see, for example, Nelson and Plosser (1982) and recently Murray and

Nelson (2000).

The finding that 1 # r # ðm 2 1Þ is rejection of stationarity for the group of vintages as

a whole: from the rank deficiency of P there must be at least one common trend. Suppose

P is of full rank, that is m, then this can only be so if each of the m variables is stationary.

Thus, a test of the null hypothesis that r ¼ m against the alternative that r # ðm 2 1Þ can

be viewed as a test of the null hypothesis of stationarity against the alternative that at least

one of the variables is I(1). In the context of testing for cointegrating rank this is just the

Fig. 1. Standardised equation residuals (estimated density functions)
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trace test statistic for rankðPÞ ¼ m against rankðPÞ ¼ ðm 2 1Þ; which is asymptotically

distributed as x2 with 1 degree of freedom.

It is also possible to test the role of the deterministic trend in the common trends space

for each vintage. (We are grateful to a referee for pointing out that there is also a joint test

for trend stationarity against difference stationarity, described in Johansen (1995a, p 97).)

In this case, application of the joint test leads to rejection and we are then interested in

whether there is any distinction amongst the individual vintages, which is the test reported

in the text. Testing for trend stationarity on individual variables in the Johansen framework

can be undertaken by specifying the deterministic terms in (1) as the vector Dt ¼ ð1; tÞ0;

and then allowing the trend to enter the cointegration space. Alternatively if Dt ¼ ð1; 0Þ0

we can test for stationarity but about a nonzero mean rather than nonzero trend. Although

the former is more realistic given that GNP clearly has a trend, we report both approaches

to indicate that the results are unambiguous.

The maintained multivariate regression is now:

Dyt ¼ mþ a b0d 0
1

� � yt21

t

 !
þ
Xp21

i¼1

GiDyt2i þ 1t ð10Þ

where d 0
1 is an r £ 1 vector of trend coefficients, with elements d1j; j ¼ 1; : : : ; r; in the

cointegration space. Then, for example, for the first vintage the hypothesis of trend

stationarity amounts to asking whether space(b) , space(b), where b ¼ ð1; 0; 0; 0Þ0;

and d11 – 0: That is, does the cointegration space contain the first vintage on its own? This

implies the following hypothesis:

HO :
b

d1

 !
¼ ðH1w1;w2Þ

where the columns of H1 are ð1; 0; 0; 0; 0Þ0 and ð0; 0; 0; 0; 1Þ0; w1 is 2 £ 1 and w2; of

dimension ðm þ 1Þ £ ðr 2 1Þ; is unrestricted. The null hypothesis can be tested by means

of a likelihood ratio test statistic, which is distributed as x2ðgÞ; where g ¼ ðm þ 1Þ2 r; or

J ¼ m 2 r if d1j ¼ 0 is imposed; for general principles on testing hypotheses of this form

see Johansen (1995a) and Hansen and Juselius (1995). This approach, whilst obviously

differing from the usual ADF type approach in focussing on a multi-vintage framework,

also differs in taking the trend stationary hypothesis as the null rather than the alternative

hypothesis. The results for four vintages are summarised in Table 4.

It is evident from the results in Table 4 that, with p-values of 0 throughout, the null of

trend stationarity is firmly rejected whether or not a deterministic trend is included in the

cointegration space. These results are also robust to different selections of r, and therefore

support the view that GNP is difference stationary rather than trend stationary.

4.3. Testing for exclusion of variables from the system

The uniform rejection of the hypothesis of trend stationarity is not surprising approached

from the perspective of appropriate determination of the VAR specification. We could, for

example, include a deterministic trend in the cointegration space and then see whether it

can be excluded. Indeed, we can test directly for exclusion from the system of any of the
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variables. Thus, starting with a deterministic trend, which we allow in the cointegration

space (but not in the data space since there is no evidence of quadratic trends in the data),

we can test for exclusion of each variable in turn from the system.

The results are again unambiguous and are reported in Table 5. We can exclude the

deterministic trend, where the test statistic has a p-value of 63%, but we cannot exclude

any of the data vintages. Then, having excluded the time trend, we can again see if any of

the vintages can be excluded. The lower part of Table 5 shows that this is not the case, as

all p-values are effectively zero.

4.4. Identification and weak exogeneity

Looking again at the three-vintage system it seems likely that this will easily sustain

stationarity of the revisions (and, therefore, homogeneity of the vintages in levels), a total

of 4 restrictions. With m ¼ 3 and r ¼ 2; two of the four restrictions are just identifying, so

that the test statistic has a x2 distribution with 2 degrees of freedom. The test statistic is

0.16 with a p-value of 93%, so the null is not rejected.

We now consider tests for weak exogeneity; these are invariant to any choice of

restrictions that just identify the cointegrating vectors. Weak exogeneity of any of the

individual vintages implies that the GG permanent component is a function of that vintage

alone, which together with stationarity of the revisions implies that the (log) revisions are

the transitory components. See Section 3.4 for a discussion of how this underpins the

distinction between the MEH and the EFH. The test statistics for weak exogeneity,

distributed as x2ð2Þ under the null, are 4.90 [0.09] for the first vintage, 6.43 [0.04] for the

Table 4. Individual tests for trend stationarity against difference stationarity

x 2 (g) test for stationarity about a trend of the jth vintage with d1j – 0

r g: x 2
0:05ðgÞ y1

t y2
t y3

t y4
t

3 g ¼ 2 : 5:99 24.82[0.00] 24.83[0.00] 24.84[0.00] 25.06[0.00]

x 2 (J) test for stationarity about a non-zero mean of the jth vintage with d1j ¼ 0

r J: x2
0:05ðJÞ y1

t y2
t y3

t y4
t

3 J ¼ 1 : 3:84 24.82[0.00] 24.83[0.00] 24.84[0.00] 25.06[0.00]

Notes: p-value in [.]; r is the cointegrating rank; y4
t is the download from the November 2001 BEA website;

entries correspond to selection of r ¼ 3 from cointegration results; the alternative choices of r ¼ 1; 2 do not alter

the conclusion.

Table 5. Test statistics for exclusion of variables, distributed as x 2 (3)

Variable excluded

Deterministic time trend in cointegrating space

r y1
t y2

t y3
t y4

t time trend

3 51.57[0.00] 49.67[0.00] 32.13[0.00] 20.57[0.00] 1.71[0.63]

No deterministic time trend in cointegrating space

3 7.82[0.00] 50.93[0.00] 34.06[0.00] 20.63[0.00]
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second vintage and 2.21 [0.33] for the third vintage. Only in the last case is there clear

evidence for not rejecting weak exogeneity.

Thus, analysis of the first three vintages suggests the following. The (log) revisions are

stationary, implying that the different vintages are homogenous and the third vintage is

weakly exogenous; together these imply that in this restricted system the third vintage is

the permanent component and the cumulative revisions relative to that are the transitory

components. This also supports the view that the revisions are measurement errors

orthogonal in the long run to the final vintage. These conclusions are conditional on

excluding the final vintage; however, the results in Tables 3 and 5 suggest that an empirical

analysis that includes the final vintage is warranted.

Adding the final vintage to the first three vintages, the cointegrating vectors can be just

identified as sequential revisions or cumulative revisions as follows:

b0 ¼

sequential revisions cumulative revisions

1 21:000 0 0

0 1 20:996 0

0 0 1 20:927

2
664

3
775 b0 ¼

1 0 0 20:924

0 1 0 20:924

0 0 1 20:927

2
664

3
775 ð11Þ

The first of these parameterisations suggests that we can impose homogeneity across the

first three vintages without loss; this is so with a x 2 (2) test statistic of 0.41 and a p-value of

82%. With this imposition the cointegrating vectors, in equivalent forms, are:

b0 ¼

sequential revisions cumulative revisions

1 21 0 0

0 1 21 0

0 0 1 20:924

2
664

3
775 b0 ¼

1 0 0 20:924

0 1 0 20:924

0 0 1 20:924

2
664

3
775 ð12Þ

We cannot, however, impose homogeneity with respect to the last vintage; the coefficient

of 20.924 has an estimated standard error of 0.005, so that the test of homogeneity (that

the coefficient is 21) is resoundingly rejected.

The test statistics for weak exogeneity, with a test statistic now distributed as x2ð3Þ under

the null, are given in Table 6. The test statistics show that the finding of weak exogeneity for

the third vintage was a conditional result. Extending the system, it is only the final vintage

that is weakly exogenous. We find that the hypothesis that the final vintage is weakly

exogenous is not rejected with a test statistic of 1.89, distributed asx2ð3Þ under the null, with

a p-value of 60%. In contrast, for example, the hypothesis that the third vintage is weakly

exogenous is firmly rejected with a p-value for the test statistic of zero. Thus, these tests give

support to the MEH rather than EFH view of why data revisions arise.

Table 6. Test statistics for weak exogeneity of the vth vintage, v ¼ 1; : : : ; final

v 1 2 3 final
x 2 (3) 12.45[0.00] 14.98[0.00] 15.46[0.00] 1.89[0.60]
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4.5. Implications for the PT decomposition

The scaling factor linking the first three and “final” vintages can be read off from either of

the matrices in (12); for example, the scaling factor for the first and “final” vintages is

20.924, that is b 0
1yt ¼ y1

t 2 0:924y4
t is a stationary series. However, in order to link these

different vintages we need to take account of the constant in the cointegration space.

The constants in the VEqCM, m, can be partitioned into the cointegration space and the

common trends space as: m ¼ am1 þ a’m2; premultiplying by ða 0aÞ21a 0 we obtain the

constants in the cointegration space, that is m1 ¼ ða 0aÞ21a 0m: Using the maximum

likelihood estimates for a and m, the three equilibrium relationships are

m1 þ b0yt ¼

20:576

20:575

20:574

0
BB@

1
CCAþ

1 0 0 20:924

0 1 0 20:924

0 0 1 20:924

2
664

3
775yt ð13Þ

These parameter values enable a comparison of the first three vintages with the final

vintage as they effectively reduce all the vintages to the same price units, in this case 1992

$U.S.

In Figure 2 we plot the stationary combination given by the first row of (12), which,

multiplied by 100, can be interpreted as the % revision comparing the first and final

vintages. Then in Figure 3 we plot the first vintage and the (scaled) final vintage, using the

cointegrating coefficients from (13).

The figures show that revisions to the NIPA have not broken the cointegration bond

between the final series and the first published version of GNP, even though the effect of

Fig. 2. % revision to GNP, v ¼ 1 to final
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recent revisions has been to increase GNP with retrospective effect. (See also Seskin and

Sullivan, 2000, who note that recently revised GNP exceeds previously published

versions.) One point of note, which accounts for the large revision to the early part of 1975,

is how the final version of GNP has “flattened out” the previously substantial dip in GNP

during that period.

4.6. Testing for serial correlation common features

In addition to testing for the dimension of the cointegrating space and hence the common

trends space, we can also consider whether there are serial correlation common features

that reduce the number of common cycles. In view of the results of the previous sections,

with r ¼ m 2 1 ¼ 3; there can be at most one such common feature.

The test statistics for serial correlation common features, reported in Table 7, lead to the

rejection of all possible hypotheses; for example, the test statistic for k . 0 is 49.7,

distributed as x2ð8Þ under the null, which has a p-value of zero. This implies that there is

no reduction in the number of common cycles. Thus, the short-run movements in yt are not

common. This finding is open to an interesting interpretation for which we are indebted to

Fig. 3. 1st and final vintages of log(GNP)

Table 7. Testing for serial correlation common features

Null hypothesis C( p, k): p-value Distribution

k . 0 49.7: [0.00] x 2 (8)

k . 1 112.0: [0.00] x 2 (18)

k . 2 247.2: [0.00] x 2 (30)
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a referee and which should be the subject of further study. That is, the finding of a single

common trend confirms the view that early figures give an accurate picture of the sustained

movements in GNP, what commentators refer to in general terms (rather than the specific

technical definitions used here) as the “trend” in the series. On the other hand, the failure to

find short-run (serial correlation) common features points to some disagreement in the

different vintages as to the precise timing of short-run movements, with, perhaps,

differences in the timing of turning points and the signs of changes in the level of GNP.

This suggests that there should be further research that examines the concordance of the

different vintages for indications of common features in some key (nonparametric)

measures of short-run alignment, for example agreement in identifying turning points.

5. Summary and Concluding Remarks

As much of the analysis in the previous section is necessarily quite technical, we draw out

some of the practical implications in this concluding section.

1. The central idea of this study is that data revisions should be related to each other as

part of an overall process, not studied in isolation. It is evident from a graph of U.S.

GNP (see Figure 3) that there is a trend to the series – that is, a tendency for a

sustained movement in one direction over a reasonably long period of time. This

trend may be characterised as stationary deviations around a deterministic trend or,

alternatively, as a stochastic trend, being the cumulative sum of past shocks that

generate nonstationarity in the data. Our multivariate analysis of this distinction

found in favour of the stochastic trend. Now, given that revisions to GNP effectively

result in several different time series (the different vintages) for the same variable,

and each has a stochastic trend, an important question is whether the various vintages

have a single common trend. If not, there are potentially serious problems of

interpretation since, necessarily, the different trends are not tied together. It is a

plausible motivation for the data producers not to produce more than one trend in the

different vintages. Fortunately, despite recent changes in GNP methodology, our

findings support the single trend interpretation.

2. Another practical matter is whether a particular vintage adequately captures the

single common stochastic trend. Our results suggest that a likely presumption of

most users, that the “final” vintage is best in this respect, is warranted by our

empirical findings. Whether we condition on the third vintage as the final or a later

vintage, that vintage by itself can represent the long-run movements in GNP.

3. Finding a common stochastic trend is an issue that relates to the long-run tendencies

in the different series, but what of the short run? We focussed on short-run patterns of

correlation in the different vintages and found that the hypothesis of a common

feature of this kind was rejected. So we can characterise our results as indicating that

the different vintages represent the same long-run tendencies but can differ in the

short-run picture.

4. Two leading explanations of the reason for revisions relate to errors of measurement and

efficient forecasts. In the errors of measurement view, preliminary vintages are

inherently “noisier” than later vintages that “iron out” relatively imprecise measurement

in the earlier vintages, where the latter are driven by the need for timely publication.
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In the efficient forecasts view, preliminary vintages are formed as forecasts of later

vintages; moreover, these forecasts fully take into account information available at the

time they are being made. In a lesser version of this view, preliminary vintages may be

forecasts of later vintages but are not efficient. In practice, an aggregate such as GNP

may incorporate both aspects and therefore be the result of measurement with error and

forecast with error. With allowance for the nonstationarity of GNP, our empirical

findings suggested strongly favouring the measurement error view of revisions.

5. Finally, a practical point arises out of the nature of recent methodological changes to

GNP, especially the move to chained price and quantity indices. Preliminary analysis of

the data for this study suggested that a method of “splicing” together the time series data

from this and the preceding vintages was not going to be straightforward when the 2001

download was included. Was it possible, therefore, to relate GNP on the most recent

basis back to previous published series? Part of this question has already been answered,

since the presence of a single stochastic trend provides the solution. By using the

estimated long-run relationship amongst the different vintages, all the time series can be

put onto a single and comparable base. This was illustrated in Figure 3, which graphed

vintage 1 of GNP along with the (rebased/rescaled) “final” vintage; as expected from the

formal analysis the two series are tied together – a good visual illustration of

cointegration.

There are some further questions that could be addressed in future research. For example,

Symons (2001), Patterson (2002a) and Swanson and van Dijk (2002) have suggested

linking data revisions to the stage of the business cycle. A particularly interesting idea is

that the revisions process may be asymmetric with respect to upturns and downturns in the

cycle. This asymmetry is one form of nonlinearity, and the analytical framework used here

could be extended to explore the possibility of other forms of nonlinearity.
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