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Sampling From Finite Populations:
Actual Coverage Probabilities for Confidence
Intervals on the Population Mean

Jérgen Dalén'

Abstract: The normal and the Student’s ¢
approximations for the distribution of the
sample mean under simple random sampling
from a finite population are empirically
compared, resulting in support for the use of
the latter approximation. A simple rule of
thumb for estimating the population mean is
proposed. The rule is of the type n> KG3,
where n is the sample size, K is a constant, and
G, is the standardized absolute third moment
of the population. It is derived empirically
through extensive studies of dichotomous
populations with different degrees of skewness
by looking at the actual coverage probabilities

1. Introduction

In survey sampling the prevailing strategy for
estimating a finite population parameter 0 is
based upon an (approximately) unbiased
point estimator  and an (approximately)
unbiased variance estimator f/(é). Then a
central limit theorem is evoked for the
assumption that 6 is approximately normally
distributed, and it is stated that the interval

6 + 1.96 {V(6)}12

! Senior Statistician, Department of Enterprise
Statistics, Statistics Sweden.

of the standard confidence intervals for these
populations. The rule is designed so that a
nominal 95 % confidence interval on the
population mean can be assumed to be correct
a % of the time in an average sense defined in
the paper by assigning different values to K for
five levels of a from 85 to 94.5 %. The rule is
tested and empirically verified by means of
Monte-Carlo experiments for critical sample
sizes on populations based on fixed percentiles
of well-known parametric distributions.

Key words: ¢ distribution; skewness; central
limit theorem.

covers the true value 6 with a probability of
approximately 95 %. Sometimes 1.96 is
exchanged for the corresponding value taken
from the Student’s  table with the appropriate
degrees of freedom.

In an individual survey, however, it is not
easy to establish the accuracy of this approx-
imation. It depends on a number of factors
such as the type of estimator and design used,
the underlying population, and the sample
size. Consequently, there is a great need to
increase our knowledge of the coverage
properties of the standard procedures for
calculating confidence intervals in different
set-ups, and to work out simple rules of thumb
useful for the survey practitioner.
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In sampling practice, the standard approx-
imation frequently fails. One example of this
is sampling from populations of enterprises
with very skewed variables such as production,
employment, investment, export, or import.
Another example is small area estimation
where most observations are set at zero.

In this paper we will study the case of esti-
mating the population mean by the sample
mean under simple random sampling. For this
case, Erdos and Rényi (1959) and Hijek
(1960) have developed conditions under
which the sampling distribution converges to
normality.

Stenlund and Westlund (1975, 1976),
Barrett and Goldsmith (1976), and Hagglund
(1978) studied this problem by means of
Monte-Carlo experiments.

For populations in which the principal
deviation from normality consists of a marked
positive skewness, Cochran (1977) suggested
the simple rule

n>25G?,

where n is the sample size and G; the usual
measure of population skewness defined
below. According to Cochran, “this rule is
designed so that a 95 % confidence probabili-
ty statement will be wrong not more than 6 %
of the time.”

Robinson (1978) gave an asymptotic Edge-
worth-type expansion for the sum of a simple
random sample without replacement from a
finite population. The crucial quantities in this
expansion are skewness and kurtosis. He
showed that, subject to a condition ensuring
that the population distribution is “almost
continuous,” the absolute difference between

the distribution function of the sample sum
and the asymptotic expansion is bounded by a
term containing the absolute fifth moment of
the population distribution.

Perhaps it would be possible to base a rule
of thumb on this expansion, although it would
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have to be quite complicated, as it has to take
into account the skewness and the kurtosis as
well as the absolute fifth moment of the
population distribution. It would also have to
exclude the (lattice) case where the popula-
tion is clustered around too few values.

We use a simpler approach, inspired by
Cochran’s rule and by Hoglund (1978), who
has derived the following remainder term esti-
mate (slightly manipulated algebraically to
SErve our purpose):

t—nu

__CG,
F(t)—@[om_ﬂ]'\ ey (D

where

F is the distribution function of the sum of a
sample of n units among the N population
units (x;,%2,- .-, Xn)»

® is the standard normal distribution function,
u is the population mean,

o is the population standard deviation,
f=n/N,

C is an absolute constant (Quine (1985) shows
that C < 145) and

N
2 | x-u?
==

G, = No3

From above, we have

N
)3
G - .El(xl W

! No3

We notice three things about (1.1):

i) The deviation from normality is bounded
by a term containing the factor G,, the
standardized absolute third moment.

ii) The formula is symmetric in n and (N-n),
indicating that the accuracy of the normal
approximation could be expected to be
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equally good for these two sample sizes.
In fact, as pointed out by Plane and
Gordon (1982), the sampling distributions
of the sample mean of n and (N-n) units
are mirror images of each other except for
a scale change. For this reason, N/2 is the
sample size where the sampling distribu-
tion is closest to the normal.

If we wish to have an upper limit to
the absolute difference (called €) of
formula (1.1), we obtain the condition
CG, Vn(1-f) < e <> n(1-f) > C*G¥/€? or, if
we consider large populations and set
K=C%¢ then n> KG3. This provides a
theoretical argument for a rule similar to
Cochran’s, although the population skew-
ness is replaced by G,. The constant K is
dependent only on the maximum error
allowed in the approximation. Of course,
in constructing two-sided confidence
intervals we are interested in the difference
between the deviations in symmetric pairs
of percentiles of the distribution, usually
2.5 and 97.5, and therefore £ is not
necessarily equal to the difference between
the nominal and actual coverage probabil-
ity of the confidence interval.

iii)

The above arguments provide the logical
foundation for the empirical investigations
presented in this paper. Here we calculate the
exact coverage probabilities of confidence
intervals based on the normal and the ¢ distri-
bution for dichotomous populations, where
these probabilities are based on a simple
hypergeometric distribution. No other distri-
butions are known for which these probabilities
are easily calculated for arbitrary sample sizes
and degrees of skewness. Moreover, there is
strong reason to believe that this distribution,
due to its extreme lattice character, represents
more or less the worst case. This was actually
proved by Esséen (1956) in the i.i.d. case. The
t distribution is studied together with the
normal because it is recommended by many
textbook authors, although a solid theoretical
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argument based on a limit theorem is lacking.

The structure of the type of rule of thumb
that we investigate is therefore

n> K,G3, 1.2)
the interpretation being that if we have an
exact value for G, and are prepared to allow
an actual coverage probability of o, we must
choose a sample size greater than K,G3. We
study the degree to which the K,:s are stable
for different degrees of skewness of the
dichotomous population and for finite realiza-
tions of some continuous parametric distribu-
tions.

For extremely skewed populations G,=G;
and then this rule coincides with Cochran’s.
But, at the other extreme, for symmetric
populations G;=0 and Cochran’s rule is
reduced to n > 0 and is therefore generally

unsuitable. For this reason G is not used in

the empirical investigations below. On the
contrary, G,=1 for all populations, with
equality if and only if the population is dichot-
omous and symmetric as shown in Dalén
(1985). For reference, G,=4/V2n~1.6 for the
normal distribution and V27/4=~1.3 for the
uniform distribution.

2. The Dichotomous Population

For the dichotomous population studied, the
following notations are used:

Value Number of units Number of
in the popula- unitsin the
" tion sample
0 N-M n-m
1 M m
Total N n

The population has the following character-
istics:
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population mean = p = P,
population variance = o> = P— P?,
G, = (1-2P)/(P-P*"% and
G, = (1-2P+2PY)/(P-P?)°*3 ,
where P = M/N.
Notice that G, = G+ 2P'3/(1-P)*? so that
lim (G,-Gy) = 0and that G, = 0 and G, = 1

when P = 0.5.

The sample has the following characteristics:
sample mean = X = m/n and
sample variance = s* = (m-m?/n)/(n-1).

A nominal 95 % confidence interval for p
based on the sample outcome now becomes

ACP
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X-ty975s V(A-Hin<pu< X +to575s V(1-fin,

where f; 475 is either 1.96 or the corresponding
quantity from the ¢ distribution with (n-1)
degrees of freedom.

(Since we are interested in how bad the
approximation would be at worst, the continu-
ity correction is not used. If it was, the
constants K, needed would be much lower but
would be more difficult to generalize to other
types of populations.)

Now, let I, be the indicator of this confi-
dence interval statement as a function of the
sample outcome. That is:

100%

95%

90%

85%

80%

%

Diagram 1.

L 1 1 1 1 1 ! L ! LS n
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Actual coverage probabilities. N = 300, P = 0.1, t approximation used
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1 for those m where the confidence in-
terval statement is true

0 for those m where the confidence in-
terval statement is false.

The actual coverage probability (ACP) is now
defined as the probability for a sample of a
certain size n from our population to produce
a true confidence interval statement, that is

n
ACP(N, M, n) = % I, p(m),

(1) (25
()
according to the hypergeometric distribution.

Computer programs were written where
these probabilities for various combinations
of N, n, and P were computed. The program-
ming language was SIMULA, and the IMSL
procedures MDBIN, MDHYP, and MDSTI
were used.

In Diagram 1, a typical example is given of
how the ACP varies with n up to N/2. We see
that the ACP does not increase monotonously
with n. Typically there are intervals of increase
(shorter and shorter as n increases), followed
by downward jumps. This is of course due to
the discontinuous character of the population
studied. Up to 85-90 % the increase is rapid,
but then oscillations occur around a mean,
which comes closer and closer to 95 %.

where p(m) =

3. Average ACP

ACP is a measure of the goodness of the
normal or ¢ approximation. If the nominal
confidence level is 95 %, we consider the
approximation to be good if we can count on a
coverage probability a sufficiently close to
95 %.

However, it is not possible in an individual
case to have a “guaranteed” ACP. This is
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partly because we do not know the population
characteristics exactly, but also because of the
oscillations in the ACP-level as n varies as
shown in diagram 1. A device intended to deal
with the latter problem is the concept of an
average ACP.

Definition 1: a.is an average ACP for a certain
sample size n in a certain population if

N
]_EOACP(n+j)/(s+ D=a

for all integers s such that 0 < s < N/2-n.

Definition 2: For a certain population the
sample size n, required for an average ACP of
o is the smallest n for which a is an average
ACP.

These two definitions also give a unique
value for the constant K in (1.2) for a certain
population, namely

K, =n,G3.

In Tables la—1le, values of these constants
are presented for various combinations of N
and P including the binomial case (N=) and
for five a-levels: 85, 90, 93, 94, and 94.5 %.

Two comments regarding the calculation of
these tables should be made:

i) Definition 1 could not be applied exactly in
the binomial case, since N is infinite.
Instead, we had to choose a maximum
sample size up to which we calculated the
ACP and which was equated to N/2 in
definition 1. This sample size was in all
cases larger than 100G3.

ii) Inthose cases where N/2-n, < 50, we have
put brackets around the value of the
constant. This is because those values may
be considered accidental from a global
point of view. (The number 50 is, of
course, to a certain extent arbitrary.)
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Constants for an Average ACP of 85 %
G,

G,

Table 1a.
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Table 1d. Constants for an Average ACP of 94 %
Normal approximation tapproximation

P N= =

500 1000 2000 5000 o 500 1000 2000 5000 o0
0.01 - 5.1) - 18.6 22.5 - 5.1) - 18.6 22.5
0.02 (5.2) - 16.4 20.0 23.3 (5.2) - 16.4 19.9 23.2
0.03 (82) (162) 186  22.1 - 24.0 (82) 139 186 221 213
0.04 (11.3) 17.3 20.7 22.7 23.1 (11.3) 16.0 19.6 20.0 23.1
0.05 (14.4) 16.9 20.1 23.4 23.8 (14.4) 16.9 19.0 19.4 23.8
0.1 19.4 24.8 25.3 23.8 25.8 19.4 20.1 20.5 22.4 22.5
0.15 24.1 23.2 26.9 25.3 27.6 18.6 17.2 19.3 21.4 19.8
0.2 31.8 28.4 30.8 30.8 26.3 17.0 19.4 15.2 22.1 17.6
0.25 259 24.0 31.7 36.5 36.5 11.0 13.9 19.2 14.4 16.8
0.3 30.6 28.7 36.8 33.7 31.8 8.7 11.9 11.9 15.0 15.0
0.35 29.1 35.2 30.6 26.8 43.7 13.0 10.0 10.0 10.0 10.0
0.4 43.5 30.2 28.4 28.4 30.2 6.2 6.2 6.2 6.2 6.2
0.45 26.2 26.2 36.9 36.9 34.9 5.8 5.8 5.8 5.8 5.8
0.5 36 37 29 34 34 14 9 9 9 9
Table 1e. Constants for an Average ACP of 94.5 %

Normal approximation tapproximation

P N= =

500 1000 2000 5000 o 500 1000 2000 5000 o
0.01 - 5.2) - 25.2 46.3 - 5.2) - 25.2 46.3
0.02 (5.3) - 211 366 487 (5.3) - @11) 356  45.0
0.03 - (16.4) (31.8) 39.8 465 - (16.4) 295 398 465
0.04 - (22.5) 33.4 43.7 49.0 - (22.5) 32.2 38.6 45.1
0.05 - (28.2) 40.3 47.9 47.6 - (27.0) 34.8 37.5 43.5
0.1 (32.8) 35.7 49.0 48.1 53.3 (28.5) 34.4 38.1 42.0 48.5
0.15 36.5 44.8 49.4 51.5 53.8 31.7 37.7 38.4 36.8 40.4
0.2 44.3 50.9 57.8 60.2 58.5 24.2 42.9 45.3 33.2 419
0.25 46.6 51.8 56.6 59.5 57.6 35.5 33.6 29.3 25.0 25.0
0.3 61.8 53.1 44.3 54.3 64.3 23.1 21.2 21.2 29.3 26.2
0.35 57.4 51.3 56.7 62.0 62.0 13.0 13.0 13.0 16.1 16.1
0.4 53.3 47.0 56.8 60.4 62.1 15.1 13.3 13.3 13.3 13.3
0.45 44.6 81.5 62.1 57.3 57.3 5.8 8.7 8.7 8.7 8.7
0.5 62 75 65 80 69 14 9 9 9 9

A summary of the tables is given by the span
for each level:

a Normal t

85 1.6— 5.3 1.6—- 4.4
90 1.9- 8.4 1.9- 5.1
93 7.9-19.5 4.9-12.1
94 16.4-43.7 5.8-23.8
94.5 25.2-81.5 5.8-46.5

There are some interesting features of the

tables:

i) For the higher a-levels and less skewed
populations, the ¢ approximation gives
much smaller constants. This provides an

empirical argument for the use of this
approximation instead of the normal one.
For very skewed populations the conver-
gence rate of the ¢ approximation is “rapid
in the beginning and slow in the end” in the
sense that we get relatively small constants
for low a-levels and large ones for high o-
levels. The opposite holds for less skewed
populations. For P=0.5 the constant only
increases from 4 to 9 in most populations as
o increases from 85 to 94.5, while for
P=0.01 the increase in the binomial case is
from 2 to 46.3.
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4. Almost Continuous Populations

The K,-values obtained in the dichotomous
case were also tried on populations of an
“almost continuous” type. The K-values
chosen were 3, 5, 11, 20, and 40, correspond-
ing roughly to the five a-levels.

It is to be expected that the convergence
rate is more rapid for such populations than
for the dichotomous population with its pro-
nounced lattice character. If thisis correct, the
a-levels should generally be exceeded if we
choose the above K-values.

The populations used were based on fixed
percentiles of the continuous theoretical
distributions below. For each of these four
distributions, six different finite populations
were generated with different degrees of
skewness by taking the percentiles from 0.001
to 0.999 with intervals of 0.002, making the
population size 500.

The distributions are:

I) The beta distribution with the probability
density function

xa—l ( 1_x)b—1

Ba,b) ; 0=<x<1,a>0,b>0

fx) =
where B(a,b) is the beta function, and

y = coefficient of skewness =

2(b-a)(a+b+1)"?
(a+b+2)(ab)"?

II) The lognormal distribution with the
probability density function

f(x) = (ox)(2m) ™ exp {~(logx-6)/20};
x>0,0>0

and

vy = {exp(c®)+2}{exp(c®)-1}"%;
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III) The power function with the distribution
function

Fx) = (x/0)50<x<8,0>0,c>0
and
v = 2(1-¢)(2+c)/(3+c)c";

IV) The Weibull distribution with the distri-
bution function

F(x) =1-exp{-6x};x=0,6>0,c>0
and

_T(1+3/c)-3T(1+2/c) T(1+ 1/c)+2r3(1+1/c)
{T(1+2/c)-T*(1+1/c)} > ’

where I'(x) is the gamma function.
In all cases vy stands for the coefficient of
skewness corresponding to G, above, that is

y = E(x-w){EG—p)’} .

A common feature of all these distributions
is that for some value(s) of the involved
parameter(s) y can take on at least any value
> 0.

The reference used for these distributions is
Patel et al. (1976).

For each population five different sample
sizes were chosen to correspond as closely as
possible to the K-values above. This means
that n was chosen so that n = KG3 > n-1 for
values of K of 3, 5, 11, 20, and 40 respectively.

For every sample size, 1 000 simple random
samples without replacement were drawn.
For each sample, the population mean was
estimated and a confidence interval based on
the sample standard deviation and the ¢ distri-
bution was calculated. The number of cases
when this interval covered the true population
mean was counted. This number divided by
1 000 became our estimated actual coverage
probability (EACP). EACP is of course
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Table2a. EACPs for1 000 Random Samples from Populations Based on the Beta Distribution.
(b=1 coincides with a uniform distribution.)

K olevel b=1/a=1 b=1/a=1.756 _b=1/a=2.390 b=1/a=4.083 b=1/a=6.16 __b=1/a=8.509
(%) G,=1299  G,=1.592 G,=1.978 G,=2.946 G,=3.882 G,=4.714
n n n n n n

3 85 942 6 90.2 8 90.9 12 89.8 27 88.5 46 89.3 67

5 90 946 9 92.6 13 90.9 20 90.9 44 91.7 76 91.6 112
11 93 94.8 19 93.7 28 93.3 44 94.1 96 94.2 166 94.6 245
20 94 95.1 34 95.5 51 93.9* 79 94.5 174

40 94.5 94.7 68 95.0 102 94.6 157

Table 2b. EACPs for 1 000 Random Samples from Populations Based on the Lognormal
Distribution

K o-level 0=0.1 0=0.4 0=0.72 6=0.92 0=1.06 0=13
(%) G,=1597  G,=1.982 G,=2.943 G,=3.883 G,=4.695 G,=6.331
n n n n n n
3 85 959 8 927 12 921 26  89.6 46  90.6 67  89.5 121
5 90 947 13 936 20 914 44 928 76  91.8 111 91.7 201
11 93 959 28 956 44 944 96 952 166  94.5 243
20 94 948 51 955 79  93.9* 174

40 94.5 95.4 102 96.2 158

Table 2c. EACPs for 1 000 Random Samples from Populations Based on the Power Function
Distribution

K a-level ¢=0.316 ¢=0.1933 ¢=0.0905 ¢c=0.0540 ¢=0.0376 ¢=0.0213
(%) ~ G,=1.590 G,=1.981 G,=2.940 G,=3.877 G,=4.698 G,=6.319
n n n n n n
3 85 89.6 8 885 12 87.7 26 88.8 46 87.0 67 88.2 120
5 90 923 13 91.0 20 91.1 44 92.0 76 92.0 111 90.9 200
11 93 93.7 28 93.3 44 93.1 96 92.9* 166 94.9 243
20 94 94.0 51 95.0 79 94.5 173

40 94.5 94.7 102 95.1 157

Table 2d. EACPs for 1000 Random Samples from Populations Based on the Weibull
Distribution

K a-level  ¢=2.15 c=1.24 ¢c=0.795 c=0.615 c=0.53 c=0.425
(%) G,=1.585 G,=1.984 G,=2.923 G,=3.967 G,=4.831 G,=6.554
n n n n n n
3 85 94.4 8 92.8 12 90.7 26 90.4 48 88.9 71 91.0 129
5 90 94.1 13 93.8 20 92.0 43 92.0 79 91.6 117 91.0 215
11 93 95.0 28 943 44 93.8 94 93.2 174
20 94 94.5 51 93.7* 79 95.3 171

40 94.5 95.2 101 94.1* 158

stochastic in this case with a standard error of In Tables 2a-2d, the outcome of these
0.7 % to 1.1 % when the ACP ranges from Monte-Carlo trials is presented in terms of the
95 % to 85 %. EACEP for a certain combination of population
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and sample size. We see, as expected, that in
almost all cases the a-levels obtained from the
studies of the dichotomous population are ex-
ceeded, for o = 85and 90 % by large margins.
The convergence rate up to 90-92 % in gene-
ral seems to be rapid. In only 5 cases out of 90
are the presupposed levels not obtained (tho-
se cases are indicated with an asterisk). The
EACPs are in these cases 0.1-0.4 % below
the expected level. One case is for a = 93 %
(0.1 below), three cases are for
o = 94 % (0.1-0.3 below) and one case is for
o = 94.5 % (0.4 below). The deviations may
well be entirely due to the stochastic effect of
the Monte-Carlo trials.

5. Conclusions

Our empirical investigations into the problem
of how large the sample size must be to allow a
calculation of a standard 95 % confidence
interval for a simple random sample from a
finite population support the following tenta-
tive conclusions:

i) When the difference is of any significance,
the confidence interval should be based on
the Student’s ¢ distribution with n-1
degrees of freedom, making the conver-
gence rate more rapid.

ii) A rule of thumb of the Cochran type (1.2)
is useful to the practicing statistician, if he
has reasonably good knowledge of G,. A
choice of K = 20 should in most cases allow
him to count on an ACP of 94 % for a
nominal 95 % confidence interval. For
“almost continuous” populations, a K
greater than 3 should be enough for an
ACP of around 90 % . For some symmetric
populations, i.e., those close to uniform,
even more liberal limits will do.

The rule of thumb could be used a priori to
assist a decision on sample size. If our knowl-
edge of G, is insufficient before the survey is
conducted, the rule could be used to evaluate
the quality of a standard confidence interval
based on the sample data after the sample is
drawn.
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6. Some Comments for Practical Application

Practical application of a rule of thumb such as
(1.2) raises a number of questions, as com-
mented below.

a) G, is not known. In practice no population
parameters are known exactly and G, is no
exception. Estimating G, from the sample
is difficult. No unbiased estimator is
known and the corresponding sample
quantity

n _ n _
&= Vﬁ:‘: |er|3/ {Z (xr—X)Z}S/2
i=0 i=0

< (n*-2n+2)/n Vn-1<Vn

and therefore underestimates G, with a
probability of one as soon as n < G3, as

shown in Dalén (1985).
Moreover, if the population consists of

two subsets A and B where B contains a
few large-value units with a small probabil-
ity of showing up in a sample of size n, and
G, calculated over A U B is - much greater
than G} calculated over A, then in most
sample outcomes we would in a sense esti-
mate Gj rather than G, and our rule of
thumb based on g, instead of G, would be
seriously misleading.

It is therefore necessary to know more
about G, than what can be inferred from a
sample. If, for example, we know that the
range of population values is not much
larger than the range of sample values we
would be on safer ground using g, or a
similar estimator.

Stratified samples. In the presence of a
skewed population, estimation by the
sample mean under simple random
sampling is certainly not the best sampling
strategy. In such situations the prevailing
strategy at central statistical offices is
stratified random sampling using the
weighted mean with the stratum sizes as
weights. However, due to the lack of a
sufficiently good auxiliary variable we
sometimes end up with very skewed sub-
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populations in many strata. It then becomes
an issue when it is reasonable to use the
normal approximation in stratified samples.
Some empirical studies of this problem
have been made, but due to the many
dimensions involved (number of strata,
stratum sizes, sample sizes, variances, and
degrees of skewness in each stratum),
results are difficult to present systematical-
ly. There are indications that a rule like

n> Kaz W,'G%i 5

where summation is over strata, where G,;
is G, in stratum i, and w; are weights such
that Zw; = 1, would work satisfactorily. Ifa
Neyman allocation is used, w; = N;,0,/ZNc;
seems to work in many cases. (Vs the size
and o? the variance of stratum i.)

c) Alternative confidence intervals. There is
no universally applicable method for
constructing confidence intervals for the
mean in finite populations when the
standard procedure fails. No method can
handle the case where there is a large unit
of unknown size with a small probability of
showing up in a sample.

In some situations alternative methods
are available, however. In the dichotomous
case there are methods based on the
binomial or hypergeometric distribution.
Cochran (1977) describes these methods
with examples.

Johnson (1978) considers a procedure
where the ¢ variable is modified according
to a Cornish-Fisher expansion of the sample
mean. The procedure is shown to give
improved confidence intervals and tests for
distributions as asymmetric as x> with two
degrees of freedom for sample sizes as
small as 13.

A novel method in this area is that of
resampling from the empirical distribution
function, called the bootstrap. Efron
(1981) presents two methods - the percen-
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tile method and the bootstrap ¢ — which use
this idea for constructing confidence inter-
vals, and he points out the similarity
between the results from Johnson’s ¢ and
the bootstrap ¢. A shortcoming of the boot-
strap techniques is the large amount of
computing power they require. There is a
rapid development in this area with much
research. Among recently published
papers mention could be made of Rao and
Wu (1984), Bickel and Freedman (1984),
Efron and Tibshirani (1985), and Abramo-
vitch and Singh (1985).
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