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Robust Case-Weighting for Multipurpose
Establishment Surveys

R.L. Chambers'

Case-weighting or assigning a unique weight to each sample unit is a popular method of
sample weighting when internal consistency of the survey estimates is paramount. If in
addition external constraints on key variables (the survey benchmarks) must also be
met, then case-weights computed via generalised least squares, based on an assumed lin-
ear regression model for the survey variables, can be used. Unfortunately, this method of
weighting can lead to negative case-weights. It is also susceptible to bias if the linear
model is misspecified. This article proposes a modified method of linear regression-based
case-weighting which ensures positive weights via use of a ridging procedure, and model
misspecification robustness via the inclusion of a nonparametric regression bias correc-
tion factor. Empirical results which illustrate the gains from the new method of weighting
are presented.

Key words: Sample surveys; sample weighting; model-based approach; ridge regression;
nonparametric regression.

1. Motivation and Summary

Consider the following scenario, a not uncommon one for an establishment survey.
There are N units in the target population, and a population frame is available which
contains, for each of these N units, a unique identifier, a geographical code (R),
an industry code (4) and a measure of size (D). In addition, the population totals
T(X),T(X;),...,T(X,) of a set of p non-negative economic activity variables,
X,,X;,...,X,, are known for this population. These benchmark or control totals
may have been collected in a previous census (or larger survey) of the population,
or may be produced as a byproduct of administrative data collection processes. In
any case, we assume that the survey data analyst has access to the sample values of
X1, X ..., X,, though the corresponding nonsample values of these benchmark vari-
ables may well be unavailable.

The aim of the survey is to estimate the population totals of a set of m non-negative
economic performance variables, say Y;, Y5,...,Y,,. Suppose further that there is

! Department of Social Statistics, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
The work reported in this article was carried out while the author worked with the Department of Statistics,
Australian National University, Canberra A.C.T. 0200, Australia.

Dedication and Acknowledgment: This article is dedicated to the memory of E.K. Foreman, whose enthu-
siasm for the application of modelling ideas in sample surveys was one of the main reasons for the author’s
interest in the subject, and whose strong support over many years served to allow the author to develop
those interests. The author also wishes to acknowledge a number of illuminating conversations witlh,
K.R.W. Brewer during the process of developing and writing this paper. Comments from him on previous
versions were very helpful in preparing the final draft of this article.

© Statistics Sweden



4 Journal of Official Statistics

good reason to believe that each Y-variable is approximately proportionately related
to one of the X-variables, in the sense that it is reasonable to assume that the regres-
sion of this Y-variable on this X-variable is linear and passes through the origin.
Furthermore, suppose that the variance of a residual from this populatlon regression
is proportional to the corresponding value of the X-variable.

This scenario, of course, is one traditionally identified as where estimation of
the population totals of the Y-variables is best carried out by ratio estimation.
That is, if we use X4 to denote the benchmark X-variable ‘linked’ to the survey
variable Y, then our estimator of the population total of Y} is the classical ratio
estimator

Ts( Yk)
T( X))

where T;(Y) and T,(Xx)) denote the sample totals of Y; and X(4). This estimator is
known to have ‘“nice” properties provided the sample s (of size n < N, say) is drawn
using equal probabilities of inclusion. If the sample is drawn using some form of an
unequal probability sampling scheme (e.g., stratified sampling, or probability propor-
tional to size sampling), then a simple and approximately design-unbiased alternative
to the ratio estimator is the inverse-m-weighted ratio estimator

Tr(Yy) = T(X) (1)

R T.(Y,
Tre(Yi) = ELLON

T (X))
where T,,( Y;) and T (X (%)) are now the Horvitz-Thompson estimators of the popula-
tion totals of Y and X(y), respectively. That is

k) = Z Yimi ! (3)

where 7; denotes the sample inclusion probability of sample unit i and T,,(X (k) 18
defined similarly. Observe that this inverse-m-weighted ratio estimator reduces to
the usual ratio estimator when the w-values in the population are constant. When
the m; are generated by a stratified random sampling scheme, this estimator is usually
referred to as the combined ratio estimator.

There are two basic problems with practical implementation of this ratio-based
survey estimation strategy. The first is due to the need to identify an appropriate esti-
mation benchmark Xy to use with each survey variable Y;. If the number of such
survey variables is large (as will be the case in many surveys), then the analyst has
to be prepared to carry out a fairly lengthy modelling exercise which matches an
appropriate benchmark variable with each of these survey variables.

The second problem relates to the internal consistency of this estimation strategy.
This is best illustrated by an example. Suppose Y| and Y, are two survey variables,
with associated estimation benchmark variables X;) and X(5). The corresponding
ratio estimates of the population totals of Y, and Y, will be denoted Tg(1) and
Tr(2). Suppose now that we also wish to publish an estimate of the population total
of Y, plus Y,. One estimator of this total is of course the sum Tg(1) + Tx42). How-
ever, this is by no means the only estimator we can construct. In fact, it may be more

T(X)) (2)
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efficient to estimate this total by using a ratio estimator of the form

T,(Y)) + Ty(Y>)
T(Xq)) + Ts(X (1))

Tr(1+2) = (T(X()) + T(X))-

That is, we apply the ratio estimation strategy to the derived variable Y; + Y>, based
on the derived benchmark X ;) + X(,). Clearly Tr(1 + 2) will not equal T(1) + T(2)
in general. Which approach should we take? If (as will sometimes be the case)
Tr(1 + 2) is more efficient than Tx(1) + T'(2), then we are essentially in the position
of having to trade-off efficiency in estimation against the internal consistency of our
estimates.

The problem becomes much worse when we have a large number of survey vari-
ables, with complicated interrelationships. It is extremely difficult, if not impossible,
to decide, a priori, how to put together a basic set of ratio type survey estimates so
that all published survey estimates are obtained as linear combinations of these basic
estimates. If the raw survey data are in fact released in some form of public use data
file, and users are at liberty to ‘“put these data together” in any way that suits them,
then it is quite impossible to achieve consistency. We can never be sure that the ana-
lyst who constructs the variable Y5 by adding together the variables Y; and Y5, will
end up with the same estimate of the population total of Y5 as the analyst who instead
(and with equal validity) defines Y5 by subtracting Y3 from Y;.

Of course, if the only output from the survey is a (relatively) restricted set of tabu-
lations, with no subsequent reuse of the sample data for secondary analyses, then one
could put in place procedures that ensure that these survey tabulations are always
internally consistent. However, the trend in modern surveys is to make the data col-
lected in the survey as widely available as possible, either, as mentioned above, by
release of the raw data in a public use data file, or, more generally, by the construction
of large scale survey data bases which integrate the data from many related surveys.
These data bases are then used for a variety of secondary analyses by a wide range of
analysts, most of whom will have had nothing to do with the original survey. In fact,
in most cases these analysts are not survey statisticians, but professionals from areas
which make heavy use of survey data, e.g., economists, sociologists, etc. For such a
scenario, the concept of a fixed set of survey tabulations is meaningless, and internal
consistency of survey estimates derived on a continuing basis from the survey data
base becomes paramount.

Such consistency is easily achieved by using a method of estimation that allocates a
unique weight, say w;, to each unit or case in the sample, with all survey estimates then
being computed as weighted sums based on these case-weights. The survey estimate of
the population total 7(Y}) of the variable Y is therefore

Tw(Yk) = Z w; Y. (4)

Given such an approach is taken, a natural question that arises is: How much
efficiency (if any) is lost when a case-weighted strategy based on an estimator like
(4) is used instead of the more conventional ratio estimation strategy described -
previously?
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In order to answer this question, one needs to specify exactly how the case-weights
w; are computed. For example, a ratio estimation strategy is a special case of a case-
weighted strategy provided the same estimation benchmark X is used for all the
survey variables. If the number of survey variables is large, however, it is extremely
unlikely that one estimation benchmark variable will suffice. Consequently the ratio
estimation strategy outlined above can be seen as intrinsically different from a case-
weighted estimation strategy. In Section 2 below we briefly describe the standard
method of case-weighting for this situation. This approach is based on postulating
a linear regression model linking the survey variables and the estimation benchmark
variables. Case-weights derived under this approach are automatically calibrated on
the benchmark totals for the benchmark variables in the model, but, as shown in
Section 3, can suffer from the serious practical problem of sometimes being negative.
Positive regression type case-weights can be guaranteed by introducing a ridge modi-
fication, as described in Section 4, at the cost of allowing a small amount of slippage
in the calibration constraints. However, this approach, like the regression-based
weighting procedure from which it is derived, is sensitive to misspecification of the
underlying regression model. Robustness to such misspecification can be achieved
by introducing a nonparametric bias correction into the ridged case-weights. This
modification is described in Section 5. Empirical results on the comparative perfor-
mances of these different methods of survey weighting are presented in Section 6.
These show that a case-weighting approach to survey estimation which includes ridg-
ing (to ensure strictly positive weights) and nonparametric bias correction performs
extremely creditably in comparison with both the conventional ratio estimation strat-
egy as well as with standard regression-based methods of case-weighting. Finally, we
conclude in Section 7 with a short discussion of the closely related issue of variance
and confidence interval estimation when a case-weighted approach to survey estima-
tion is adopted.

2. Optimal Calibrated Case-Weights

The classical case-weighted estimator is the Horvitz-Thompson estimator (3). How-
ever, this estimator may not be very efficient. Furthermore, it has the major drawback
that it is typically not calibrated on the benchmark totals 7T(X,), T(X>), ..., T(X,).
That is, there is no guarantee that for the realised sample, the m-weighted survey esti-
mates T, (X)) T,(X,),..., T(X, ») of these benchmark variables will equal their
known population totals. The degree to which a set of survey case-weights is ““bench-
mark calibrated” is widely used as an indication of the likely error of the survey esti-
mates computed using these weights. A large positive (negative) difference between
T,‘.(X () and T(X()) is seen as indicating a corresponding positive (negative) value
for the estimation error 7,.(Y)) — T(Y}).

As an aside, it should be noted that an almost universally required calibration
equation is that the case-weights sum to the population size, N. This constraint is
easily incorporated in the above framework by defining X; to be identically one.

Case-weights that are calibrated on the benchmark variables can be defined by
introducing a global regression model for the survey variables (Huang and Fuller
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1978; Bardsley and Chambers 1984; Bethlehem and Keller 1987). That is, we assume
that the population values of the kth survey variable can be treated as realisations of a
random variable satisfying the regression model

E(Y4|X;) = XiBx (5)

where X; is the p-vector of values of the benchmark variables for the ith population
unit. Typically, this model is modified to include industry and geographical effects
by including corresponding indicators in the set of benchmark variables. If appropri-
ate, interaction effects between the benchmark variables can also be integrated into
the model. The crucial thing to note about this model, compared with the previous ratio
estimator model, is that it is overspecified in general, since it is extremely unlikely that
every component of (3, will be non-zero.

For the purpose of identifying efficient case-weights, it is necessary to specify the
second order moments of the survey variables. Typically, one assumes that

var(Y,|X;) = i D; (6)

where D; is the measure of the size of the ith population unit. Following convention,
we assume that, conditional on their values of the benchmark variables, different
population units are uncorrelated. Again, this assumption can be relaxed, see Royall
(1976b).

Given the above working model, there are two distinct approaches to computation
of the case-weights. The first is design-based (though model-assisted) in its phi-
losophy, and derives these weights by applying Generalised Regression Estimation
(GREG) based on this working model (Sdrndal, Swensson, and Wretman 1992).
The second is completely model-based, and derives these weights by applying Best
Linear Unbiased Prediction (BLUP) based on the working model (Royall 1976a).
If the underlying population model is such that different population units are uncor-
related, then both approaches can be obtained as special cases of the following con-
strained optimisation result. Its proof is straightforward.

OPTIMUM (1)

Let {Q; i € s} and {g;; i € s} denote two pre-specified sets of positive numbers. The
case-weights {w;; i € s} minimising

2
Wi — &i
0.5 =39, ((—g—’) ™
subject to the benchmark calibration constraints

T,(X) = T(X));j=1,2,...,p (8)
are given by

w=g+ A X(X/ 47 X,) (T - T, 9)

where w denotes the vector with ith element w;, g denotes the vector with ith element
g;» A, is the diagonal matrix with ith diagonal element Q.g', X, denote the n »«p -
matrix of sample values for the benchmark variables, T is the vector of known
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population totals for these variables and 7, o 18 the corresponding vector of g-weighted
sample totals, with jth component

Zginr
s

Optimal GREG-type case-weights are defined by taking €; = D, and g; = =; |. That
is, these weights approximate the Horvitz-Thompson case-weights as closely as pos-
sible in terms of the modified chi-square metric defined by Q((Q, g) above, subject to
the calibration constraints (Deville and Sdrndal 1992). BLUP-type case-weights, on
the other hand, are defined by Q; = D; and g; = 1. Here, Q(Q,g) corresponds to
the prediction variance of the case-weighted estimator under the working model
(5), (6). Finally, observe that Sdrndal and Wright’s QR class of estimators (Sidrndal
and Wright 1984) is obtained by setting §2; = r;/q; and g; = r;, where g; and r; are con-
stants defined in that reference.

An important point to note in the development above is that in all cases, given the
assumed linear regression working model, the calibration constraints are equivalent
to imposing a model-unbiasedness condition on the case-weighted estimator.

Which set of case-weights should one use? Advocates of the “design-based/model-
assisted” approach to survey inference argue that the GREG case-weights offer the
best of both worlds, since the resulting estimator is asymptotically design-unbiased
as well as (because of the calibration constraints) exactly model-unbiased. This is
claimed to make the GREG estimator both efficient and robust. Unfortunately, the
author finds this argument unconvincing. Clearly, if the model is correctly specified,
then the GREG estimator, by definition, must be less efficient than the BLUP esti-
mator. On the other hand, if the underlying model is misspecified, there is no logical
argument why, for a fixed sample size, the GREG estimator should be more robust, in
the sense that the resulting estimate does not deviate markedly from the true popula-
tion value than the corresponding BLUP. There are alternative, more efficient ways of
rendering the BLUP robust to misspecification bias (Chambers, Dorfman, and
Wehrly 1993). This issue will be taken up in more detail in Section 5.

3. Negative Case-Weights

Irrespective of whether BLUP or GREG-type case-weights are preferred, there is a
very practical problem associated with using case-weights in survey estimation.
This is the fact that we have no guarantee that these weights will be greater than or
equal to one. Equivalently, if we treat the “representative weight” u; = w; — 1 as indi-
cating how many non-sample units are “represented” in sample by the ith sample
unit, then we have no guarantee that every u; will be greater than or equal to zero.
In fact, there is a good chance that some of these u-weights will be negative.

A number of authors (Huang and Fuller 1978; Bardsley and Chambers 1984;
Deville and Sarndal 1992; Bankier, Rathwell, and Majkowski 1992; Fuller, Loughin,
and Baker 1994) have expressed concern about negative u-weights. Aside from obser-
ving that negative weights can lead to negative estimates of intrinsically positive
population quantities, and that such weights are also of considerable comcern to
non-statistical users of the survey data (typically expressed in the form “How can a
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sample unit possibly represent a negative number of other units in the population?”),
we note that such values are in fact symptomatic of deeper problems with the ability
of the sample to effectively represent the population.

To see this, consider the optimal case-weights for p = 2, with X; = 1, X, = X, and
D = X. That is, our working model assumes that every survey variable Y} is linked to
the benchmark variable X via a simple linear regression model with error variance
proportional to X. After some algebra, one can show that the optimal case-weights
are given by

W:(Ng,) L, (XD - Y -
Co\ngs ) xxGY X XY -1

where g, denotes the average of the g-values underlying these case-weights, X is the
population mean of X,
X = — X,
sg — ng: - gidk

and
_ 1
X(—l) _ X—l
sg ngs ES &gidj

These optimal case-weights can be negative, particularly if X;> 1/ )?ﬁ; D and
! /}?ﬁgl). That is, if our sample is skewed towards large units, there is a good
chance that some of the large sample units will have negative case-weights. Conver-
sely, under this working model, samples that are “g-balanced,” i.e., ones that satisfy

- 1

X=—=

XY
will always generate positive case-weights.

Furthermore, the BLUP and GREG forms of these weights have different propensi-
ties for generating negative case-weights, with the GREG tending to be more at risk in
this regard, especially in size-biased samples. For example, in the case where the sample
inclusion probabilities are proportional to X, it can be shown that, for samples where

_ox=D
X< _S_z)
X
the necessary condition for a GREG case-weight to be positive is

1 - xxt-v
il
Here X'/ denotes the sample mean of the jth power of X. For the same sample,
the condition for the corresponding BLUP case-weight to be positive is the easier
to satisfy
- X,-X

X

X, <

Xi
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4. Using Ridging to Obtain Positive Case-Weights

Negative case-weights are essentially a symptom of the weighting procedure’s attempt
to compensate for sample imbalance when meeting the benchmark calibration con-
straints. We expect to see negative case-weights in unbalanced samples because that
is the only way the calibration constraints can be met for these samples. Conversely,
as has been noted above, samples that are close to “g-balance” should have little
problem with negative case-weights.

The situation gets more complicated as the number of benchmarks (p) increases. In
general, the sign of a case-weight computed via (9) depends on the inverse of the
matrix X, A;'X,. If this matrix is close to multicollinear, then a negative case-weight
may result. Approximate multicollinearity may be due to the definition of the bench-
mark variables making up X, the realised sample distribution of the values of these
variables or (most likely) some combination of these two effects. In any case, the end
result is the same — the only way the case-weights can be made to satisfy the bench-
mark calibration constraints (8) is for some of these weights to be negative.

Recognising this, Bardsley and Chambers (1984) proposed that a ridge modifica-
tion be incorporated into the optimality criterion used to derive the optimal case-
weights (9). The effect is to replace OPTIMUM (1) by

OPTIMUM (2)

Let {C;j=1,...,p} denote a set of prespecified non-negative constants, where C;
represents the cost of the case-weighted estimator not satisfying the jth calibration
constraint, and let A\ denote a user-specified scale factor. The case-weights
{w;(\);i € s} minimising the A-scaled and cost-ridged loss function

)4
0,\(2.¢,C Zﬂ( ) Z - 7(X))’ (10)

are
W) =g + A7 X,AC7" + X/ AT X,) (T - T). (11)

Here C is the diagonal matrix of order p defined by the costs {C;;j=1,...,p}. All
other quantities were defined in OPTIMUM (1).

For A = 0, these ridged case-weights are identical to the optimal calibrated case-
weights (9). For A > 0 the ridged case-weights define a set of biased estimators of
the population totals of the survey variables. This is because when A > 0 the ridged
case-weights do not satisfy the p calibration constraints, and hence do not satisfy
the necessary conditions for defining an unbiased estimator under the working model
(5).

On the other hand, as ) increases away from zero, the variability of these ridged
case-weights decreases. An immediate consequence is that the number of negative
ridged case-weights decreases, and eventually, for a large enough value of A, all
case-weights defined by (11) are greater than or equal to one. Bardsley and Chambers
(1984) argued that this reduction in the variability of the ridged case-weights as A
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increases implied a corresponding reduction in the variance of the survey estimator
defined by these weights. Hence, by appropriately choosing A, one could define a
set of ridged case-weights with better mean squared error properties than the
(unbiased) optimal calibrated case-weights (9).

To illustrate the nature of the ridged case-weights, consider again the special case
where p = 2, with X; = 1, X, = X, and D = 1. Let C, denote the cost associated with
not meeting the calibration constraint on X; (i.e., the sample sum of the case-weights
should equal N), and let C, denote the cost associated with not meeting the calibra-
tion constraint on X,. Also, assume a model-based approach is taken, so g; = 1. Then,
after some algebra, one can show that the ridged case-weight for the ith sample unit is

w ()\) =14+ (N—i’l) S§(+ (Xi _Xs)(X/r _Xs) 'i"%(C{1 + Cl_lezyr)
’ S +2(C5 + 1 RP £ acT G

where §% = X% — X? and X, denotes the non-sample mean of X. In practice, the cali-
bration constraint on X; must be met, which corresponds to putting an infinite cost
on not meeting it, or equivalently, setting C; 1'= 0. In this case

i =te (58) (1+ S BEE)

Observe that for any value of X these weights sum to N. Furthermore as A increases,
w;(A\) approaches the sample expansion factor N/n. Thus for large values of A, the
ridged case-weighted estimator behaves like the simple expansion estimator.

Once the cost matrix Chas been specified, two diagnostic plots can be used to decide on
a value for \. The first is a plot showing the change in the individual ridged case-weights
w;(\) as the natural logarithm of A, In()), changes. Figure 1 shows such a plot for one of
the simple random samples (# = 100) used in the simulation study reported in Section 6.
Here 2In()\) + 21 ranges between 1 and 51. The second is a plot of the change in the cali-
bration errors 7, woy (X)) = T(X;);j = 1,2,...,p as In(}) changes. Figure 2 shows this
plot for the same sample as in Figure 1. Both plots were generated using the BLUP ver-
sion of the ridged case-weights (i.e., g; = 1 in (11)).

Inspection of Figure 1 shows that at In(\) = —10.5 (i.e., where the w;(\) are essen-
tially the BLUP weights) ten of the case-weights are negative. As In(}) increases, the
spread of these case-weights decreases, and eventually, these weights are all greater
than or equal to one. Conversely, as In(\) increases, Figure 2 shows that the corre-
sponding calibration errors tend to increase. The value of A recommended by
Bardsley and Chambers (1984) is the one where all ridged case-weights are greater
than or equal to one, but where Figure 2 shows an acceptable level of calibration
error. In the case of the sample underlying these figures, all case-weights are greater
than or equal to one when 2In(\) 4+ 21 = 33, corresponding to relative calibration
errors of approximately —10% for the benchmarks Wheat area, Sheep number,
Beef number and Dairy number shown in Figure 2 (see Table 1 for definitions of these
variables).

Using a ridged case-weight like (11) is not necessarily the best or only way to avoid
negative case-weights. Since the incidence of such weights increases with the size or
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Fig. 1. Ridge trace plot of case-weights generated by the weighting method (11) with g; = 1. Each line in the
plot shows how the weight of an individual sample unit changes as the ridge parameter \ changes (in units of
2In(X) + 21). The sample is of size 100 and is one of the simple random samples used in the simulation exercise

reported in Section 6. The underlying model is the model ““L”’ referred to in that exercise, and the cost matrix C
is defined in Table 3

complexity (p) of the working model, another approach (Bankier, Rathwell, and
Majkowski 1992) is to reduce this complexity by dropping some of the calibration
constraints. Since each constraint is equivalent to a parameter in the working model,
this approach is equivalent to computing the case-weights via OPTIMUM (1), but
under a smaller working model. Note that the ridged case-weights can be made to
emulate this strategy by defining the cost matrix C so that the costs associated with
the dropped benchmarks are considerably less than those associated with the bench-
marks retained in the smaller working model. In the limit, one can make the costs
associated with the retained benchmarks effectively infinite, in which case the ridged
case-weights recover the values of (9) under the smaller model. As Bardsley and
Chambers (1984) point out, the ridged case-weights can then be seen as interpolating
from a big working model (all benchmark constraints satisfied) to a small working
model (subset of constraints satisfied).

Another, more ad hoc, method of dealing with negative case-weights is to
arbitrarily set extreme case-weights to unity and remove the corresponding sample
units from the weighting process. Such extreme units are typically those whose
case-weights are considerably less than zero, being far removed from the case-weights
of the remaining sample units. Standard case-weights are then computeds for the
remaining sample units, using appropriately adjusted benchmark constraints. This
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Fig. 2. Ridge trace plot showing how the relative benchmark errors (T — Tgk) /Ty x 100 change as the ridge
parameter X changes (in units of 2In()\) + 21). This plot was generated by the same sample and case-weights
as in Figure 1. The benchmarks shown (Wheat area, Beef number, Sheep number and Dairy number) are a
subset of those used in the model “L” defined in Section 6

sample modification approach works reasonably well provided the underlying sample
imbalance that is causing the negative case-weights can be effectively corrected by the
removal of one or more units from the sample. However, this is not always possible
since, as one extreme sample unit is excluded, another unit moves in to take its place.
We do not consider this approach further here.

Huang and Fuller (1978), see also Fuller, Loughin, and Baker (1994), take a some-
what different approach to dealing with such extreme weights. They suggest calculat-
ing GREG-type weights based on the model (5) but with (9) essentially replaced by
iterating the following sequence

wh = g + diag(g) FP X, (X, diag(g) FOFV - .. FO X)) (T - T,).

Here g is the vector of inverses of the sample inclusion probabilities and
Fﬁo), Fg”,l"ﬁz), .- is a sequence of diagonal matrices chosen in such a way that Fﬁk)
equals the identity matrix only when all case-weights lie within pre-specified bounds
(e.g., they are all positive) and the benchmark constraints are met. This procedure is not
guaranteed to converge. Furthermore, even if convergence is achieved, the resulting
weights do not appear to have any optimality properties beyond the unbiasedness under
(5) that is a consequence of the benchmark constraints being met.

Finally, one can replace the modified chi-square metric Q(€2, g) that is minimised
in OPTIMUM (1) by another metric with the property that the resulting
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case-weights (if they exist) are always positive. This approach was investigated by
Deville and Sérndal (1992). This option is not attractive to the author, mainly
because these alternative metrics have no interpretation from a model-based per-
spective. Furthermore, three of the four alternative metrics suggested by Deville
and Sédrndal (1992, table 1) are such that a solution to the constrained optimisation
problem is not guaranteed, while the sole alternative metric (their case 2) where an
explicit solution exists was observed by them to be susceptible to extreme positive
weights.

5. Robust Ridged Case-Weighting

The ridged case-weights (11) based on the BLUP (i.e., g; = 1) depend for their validity
on the linear model (5) being an accurate representation of the relationship between
the survey variables and the benchmark variables. This may be reasonable if the
survey is restricted to a relatively homogeneous group of units, but becomes problem-
atical if the target population of the survey is heterogeneous. In such cases, it is
unlikely that (5) will be adequate for characterising the relationship between the
survey variables and the benchmark variables, and estimation methods based on
(5), like the BLUP and its ridged alternative, will be biased.

A method of compensating for potential bias in linear regression weighting is
described in Chambers, Dorfman, and Wehrly (1993). This method adds a bias cor-
rection term to the linear regression model-based estimate, where the bias correction
is computed by nonparametrically smoothing the linear model residuals against frame
variables (i.e., variables whose values are known for all units in the population) which
are either wrongly excluded from the model, or included, but with an incorrect func-
tional specification, in the model. Application of this idea to ridged case-weighting
under the model (5) is described below.

Let Z,,2,,...,Zy denote frame variables which are potential smoothers for this
process. Note that some of these variables could already by included in the set of
benchmark variables used in the ridge weighting process. The bias corrected version
of the ridge weighted estimate Tridge of the total of a survey variable Y is

Tbias corrected — Tridge + Zmi(Yi - thﬁ(/\)) (12)
s

where p()\) denotes the implied ridge weighted estimate of the regression parameter 3
associated with Y in the linear model (5), and the m; are nonparametric prediction
weights obtained by summing the contributions of the ith sample farm to a nonpara-
metric prediction of the residual associated with the fit of this linear model at each
of the N — n nonsample farms. In the case where the Z’s are all interval scaled, and
a product kernel Nadaraya-Watson nonparametric smoother is used, the m; are given by

2 -1
ql;ll K(bq (Ziq - qu))

mi=z 0

ker Z H K(b;]-l(zjq - qu)) -

Jj€s g=1
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Table 1. Study variables

Name

Description

ASIC

State

Region

DSE

Wheat area
Beef number
Sheep number
Dairy number

Wheat income
Beef income
Sheep income
Dairy income
Total income

Framework variables
Unique industry classification (Australian Standard Industry
Classification) for each farm, with values

181 Wheat growing

182 Wheat growing + Sheep production

183 Wheat growing + Beef cattle production

184 Sheep + Beef cattle production

185 Sheep production

186 Beef cattle production

187 Dairy farm

State/Territory in which farm is located
NSW New South Wales
VIC  Victoria
QLD Queensland
SA South Australia
WA  Western Australia
TAS Tasmania
NT Northern Territory

Identifier for 39 geographically defined regions (these are nested
within State)

Size measure (Dry Sheep Equivalent) for a farm. Defined as a
linear combination of the outputs from the farm

Benchmark variables

Area (hectares) sown to wheat during the year

Number of beef cattle on the farm at the end of the year
Number of sheep on the farm at the end of the year
Number of dairy cattle on the farm at the end of the year

Survey variables

Annual income from sale of wheat

Annual income from sale of beef cattle
Annual income from sale of wool and sheep
Annual income from sale of milk products
Annual income from all four activities above

where r denotes the set of N —»n nonsample units, K denotes the kernel function
of the smoother, and the b;,b,,...,by denote the bandwidths of the component

smooths.

For categorical Z variables (e.g., industry and geographic indicators) kernel-based

smoothing can be replaced by weighting according to closeness defined by an appro-
priate metric (e.g., a “counting” metric) for data of this type. In general, smoothing
against a combination of Q; interval scaled Z’s and Q, categorical Z’s is easily
accommodated by multiplying the weights associated with the smooth (against the
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0, interval scaled Z’s) by the closeness weights (associated with the Q, categorical
Z’s) and then renormalising so that the final m; weights sum to N — .

Given a vector m of nonparametric prediction weights defined in this way, the cor-
responding set of nonparametrically bias corrected ridge weights is then given by

wi(Am) =1, +m+ A7 X, ANC™" + X/ 47" X,)"(T - X1, — X/m). (13)

Here 1, is a n-vector of ones, T is the vector of population totals for the variables
defining X, and A, is the diagonal matrix with ith diagonal element D;. Note that these
weights are a special case of (11) with

g=1+m

The weights (13) depend on choice of an appropriate ridge parameter A as well as an
appropriate set of bandwidths for computing the nonparametric prediction weights
m. Fortunately, the choices are quite separate. For interval scaled Z’s, good empirical
results have been obtained by setting ¢ = 3.0 in the simple formula

b, = # (sample range of Z,). (14)
Although not investigated in this article, it is quite likely that further gains in effi-
ciency can be obtained using the bandwidth selection procedure described in Cham-
bers, Dorfman, and Wehrly (1993). Once these bandwidth values have been
determined, choice of X can then be carried out by choosing it as the smallest positive
value such that all components of w(\, m) are greater than or equal to one.

6. An Empirical Evaluation

A comparison of the ratio estimation strategy with the various case-weighted strate-
gies described in the previous sections was carried out using economic and production
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L
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XX x X
200000 x x,g88
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Fig. 3. Scatterplot of Wheat income vs Wheat area for the study population
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Fig. 4. Scatterplot of Beef income vs Beef number for the study population

data based on that collected from N = 904 broadacre and dairy farms that partici-
pated in the annual Australian Agricultural and Grazing Industries Survey (AAGIS)
and the annual Australian Dairy Industry Survey (ADIS) in the late 1980s. Both
surveys are carried out by the Australian Bureau of Agricultural and Resource
Economics. In the simulation study these 904 farms were taken as defining the popu-
lation of interest. :

Table 1 lists the variables that were assumed known for all of these farms (the frame
variables), the variables whose population totals were assumed known, but whose
nonsample values were assumed unknown (the benchmark variables) and the survey
variables (values only known for the sampled farms). Figures 3 to 7 are scatterplots
showing the relationships between each survey variable and its corresponding bench-
mark variable for these 904 farms. Note the large heteroskedasticity for Beef income

500000-]
4000004 x
300000-] . x

Sheep income

T T T
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———
80000
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Fig. 5. Scatterplot of Sheep income vs Sheep number for the study population
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Fig. 6. Scatterplot of Dairy income vs Dairy number for the study population

and Sheep income, and the many outliers. Clearly, for this population the model (5),
(6) is (at best) a rough approximation. Three different sample designs were investi-
gated, each based on a total sample of #n = 100 farms. Details of these designs are
set out in Table 2. Each design was independently replicated 500 times, and, for
each sample selected, a variety of weighting methods were used to estimate the popu-
lation means for each of the survey variables. Details of these weighting methods
(numbered from 1 to 11) are set out in Table 3. Note that the value of the ridge para-
meter A used in the ridged weighting methods (RIDGE, NWD3 and NWDAR3, or
methods 6-11) varied from sample to sample and was set just large enough to ensure
that all sample weights were at least unity.

Two model specifications were used in case-weighting. The first, denoted by an “S”
prefix (for Small model), included only the four production variables (Wheat area,
Beef number, Sheep number and Dairy number) in the vector X; in (5), together with

X X
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1500000
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X
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Fig. 7. Scatterplot of Total income vs DSE for the study population
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Table 2. Sampling methods

Method

Description

Simple Random Sampling

Size Stratification with
“Compromise” Allocation

Size Stratification with
“Optimal” Allocation

Random sample of size n = 100 taken without
replacement from N = 904. Sample rejected if
missing one or more farms from each of the seven
ASIC industries, or without production in one of
the four farm outputs (wheat, sheep, beef or dairy).

Independent random samples taken from four size
strata, defined by values of the size variable DSE.
Stratum boundaries defined so that total DSE is
approximately the same in each stratum. Stratum
allocations defined by averaging proportional and
Neyman allocation (based on DSE), resulting in the
design:

Stratum DSE Range N, ny,
1 200-9499 665 50
2 9500-24999 166 25
3 25000-99999 52 18
4 100000+ 12 7

Under this design, 9 farms with DSE < 200 were
excluded from selection. In addition, a sample was
rejected if missing one or more farms from each of
the seven ASIC industries, or without production in
one of the four farm outputs (wheat, sheep, beef or
dairy).

Same stratification and sample rejection rule as for
size stratification with “compromise” allocation,
but with Neyman allocation based on DSE and with
the “top” stratum completely enumerated.

Stratum  DSE Range N, n,
1 200-9499 665 30
2 9500-24999 166 29
3 25000-99999 52 29
4 100000+ 12 12

an overall intercept. The second, denoted by an “L” prefix (for Large model), also
included these four production variables in X; but replaced the overall intercept by
industry specific intercepts defined by seven zero-one indicators for the seven ASIC
industries represented in the population. In both models, DSE was used as the hetero-

skedasticity factor D; in (6).

Two of the weighting methods investigated (GREG and BLUP weighting, methods
2-5 in Table 3) allow negative u-weights (i.e., case-weights less than one). Table 4 sets
out the percentages of samples that recorded negative u-weights for these procedures,
as well as the average number of sample units with negative u-weights in samples wish
at least one negative u-weight. These results confirm the statement made earlier that
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Table 3.

Weighting methods

Journal of Official Statistics

Name

Number

Description

RATIO

S/GREG
S/BLUP

S/RIDGE

S/NWD3

S/INWDAR3

L/GREG
L/BLUP

L/RIDGE

L/NWD3

L/NWDAR3

1

10

11

m-weighted ratio estimator (2) with estimation

benchmarks as follows
Y = Wheat income
Y = Beef income
Y = Sheep income
Y = Dairy income
Y = Total income

X = Wheat area

X = Beef number
X = Sheep number
X = Dairy number
X =DSE

GREG case-weights (9, g; = 1/7;) based on model “S”
BLUP case-weights (9, g; = 1) based on model ““S”

Ridged BLUP case-weights (11, g; = 1) based on model
“S” with C;, = 1000 for each of the four production
benchmarks in the model. Weights normalised to sum to
N

Nonparametrically corrected and ridged BLUP weights
(13) based on model “S” with Nadaraya-Watson
smoothing (¢ = 3 in (14)) against Z = DSE. Same C-
values as S/RIDGE. Weights normalised to sum to N

Nonparametrically corrected and ridged BLUP weights
(13) based on model “S”* with Nadaraya-Watson
smoothing (¢ = 3 in (14)) against Z; = DSE, Z, = ASIC
and Z; = Region. Same C-values as S/RIDGE. Weights
normalised to sum to N

GREG case-weights (9, g; = 1/7;) based on model “L”
BLUP case-weights (9, g; = 1) based on model “L”

Ridged BLUP case-weights (11, g; = 1) based on model
“L” with Cy = 1000 for each of the four production
benchmarks in the model, and C;, = 100000 for each of
the seven industry benchmarks in the model. Weights
normalised to sum to N

Nonparametrically corrected and ridged BLUP weights
(13) based on model “L’ with Nadaraya-Watson
smoothing (¢ = 3 in (14)) against Z = DSE. Same C-
values as L/RIDGE. Weights normalised to sum to N

Nonparametrically corrected and ridged BLUP weights
(13) based on model “L” with Nadaraya-Watson
smoothing (¢ = 3 in (14)) against Z; = DSE, Z, = ASIC
and Z; = Region. Same C-values as L/RIDGE. Weights
normalised to sum to N
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Table 4. Percentages of samples that generate negative weights under various weighting systems/sample
design combinations. Numbers in parentheses are the average number of sample units with a negative weight
in samples containing at least one negative weight

Simple Random Size Stratification Size Stratification
Sampling and “Compromise” and “Optimal”
Allocation Allocation
S/GREG 44 (4.58) 11 (1.38) 82 (7.59)
L/GREG 77 (4.27) 53 (1.83) 94 (9.73)
S/BLUP 44 (4.58) 6 (1.33) 48 (1.81)
L/BLUP 77 (4.27) 20 (1.83) 93 (5.87)

GREG weighting is more susceptible to negative weights, especially in samples that
are heavily “size biased” (such as those generated under size stratification with opti-
mal allocation). The large number of simple random samples that recorded negative
u-weights reflects the high variability in this sample design. Note that GREG and
BLUP weighting coincide for simple random sampling. The compromise allocation
design is least affected by negative weights, especially when the S(mall) model is
used to generate the weights. This reflects the fact that this model imposes fewer
calibration constraints on the weighting process, and consequently results in fewer
negative u-weights.

For each sample, survey estimates were computed based on the weighting methods
defined in Table 3 and the Root Mean Squared Error (RMSE) of each method,
expressed as a percentage of the true population value, calculated over the 500
independent samples selected under each design. These results are displayed in
Tables 5 to 7. Table 5 displays the RMSE values for population estimates of the
mean values of the survey variables, while Tables 6 and 7 show the RMSE values
generated when domain estimates of mean Total income (State estimates in Table 6
and ASIC Industry estimates in Table 7) are computed by appropriately summing
case-weighted survey data over the domains of interest. In the case of the RATIO
strategy, these domain estimates were computed by first converting the ratio esti-
mator (2) to case-weighted form and then summing over the domain of interest. In
addition, Figures 8—10 show the RMSE values for each weighting method super-
imposed on a “skeletal” boxplot of the distribution of these values (a skeletal boxplot
is one where a central box shows the range of the data between the lower and upper
quartiles, with the median drawn as a line in this central box, and the 10 and 90
percentiles of the data are shown as lines or “fences” below and above this central
box).

Inspection of the results in Table 5 (and the corresponding display in Figure 8)
shows that the methods (8—11) based on the bias corrected ridge weighting procedure
(13) have much to recommend them. In all cases this procedure results in estimates
whose RMSE is acceptably close to the best RMSE values observed. In no cases
does this procedure result in a worst RMSE. By and large, the RMSEs observed
under model S are somewhat smaller than those observed under model L, reflecting
the extra cost in attempting to meet (or at least minimise deviations from) the extra
constraints implied by the extra terms in this model. In contrast, the standard RIDGE
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Table 5. Root Mean Squared Errors (expressed as a percentage of the corresponding population value) of
estimates of the population means of the survey variables

Wheat Beef Sheep Dairy Total
income income income income income

Simple Random Sampling

1. RATIO 14.7 28.9 19.1 144 16.7
2. S/GREG 14.0 27.4 17.2 15.6 17.8
3. L/GREG 13.6 26.1 17.0 15.0 17.3
4. S/BLUP 14.0 27.4 17.2 15.6 17.8
5. L/BLUP 13.6 26.1 17.0 15.0 17.3
6. S/RIDGE 15.8 24.2 16.3 20.4 15.8
7. L/RIDGE 15.7 23.6 16.0 17.1 15.7
8. S/NWD3 15.1 22.2 16.1 18.1 14.5
9. L/NWD3 15.0 22.1 15.9 17.5 14.6
10. S/NWDAR3 144 22.6 15.9 17.3 14.7
11. L/NWDAR3 14.5 224 15.6 17.0 14.7
Size Stratification with “Compromise” Allocation
1. RATIO 10.0 11.6 15.5 19.2 8.3
2. S/GREG 10.0 114 14.7 19.3 7.9
3. L/GREG 9.9 11.9 14.8 20.3 8.4
4. S/BLUP 10.8 14.5 14.6 25.0 10.1
5. L/BLUP 10.8 12.8 14.3 20.5 8.9
6. S/RIDGE 11.4 14.5 14.8 252 10.2
7. L/RIDGE 13.2 13.0 15.6 23.1 9.8
8. S/NWD3 10.1 11.8 139 19.6 8.1
9. L/NWD3 10.5 11.5 14.1 19.8 8.1
10. S/NWDAR3 9.9 12.1 13.8 19.9 8.2
11. LINWDAR3 10.5 11.6 14.1 19.7 8.1
Size Stratification with “Optimal” Allocation
1. RATIO 10.1 10.1 159 25.7 7.9
2. S/GREG 10.2 10.3 15.6 26.8 7.4
3. L/GREG 11.6 11.6 17.4 32.3 8.4
4. S/BLUP 9.1 11.1 14.8 34.2 8.3
5. L/BLUP 11.9 11.1 16.4 32.1 8.0
6. S/RIDGE 12.6 10.7 15.7 37.2 8.7
7. L/RIDGE 23.5 9.6 21.3 47.8 11.9
8. S/NWD3 11.5 9.8 14.3 29.2 7.4
9. L/NWD3 12.5 9.1 15.6 30.7 7.3
10. S/NWDAR3 11.5 9.6 14.4 29.7 7.2
11. L/NWDAR3 12.9 8.9 15.7 31.5 7.3

procedure (methods 6—7) performs poorly, especially in size-biased samples, due to
biases incurred in forcing the BLUP case-weights to be all positive. The BLUP and
GREG weighting methods (both of which can result in negative weights) and the
RATIO method (which is not a case-weighting approach) all seem to perform on a
par, with the S/GREG weights (method 2) marginally the best of this group.

The results displayed in Tables 6 and 7 (and the accompanying boxplots in Figures
9 and 10) provide a perspective on how case-weighting methods cope with domain
estimation, a standard form of secondary analysis carried out on survey data bases.
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Table 6. Root Mean Squared Errors (expressed as a percentage of the corresponding population value) of
estimates of the mean of Total income within each State

NSW VIC QLD SA WA TAS NT

Simple Random Sampling

1. RATIO 48.1 55.3 44.1 43.3 50.7 657 © 711
2. S/GREG 49.1 56.0 50.9 41.7 42.2 70.8 68.2
3. L/GREG 49.1 55.5 51.5 423 40.6 72.2 67.9
4. S/BLUP 49.1 56.0 50.9 41.7 42.2 70.8 68.2
5. L/BLUP 49.1 55.5 515 423 40.6 72.2 67.9
6. S/RIDGE 45.4 51.6 45.7 39.2 44.2 67.2 67.0
7. L/RIDGE 453 50.8 45.0 39.1 45.1 66.7 66.6
8. SINWD3 42.9 54.6 42.5 37.8 39.9 66.7 64.2
9. L/NWD3 43.5 54.2 42.5 38.0 40.1 66.2 64.5

10. S/NWDAR3 43.0 50.7 43.4 37.8 39.0 63.6 65.6
11. L/NWDAR3 43.7 50.8 43.1 38.0 39.3 63.3 65.6

Size Stratification with “Compromise” Allocation

1. RATIO 25.5 42.0 23.2 31.1 26.6 48.8 31.4
2. S/GREG 25.5 42.6 22.5 31.5 25.1 48.9 28.8
3. L/GREG 27.6 45.4 243 32.1 25.5 523 28.4
4. S/BLUP 25.6 35.7 26.3 29.9 35.8 44.1 32.0
5. L/BLUP 26.9 38.7 25.8 30.2 333 52.7 29.6
6. S/RIDGE 25.8 35.7 26.3 29.9 36.1 44.2 32.1
7. L/RIDGE 27.6 38.2 25.5 30.0 39.1 51.8 322
8. SINWD3 24.4 36.8 23.0 29.2 28.1 47.0 29.8
9. L/NWD3 26.5 39.1 229 29.7 28.6 51.3 29.5

10. SNWDAR3 243 35.8 23.2 29.2 28.3 453 30.4
11. L/NWDAR3 26.5 38.6 23.0 29.7 28.6 50.2 29.8

Size Stratification with “Optimal” Allocation

1. RATIO 243 49.6 22.4 36.0 21.6 50.1 14.2
2. S/GREG 24.4 49.8 20.6 359 21.7 50.9 14.8
3. L/GREG 31.5 54.8 224 39.8 24.0 60.4 16.7
4. S/BLUP 18.3 41.7 19.8 30.2 23.7 47.4 13.8
5. L/BLUP 26.0 47.1 222 34.6 28.3 63.1 19.9
6. S/RIDGE 18.4 41.1 19.5 304 34.0 47.7 14.8
7. L/RIDGE 21.1 42.0 17.3 31.9 58.5 53.1 22.3
8. S/INWD3 19.5 42.5 19.4 31.6 24.8 53.5 14.3
9. L/NWD3 21.3 433 18.6 33.1 26.9 553 15.5
10. S/NWDAR?3 18.7 41.5 19.2 31.6 25.6 51.5 14.7
11. L/NWDAR3 20.9 42.6 18.3 33.1 28.2 54.1 15.9

In Table 6 the domains are defined by splitting the farms making up the study popu-
lation according to the State in which they are located, while in Table 7 these domains
are defined according to the ASIC industry classification (see Table 1) of these farms.

Again, we see that the nonparametrically adjusted ridge weights (8—11) perform
well, with the weights based on the S model (methods 8 and 10) providing the
more stable and consistent estimation performance across the different domains. In
the case of ASIC domains (Table 7/Figure 10) the weights based on the L model per-
form well, which is not surprising since this model includes calibration on ASIG
counts. Note that here, unlike the case with the population level results in Table 5,
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Table 7. Root Mean Squared Errors (expressed as a percentage of the corresponding population value) of
estimates of the mean of Total income within each ASIC industry

181 182 183 184 185 186 187
Simple Random Sampling
1. RATIO 41.6 47.5 84.2 55.5 42.6 352 48.3
2. SGREG 36.2 342 97.6 60.5 34.8 353 33.1
3. L/GREG 339 31.6 89.8 52.3 29.2 33.8 34.5
4. S/BLUP 36.2 34.2 97.6 60.5 34.8 353 33.1
5. L/BLUP 33.9 31.6 89.8 52.3 29.2 33.8 34.5
6. S/RIDGE 343 35.9 89.7 54.0 32.6 32.0 314
7. L/RIDGE 32.4 35.8 86.3 49.1 29.1 31.0 30.9
8. SNWD3 34.3 329 94.2 53.3 31.2 30.0 32.9
9. L/NWD3 33.2 32.1 92.6 50.2 28.5 293 32.6
10. S/NWDAR3 33.7 314 84.0 49.1 30.9 30.6 30.4
11. L/INWDAR3 32.5 30.8 84.9 46.5 28.3 299 30.3
Size Stratification with “Compromise” Allocation
1. RATIO 38.1 26.1 67.2 38.5 31.0 16.4 42.5
2. S/GREG 34.4 22.5 67.9 37.5 29.0 13.7 354
3. L/GREG 343 19.6 79.2 33.0 24.1 13.3 35.9
4. S/BLUP 324 32.6 54.2 34.2 315 16.1 27.0
5. L/BLUP 36.3 29.3 74.8 33.1 27.0 15.0 279
6. S/RIDGE 324 329 54.3 34.6 31.5 16.1 27.2
7. L/RIDGE 33.8 349 71.4 34.0 28.4 15.4 29.1
8. SYNWD3 31.0 259 56.7 34.5 293 14.1 28.3
9. L/NWD3 28.8 23.8 69.7 31.2 25.7 13.7 29.1
10. SYNWDAR3 31.1 26.5 54.2 333 29.3 13.9 27.4
11. L/INWDAR3 28.9 24.1 68.6 30.4 25.7 13.7 28.3
Size Stratification with “Optimal” Allocation
1. RATIO 44.3 20.3 72.5 37.4 33.8 13.1 55.7
2. S/GREG 40.6 18.5 72.0 37.3 31.1 10.9 46.6
3. L/GREG 37.9 19.9 106.5 40.6 30.0 11.1 52.0
4. S/BLUP 34.4 22.4 54.7 29.2 30.6 11.5 31.5
5. L/BLUP 41.5 30.6 99.8 46.5 33.4 12.2 39.3
6. S/RIDGE 33.7 31.7 54.4 30.5 30.8 11.0 335
7. L/RIDGE 325 56.7 61.6 28.6 34.9 10.3 43.5
8. SNWD3 34.8 23.0 59.4 34.6 30.1 9.8 334
9. L/INWD3 30.3 24.0 59.9 31.5 30.2 8.9 34.7
10. SNWDAR3 34.7 24.9 56.1 323 30.2 9.3 32.7
11. L/NWDAR3 30.2 26.2 58.1 29.5 30.2 8.6 34.7

the RIDGE case-weights (methods 6 and 7) seem to perform reasonably well in
domain estimation. The remaining methods (1-5) do not admit of a clear winner
as far as domain estimation is concerned. The L/GREG procedure (method 3) works
well with ASIC domains, but is unremarkable with State domains. On balance, the S/
BLUP procedure (method 4) would appear to be the best of this group of conven-
tional case-weighting methods.

Finally, in Figures 11 to 16 we illustrate the conditional behaviour of the different
case-weighting methods investigated in the study. Figures 11-13 are seatterplot
smooths showing how the average number of negative u-weights (under GREG



Chambers: Robust Case-Weighting for Multipurpose Establishment Surveys 25

50

45
40
35

RMSE
I
+

204

154

¥ e

10

+ L3

N4 EEE
&3
b
boLlld .
™ P "

t
(R N0 R
be
(X KT R X
b L3

L T 1 I T 1 I T 1

3 4 5 6 10 11

~
o]
=)

Method

Fig. 8. Boxplots showing the distribution of RMSE'’s associated with estimation of Wheat income, Beef
income, Sheep income, Dairy income and Total income for the three sample designs (simple random sam-
pling, “‘compromise”” stratified sampling and “‘optimal” stratified sampling) shown in Table 5. A separate box-
plot is shown for each of the weighting methods 1 to 11 considered in the study

and BLUP weighting) in a sample changes as the sample configuration changes. For
this analysis, sample configuration has been defined in terms of the sample DSE-rank.
That is, the rank, over the 500 samples drawn for each design, of the sum of the
population ranks of the sample DSE values. The sample DSE-rank provides a robust
measure of the overall size of the sample, since it is relatively unaffected by a few
sample units with very large DSE values. Similarly, Figures 14—16 are scatterplot
smooths that show how the average estimation error (expressed as a percentage
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Method

Fig. 9. Boxplots showing the distribution of RMSE'’s associated with estimation of Total income in each
State/Territory for the three sample designs (simple random sampling, “‘compromise” stratified sampling _
and “‘optimal”’ stratified sampling) shown in Table 6. A separate boxplot is shown for each of the weighting
methods 1 to 11 considered in the study
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Fig. 10. Boxplots showing the distribution of RMSE'’s associated with estimation of Total income in each
industry group (ASIC) for the three sample designs (simple random sampling, “‘compromise” stratified sam-
pling and “optimal” stratified sampling) shown in Table 7. A separate boxplot is shown for each of the weight-
ing methods 1 to 11 considered in the study
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Fig. 11.  Scatterplot smooths showing how the average number of negative u-weights changes?s the sample
DSE-rank increases for GREG and BLUP-type case-weighting under simple random sampling
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Fig. 12.  Scatterplot smooths showing how the average number of negative u-weights changes as the sample
DSE-rank increases for GREG and BLUP-type case-weighting under “compromise” stratified sampling

of the population total) for the variable Total income changes with sample DSE-
rank.

Clearly, sample design is the main factor dictating the number of negative u-weights
that occur in a particular sample, with the actual method (either GREG or BLUP)
of case-weighting being of secondary concern. From Figure 11 we see that, for simple
random sampling, most negative u-weights occur in samples with small DSE-rank,
with the propensity for negative u-weights rapidly decreasing as sample DSE-rank
increases. In contrast, with the stratified sampling/optimal allocation design, the
reverse occurs, with the propensity for negative u-weights increasing with increased
sample DSE-rank (Figure 13). Finally, we see that with the stratified sampling/
compromise allocation design, this propensity seems relatively unaffected by sam-
ple DSE-rank (Figure 12). These plots also confirm the point made earlier — that
GREG-weighting tends to produce more negative u-weights than BLUP-weight-
ing, with the L(arge) model resulting in more negative u-weights than the S(mall)
model.

Figures 14—16 show how the behaviour of the estimation error of the variable Total
income under different case-weighting methods (all based on the S(mall) model)
changes depending on the sample DSE-rank. In the case of simple random sampling
(Figure 14) we see that both the S/RIDGE and S/NWD3 methods perform well
provided sample DSE-rank is greater than about 200, but in samples with small
DSE-rank these methods are biased low (S/RIDGE more than S/NWD3). On the =
other hand, both the RATIO and S/GREG (which is the same as S/BLUP for this
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Fig. 13. Scatterplot smooths showing how the average number of negative u-weights changes as the sample
DSE-rank increases for GREG and BLUP-type case-weighting under “optimal” stratified sampling

design) methods show a downward trend in estimation error, from being biased high
in small DSE-rank samples to being biased low in high DSE-rank samples (RIDGE)
or with negligible bias in these samples (GREG/BLUP). Overall, for samples that are
reasonably DSE-balanced (sample DSE-rank between 200 and 300) we see that the
S/RIDGE and S/NWD3 weights are preferable. It is worth pointing out here that
Figure 14 shows that in fact for samples of the size taken (» = 100) and for the popu-
lation being studied here (Total income) use of either S/IGREG or RATIO does
not lead to an average bias (i.e., a design bias) of zero. In fact, the average bias of
S/GREG in Figure 14 is 3.3%, while that for RATIO is 1.1%. The corresponding
average biases for S/RIDGE and S/NWD3 are —0.9% and —0.7%, respectively.

The situation changes when we consider the stratified sampling designs. For the
compromise allocation design (Figure 15) we see that both S/BLUP and S/RIDGE
tend to be biased low across the entire range of samples selected. The nonparametri-
cally adjusted ridge weights S/NWD?3 are also biased low, but to a much lesser extent.
The RATIO and S/GREG weights have negligible conditional bias. All weighting
methods exhibit a slight upward trend in conditional bias as sample DSE-rank
increases. For the optimal allocation design (Figure 16) the S/BLUP is still biased
low, but now we see a strong upward trend in the conditional bias of S/RIDGE, while
the nonparametrically adjusted ridge weights S/NWD3 are now essentially unbiased,
as are the RATIO and S/GREG weights.

Before concluding this section, it should be pointed out that the=preceding
conditional analysis illustrates the behaviour of the conditional bias of the various
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Fig. 14. Scatterplot smooths showing how the percentage relative error in estimating Total income changes
as the sample DSE-rank increases for various methods of weighting under simple random sampling

weighting methods considered. It does not show how the conditional variance of the
estimation error associated with these methods changes with sample DSE-rank. The
change in variability of the estimation error as sample DSE-rank changes can be
assessed along similar lines to that used above to assess the change in bias. Although
not presented here, this analysis shows that in the stratified samples the S/BLUP
weights generally have the lowest conditional variability, compensating for their
conditional bias, while the S/RIDGE weights have low conditional variability in
the compromise allocation design, but not in the optimal allocation design. The
nonparametrically adjusted ridge weights S/NWD?3 have low conditional variability
across all three designs considered in the study, outperforming RATIO and
S/GREG in this regard in both the simple random sampling design and the optimal
allocation design, and with similar performance to S/GREG (and outperforming
RATIO) in the compromise allocation design.

7. Conclusion

In this article two different ideas applicable in model-based survey estimation have
been combined to produce a procedure that seems to offer the best qualities of
both. The first idea is that of ridging to avoid negative case-weights when calibrating
on a set of benchmark variables. This is effective but is also model-dependent. The
second idea is that of nonparametrically adjusting survey weights to correct for model
misspecification. Again, this is effective, but is subject to the occurrence of negative
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Fig. 15. Scatterplot smooths showing how the percentage relative error in estimating Total income changes
as the sample DSE-rank increases for various methods of weighting under “‘compromise’ stratified sampling
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Fig. 16.  Scatterplot smooths showing how the percentage relative error in estimating Total income changes
as the sample DSE-rank increases for various methods of weighting under “‘optimal” stratified sampling
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weights. Putting these two ideas together in (13) offers the promise of a method of
case-weighting that should work well in a wide variety of situations. Certainly, the
empirical results demonstrated in the previous section show that for those establish-
ment type surveys where economic data are collected, and where positive case-weights
that are (at least approximately) calibrated on a key set of benchmark variables are
required, a method of weighting based on (13) should work rather well.

An issue that has not been addressed at all in this article is that of confidence inter-
val estimation. In the context of ridge-type weighting, this problem has been con-
sidered by Dunstan and Chambers (1986). The basic idea is that the prediction
variance of a case-weighted estimator like (4) can be decomposed into a term which
depends on the squares of the weights and the underlying population variance func-
tion and another term corresponding to a squared bias. Both terms can be estimated
(using, for example, the robust variance estimation procedures described in Royall
and Cumberland, 1978) and standard 2-sigma type confidence intervals constructed.
Alternatively, modern bootstrap ideas (Chambers and Dorfman 1994) may be
applied to construct these confidence intervals. Research in this area is continuing.
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