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Satisfying Disclosure Restrictions With Synthetic Data Sets

Jerome P. Reiter!

To avoid disclosures, Rubin proposed creating multiple, synthetic data sets for public release
so that (i) no unit in the released data has sensitive data from an actual unit in the population,
and (ii) statistical procedures that are valid for the original data are valid for the released data.
In this article, I show through simulation studies that valid inferences can be obtained
from synthetic data in a variety of settings, including simple random sampling, probability
proportional to size sampling, two-stage cluster sampling, and stratified sampling. I also
provide guidance on specifying the number and size of synthetic data sets and demonstrate
the benefit of including design variables in the released data sets.
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1. Introduction

When considering the release of data sets to the public, statistical agencies face competing
objectives. They seek to provide users with sufficiently detailed data and also to guard the
confidentiality of survey respondents. Commonly used methods for meeting these
objectives include cell suppression, data masking, and data swapping (see e.g., Willenborg
and de Waal 1996). However, these methods can compromise estimation by distorting
relationships among variables in the data set.

Another approach is to create multiple, synthetic data sets for public release, as pro-
posed by Rubin (1993). In this approach, the agency selects units from the sampling frame
and imputes their data using models fit with the original survey data. The approach has
three potential benefits. First, it can preserve confidentiality, since identification of units
and their sensitive data can be difficult when the data for some or all of the variables in
the data set are not actual, collected values. Second, with appropriate estimation methods
based on the concepts of multiple imputation (Rubin 1987), the approach can allow data
users to make valid inferences for a variety of estimands without placing undue burdens on
these users. Third, synthetic data sets can be sampled by schemes other than the typically
complex design used to collect the original data, so that users of synthetic data can ignore
the design for inferences.

Variations of the synthetic approach have been suggested or implemented by several
authors. Rubin (1993) proposes full simulation, in which (i) units are randomly sampled
from the sampling frame for each synthetic data set, and (ii) unknown data values for units

! Institute of Statistics and Decision Sciences, Duke University, Durham, NC 27708-0251 U.S.A. Email:
jerry @stat.duke.edu

Acknowledgments: This research was supported by the U.S. Census Bureau through a contract with
Datametrics Research. The author thanks Trivellore Raghunathan and Donald Rubin for collaborations on this
topic.

© Statistics Sweden



532 Journal of Official Statistics

in the synthetic samples are imputed. Inferential methods for analyzing such data sets have
been developed by Raghunathan et al. (2002). Fienberg et al. (1998) use the sample cumu-
lative distribution functions and bootstrapping to construct synthetic, categorical data.
Little (1993), in a general discussion of the analysis of masked data, presents the possibi-
lity of simulating only variables that are potential identifiers. Kennickell (1997) protects
several monetary variables in the Survey of Consumer Finances by releasing a mixture
of the original survey data and multiple imputations of values that are high disclosure
risks. He constrains the imputation models so that the imputed values are reasonably
close to the actual values. Abowd and Woodcock (2001) generate synthetic data to
avoid disclosures in longitudinal, linked data sets. Each replication in their synthetic
data consists of the units originally surveyed, but all units’ values are imputed.

A distinguishing feature of Rubin’s (1993) full simulation approach is that the released
units differ from the units originally surveyed. No actual values or near actual values of
sensitive variables are purposely released. Furthermore, since the released units differ
across synthetic data sets, intruders should have more difficulty using the multiple imputa-
tions to assist their identification efforts. For these reasons, the full simulation approach
promises to guard confidentiality more closely than releasing actual or imputed data for
the units originally surveyed. However, this extra protection comes at a cost: the validity
of inferences relies critically on the accuracy of the imputation model. As noted by a
referee of this article, this cost may partially explain the dearth of research on the full
simulation approach.

In this article, I present results of some applied research on the full simulation approach.
Using simulation studies, I am able to show that valid inferences can be obtained in a vari-
ety of sampling designs, including simple random sampling, stratified sampling, probabil-
ity proportional to size sampling, and two-stage cluster sampling. This is encouraging,
since the validity of multiple imputation procedures in design settings other than simple
random samples has been questioned by some researchers (see Fay 1996; Rubin 1996).
I also provide guidance on specifying the number and size of synthetic data sets and
demonstrate that including design variables, such as stratum indicators, in the released
data sets facilitates inferences.

This article is organized as follows. Section 2 describes the inferential methods
proposed by Raghunathan et al. (2002). Section 3 presents the simulation studies I use
to investigate the performance of these methods. Section 4 examines the sensitivity of
inferences obtained from these methods to changes in the number of synthetic data sets,
the number of synthetic units, and the inclusion of design variables in the synthetic
data. Section 5 concludes with some remarks on this approach.

2. Inferences from Multiple Synthetic Data Sets

To describe the construction of and inferences from multiple synthetic data sets, we use
notation similar to that of Raghunathan et al. (2002). Let I; = 1 if unit j is selected in
the original survey, and /; = 0 otherwise. Let I = (I, ..., Iy). Let Y, be the n X p matrix
of collected (real) survey data for the units with I; = 1; let Y, be the (N — n) X p matrix
of unobserved survey data for the units with /; = 0; and let Y = (¥, Y,0p). For simpli-
city, we assume that all sampled units fully respond to the survey. Let X be the N xd
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matrix of design variables for all N units in the population (e.g., stratum or cluster
indicators or size measures). We assume that such design information is known at least
approximately, for example from census records or the sampling frames.

The agency releasing synthetic data, henceforth abbreviated as the imputer, constructs
synthetic data sets based on the observed data (X, Y, I) in a two-part process. First, the
imputer imputes values of Y for the N — n unobserved units to obtain a completed-data set.
The imputer also may choose to impute values of Y for all NV units so that the completed-
data set contains no real values of Y, thereby avoiding the release of any respondent’s
value of Y. We assume that imputations are generated from the Bayesian posterior pre-
dictive distribution of (Y'|X, Y, I). Second, the imputer samples units randomly from
the completed data population. These sampled units are released as public use data, so
that the released data set contains the values of Y only for units in the synthetic sample.
This process is repeated independently m times to get m different synthetic data sets.

This process of data creation differs from the inverse sampling methods of Hinkins et al.
(1999). In inverse sampling, simple random samples are generated from the units collected
in the survey. In this method, simple random samples of new units are taken from the
sampling frame itself.

We now specify a formal notation for the process of synthetic data construction. Let
(X, Ycom, i) be the completed-data population from which n,,,, units are sampled to obtain
synthetic data set i. Let Z;; = 1 if unit j is selected in synthetic data set i, and Z;; = 0
otherwise. Let Z; = (Z;3, ..., Z;y). Let Yy, ; be the n, X p vector of released, synthetic
data for units with Z;; = 1. The released synthetic data set i is expressed as
(X, Ysyn.i> Z;), where all of X is included since design information is assumed known
for all units. In practice, it is not necessary to generate completed-data populations for con-
structing Yy, ;. Instead, the imputer need only generate values of Y for units with Z;; = 1.

From these synthetic data sets, some user of the publicly released data, henceforth
abbreviated as the analyst, seeks inferences about some estimand Q = Q(X, Y), where
the notation Q(X, Y) means that the estimand Q is a function of (X, Y). For example, Q could
be the population mean of Y or the population regression coefficients of ¥ on X. In each
synthetic data set i, the analyst estimates Q with some estimator ¢; = Q(X, Yy, ;, Z;) and
estimates the variance of g; with some estimator v; = V(X, Yy, ;, Z;). We assume that
the analyst determines the ¢; and v; as if the synthetic data were in fact collected data
from a simple random sample of (X, Y).

In this article, we assume that the imputer and analyst both use the actual posterior
predictive distribution of Y. Under this assumption, the analyst can obtain valid inferences
for Q by combining the g; and v;. Specifically, the following quantities are needed for
inferences:

Gn =Y qilm (1)

i=1

b=y (qi—qu)/m—1) )

i=1

D, = Xm: v;/m 3

i=1
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The analyst then can use g, to estimate Q and
1
T.v = (1+_)bm_7_jm (4)
m

to estimate the variance of g,,. The b,, — 7,, is an unbiased estimator of the variance of
Gops = OX, Y, I), and the (1/m)b,, adjusts for using only a finite number of synthetic
data sets. When T; > 0, and n, ny,, and m are large, inferences for scalar Q can be based
on normal distributions. For moderate m, inferences can be based on ¢-distributions with
degrees of freedom

vy = (m—1)(1 —ry ")’ 5)

where r,, = (1 + mil)bm /v,,, so that a (1 — «)% interval for Q is

G * 1, (2T, (©6)

Although not in Raghunathan et al. (2002), this reference ¢-distribution was presented by
Raghunathan and Rubin at the International Society for Bayesian Analysis conference in
June 2000. Extensions for multivariate Q are not presented here.

Because there may be some estimators for which 7 is negative, particularly when m is
modest, it is necessary to have some condition that forces the estimator of Var(g,,) to be
positive. Thus, I replace (4) with the modified variance estimator,

T = max(0, T,) + 6 * (”ny @m) )
where 6 = 1if 7T, < 0, and 6 = 0 otherwise. Negative values of T, generally can be avoided
by increasing m or ny, .

The variance of g,, in the synthetic data setting differs from the variance of the analo-
gous g, in the setting of multiple imputation for nonresponse. In the synthetic data setting,
the variance calculation involves the distribution used to generate the (X, Y,,, ;) and the
additional step of randomly sampling units from this completed-data population. In the
usual multiple imputation setting, the variance calculation involves only the distribution
used to create imputations for the units with missing data. In fact, as shown in the simula-
tions, the usual variance formula for multiple imputations, 7,, = (1 + 1/m)b,, + v,,, tends

to overestimate significantly the variance of the synthetic g,,.

3. Simulation Studies
We investigate the performance of these methods in simulation studies of four settings:

e estimate a population mean from a simple random sample,

e estimate a population mean from a stratified random sample,

e estimate a regression coefficient from a probability proportional to size sample,
e estimate a regression coefficient from a two-stage cluster sample.

The investigations focus on the coverage of asymptotic 95% confidence intervals; they do
not examine the potential of the synthetic data approach to preserve confidentiality.

In all simulations, we use the correct posterior predictive distribution to draw synthetic
data sets. Of course, in actual implementations, the correct posterior predictive distribution
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is not known, and an imputer-constructed approximation is used. Nonetheless, these
idealized simulations help us gauge the promise of releasing synthetic data sets.

3.1. Simple random sampling

Assume that we want to estimate the mean of some variable, Y, in a population of size N
from a simple random sample of size n = 100. Let Y ~ N(0, 100). Further, we assume that
N > n, so that the finite population correction factor can be ignored when estimating
variances.

For each of 500 replications, we construct a collected data set, Y,,, = (Y1, .., Yi00)s
by drawing randomly from Y; ~ N(0, 100) for j =1,...,100. The Bayesian posterior
predictive distribution of Y is

J [Yops) = Jf(Y|0)f(0|Yohs)d0 ®)

where 0 = (u, 02) are the parameters of the normal distribution. To construct each
synthetic data set i, we use standard noninformative priors on all parameters and draw
Ny, = 100 values from (8). This process is repeated independently in m = 100 data sets
for each replication.

Following the prescription for analyzing multiple synthetic data sets, in synthetic data
set i we let

qi = ysyn,i (9)
— Z (yij - ysyn,i)z

(nxyn - 1) nsyn ( 10)

l
A summary of the actual coverages of 95% confidence intervals for the mean of Y is
shown in Table 1. In that table and other tables that follow, the ‘‘Observed Data
method’’ constructs 95% confidence intervals with g, = 1.96\/@ where u,, is
the estimate of Var(q,,) obtained from the observed data; the ‘T, method’’ uses
Gn T 1, +/Ty; and ““Method T,,”” uses g, = 1.96\/ﬁ. The column labeled ‘‘Avg. g’
contains the averages across all replications of the point estimates of Q. The column
labeled ‘‘Avg. Est. Var.”” contains the averages across all replications of the estimated
variances. The column labeled “95% CI cov.”’ contains the percentages of confidence
intervals that cover Q.

The average point estimate of the population mean is close to the population value of
zero whether we use the actual data or the synthetic data. This is a benefit of using the
correct posterior distribution when drawing synthetic data. The actual variance of g
across the 500 replications is 1.09, so that the simulations verify that 7T is unbiased.
T, > 0 in all 500 replications. Confidence coverage of intervals constructed with T mirror

Table 1. Results for SRS simulation (m = 100)

Method Avg. g Avg. Est. Var. 95% CI cov.
Observed data .04 1.00 94.2
T, .04 1.08 94.0

T, .04 3.10 100.0
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those of the observed data, and both coverage percentages are within simulation error of
nominal 95% coverage.

The 95% confidence intervals constructed by using 7,, are too wide. As discussed
previously, the distributions used in the development of the variance formulae for multiple
imputation differ from the distributions used to create synthetic data sets, so that 7,
overestimates Var(g,,).

3.2.  Stratified simple random sampling

Assume again that we wish to estimate a population mean of some variable Y. Let each
unit j be a member of only one stratum %, where h = 1,...,10 and for all & the size of
the stratum, N,, equals 1,000. We construct the population by drawing values from
Y, ~ N(10 % h, h?). The actual mean of the 10,000 observations in the generated data
is 54.94.

Because of the substantial differences in the means and variances across strata, a
stratified simple random sample should yield more accurate estimates of the population
mean than a simple random sample of the same number of units. That is, the usual
unbiased estimator with a stratified random sample, Y, = Ny/N >, Y}, has smaller
variance than the usual unbiased estimator with a simple random sample, Y.

In each of 500 replications, we sample a collected data set from this population by
taking a simple random sample of 20 units from each stratum. To construct each synthetic
data set i, we draw a simple random sample of n, = 200 stratum indicators from the
population of 10,000 units. The value of Y,; for sampled synthetic unit j in stratum £ is
drawn from the full Bayesian posterior predictive distribution,

f(th|Yohm X) = Jf(Y|0h7 Yobs’ X)f(0h | Yobs’ X)deh (11)

where 0, = (u, og) are the parameters of the normal distribution in stratum 4, and X is a
vector of stratum indicators for all N units. Standard noninformative priors are used for all
parameters. This process is repeated in m = 100 data sets for each replication.

We assume that the values of the N, are available to the analyst, for example from
census tabulations. Following the prescription for analyzing multiple synthetic data
sets, in synthetic data set i we let

10 Nh
= Vi (12)

h=1

10 2 -2
nin \ (Ne\ 22 Ying — in)
=3 (1- DY 2 ikg — Vi) 1
“ ( LOOO) (N> (njp — Dnyy, (13

h=1

where n;;, is the number of units in stratum /% in synthetic data set i. A summary of the
actual coverages of 95% confidence intervals for the population mean of Y is shown in
Table 2. The observed data inferences are based on the usual unbiased variance estimator
for stratified simple random sampling.

The average point estimates from the observed and synthetic data sets are close to the
actual population mean. All T, > 0. The actual variance across 500 replications of g is
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Table 2.  Results for STRS simulation (m = 100)

Method Avg. g Avg. Est. Var. 95% CI cov.
Observed data 54.95 .20 94.6
T, 54.96 .23 96.0
T, 54.96 .69 100.0

.21, so that T, is slightly biased. This bias results from the variation in the n;; across i,
which we have not accounted for in the v;. Coverage rates for the 7, method are slightly
larger than those of the observed data because of the inflated variances. With large n,,, the
effect of variation in the n;, on inferences is minimized, and the synthetic data inferences
can be expected to match the observed data inferences. As in the SRS simulation, the
multiple imputation variance estimator leads to substantial overcoverage.

3.3.  Probability proportional to size sampling

We now estimate a regression coefficient in a probability proportional to size sample. The
hypothetical population is constructed of N = 1,000 units with four survey variables,
(X1, X2, X3, X4). We draw X1 from an exponential distribution, draw X2 ~ N(0, 3.5),
draw X3 ~ N(X1, 3.5), and draw X4 ~ N(X1 + X2 + X3, 100). The estimand of interest
is the regression coefficient of X3 in the regression of X4 on (X1, X2, X3), which in the
generated population equals 1.07. We assume that X1 is known for all units and is
available for sampling the collected data and for creating synthetic data sets.

In each of 500 replications, we draw collected data by sampling 100 units with probabil-
ity proportional to X1, without replacement, using the scheme of Sunter (1977) as
described in Sérndal et al. (1992, pp.93-96). The ratio of the largest to smallest value
of X1 is 42/2, so that the design differs noticeably from simple random sampling.

To create synthetic data, we take m = 100 simple random samples of 7, = 100 units
from the created population. Since X1 is assumed known for all units, we use the actual
values of X1 for the units in the synthetic data set. To create values of X2, X3, and X4,
we draw from a series of conditional regressions derived from full Bayesian posterior pre-
dictive distributions. That is, X2 is drawn from its regression on X 1; X3 is drawn from its
regression on the synthetically drawn values of (X 1, X2); and, X4 is drawn from its regres-
sion on the synthetically drawn values of (X1, X2, X3). Standard noninformative priors
are assumed for all regression parameters.

Following the prescription for analyzing multiple synthetic data sets, in synthetic data
set i we let g; equal the estimated regression coefficient of X3 in the ordinary least squares
regression of X4 on (X1, X2, X3), and we let v; equal the usual estimated variance of this
estimated regression coefficient. A summary of the actual coverages of 95% confidence
intervals for the regression coefficient is shown in Table 3.

Table 3. Results for PPS simulation (m = 100)

Method Avg. g Avg. Est. Var. 95% CI cov.
Observed data 1.15 .29 96.6
T, 1.15 .30 96.8

T, 1.15 90 100
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The average point estimates from the synthetic data match those from the observed data,
and both are slightly biased for the population regression coefficient. The actual variances
across the 500 replications of g,,, and g, are both .25. The averages of the estimated var-
iances for the observed and synthetic methods are larger than .25 because both variance
estimators do not account for sampling from a finite population without replacement.
The average value of T is close to the average value of u,,, suggesting that a version
of T, that corrects for finite-population sampling would be unbiased. Confidence coverage
for the synthetic data inferences is similar to the observed data coverage, and 7 is never
negative. Once again, the multiple imputation variance estimator is very inefficient.

3.4. Two-stage cluster sampling

We now estimate a regression coefficient in a two-stage cluster sample. To construct the
population, we use the values of (X1, X2, X3, X4) for the 1,000 units in the PPS simula-
tion and randomly form 20 clusters of size 50. For each unit j in cluster », we add a cluster
effect w, to X4,;, where each w, is drawn independently from w, ~ N(0, 25). The esti-
mand of interest is the regression coefficient of X3 in the regression of the new X4 on
(X1, X2, X3), which in the generated data remains 1.07 after accounting for the clustering.

In 500 replications, we create collected data by sampling in two stages: (i) a simple ran-
dom sample of ten clusters; and, (ii) within selected clusters, a simple random sample of
ten units. We assume that cluster indicators and X 1 are known for all units and are released
in the synthetic data sets.

To create synthetic data, we take a simple random sample of n,,,, = 100 units from the
population. Since X1 is assumed known for all units, we can use the values of X1 for the
units in the synthetic data set. To create X2 and X3, we draw values from sequential
regressions as is done in the PPS simulation. To draw X4, we use a three part process. First,
we fit a random effects model to the collected data

X4,;=Bo+B1X1,;+B2X2,;+B3X3,; +w, +e, (14)

where €,; ~ N(0, 0?) and w, ~ N(O, 7%). We use this model to determine the posterior dis-
tribution of 8 = (Bg, B1, B>, £3) and the posterior modes of 7 and the w, for observed
clusters. Second, to estimate w, for unobserved clusters, we randomly draw a cluster effect
from a normal distribution with mean zero and variance equal to the posterior mode of 7.
Finally, we draw (3 from its posterior distribution, and draw new X4 from its regression on
(X1, X2, X3), conditional on the estimated values of the cluster effects and the drawn
values of (3.

Following the prescription for analyzing multiple synthetic data sets, in synthetic data
set i we let g; equal the estimated coefficient of X3 in the random effects regression of the
new X4 on (X1, X2, X3). We let v; equal the estimated variance of this estimated regres-
sion coefficient. A summary of the actual coverages of 95% confidence intervals for the
regression coefficient across the 500 replications is shown in Table 4. In that table, both
the observed data and synthetic data inferences are from random effects models of X4
on (X1, X2, X3).

The average point estimates of the regression coefficient are close to the population
value in both the observed and synthetic data. The actual variances of g,,, and gqg across
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Table 4. Results for CLUS simulation (m = 100)

Method Avg. g Avg. Est. Var. 95% CI cov.
Observed data 1.07 32 96.4

T, 1.07 32 96.4

T, 1.07 1.01 100

the 500 replications are .30, and the averages of the estimated variances for both observed
and synthetic data are similar and slightly larger than .30. This increase is again a product
of not accounting for sampling from a finite population without replacement. 7, > 0 in all
replications, and confidence coverage for the synthetic data mirrors the coverage for the
actual data. Again, the actual coverage and variance estimates are slightly inflated from
ignoring finite population corrections. Finally, as in all three previous studies, using 7},
leads to overcoverage.

4. Implementation Guidelines

In this section, I offer guidance on three implementation issues for agencies considering
the synthetic data approach. First, I discuss selecting the number of released data sets
and show that the usual m = 5 rule-of-thumb for multiple imputation may not be valid
for synthetic data. Second, I discuss selecting the size of released data sets. Third, I discuss
the benefits of releasing design information in the synthetic data sets.

4.1.  The number of synthetic data sets

To reduce demands on users’ storage and processing needs, imputers may want to release
as few data sets as possible. When using multiple imputation for missing data, often the
release of m =5 imputed data sets provides sufficient inferential accuracy (Rubin
1987). Unfortunately, this rule-of-thumb may not apply when releasing synthetic data
and using the variance estimator in (4).

This can be demonstrated by repeating the simulation studies of Section 3 using m = 5
instead of m = 100 data sets. As shown in Table 5, point estimates continue to track the
observed data point estimates, but synthetic data variance estimates are problematic. T
is negative in 15% to 20% of the replications. Excluding the negative variance estimates
does not help: the averages of the T for replications with positive variance estimates are
about 20% larger than the actual Var(gs). Using T* from (7), which estimates Var(gs) with
7,, when Ty < 0, compounds this overestimation.

The problems with 7 in these settings are not due to bias; averaging over all replications
in each simulation confirms that each 7, remains unbiased for its corresponding Var(gs).
Rather, the problems with T stem from the relatively large variances of b5, which lead to

Table 5. Point and variance estimates when m = 5

Simulation AVE. Gops Avg. Gs Var(gs). % of T, <0 Avg. T
SRS —.010 —.018 1.43 20 1.72
STRS 54.92 54.94 .28 15 46
PPS 1.16 1.16 .38 21 54

CLUS 1.01 1.00 .40 16 .70




540 Journal of Official Statistics

substantial probabilities that (1 + 1/m)b,, < T,,. For example, the variances of V5 and b5
across all replications are 0.03 and 2.31, respectively, and their means are 1.02 and
2.05, respectively.

These probabilities can be approximated from the distribution of (b, |X, Y, I) over
repeated draws of synthetic data. In the SRS simulation, the sampling distribution of
(b,,1X, Y, 1) is a scaled chi-squared distribution with degrees of freedom m — 1,

— Db

(uu{, Y, 1) ~ X1 (15)
B

where B = u,,; + E(9,,|X, Y, I). Using B=2.05 and 75 = 1.02, the probability that

a1+ %)b5 < 75 is approximately

_ ,  (LO2)4) |
Pr(12b5 < 102) = PT(X4 <m) = 20

(16)
which matches the rate of negative variance estimates in the simulation.

These results naturally lead to the question: for a given ny, and estimator ¢;, what is a
reasonably small value of m that still allows users to obtain accurate inferences? Intui-
tively, imputers should select m so that 7 is reasonably close to Var(g,,). This can be
achieved by requiring the variance of T to be substantially less than Var(g,,). This require-
ment is similar to some of the conditions for randomization validity of multiple imputation
inferences developed by Rubin (1987, Ch. 4).

For a given estimator, the variance of T, can be approximated as follows. Under the
assumptions that (i) the sampling distribution in (15) remains valid for the estimator of
interest, and (ii) the Var(9,,|X, Y, I) is small relative to Var(b,,|X, Y, I)

1 2
Var(T,|X, Y, 1) =~ (1 +—> Var(b,,|X, Y, I) A7)
m
1\’ 2B
= (14— (18)
m) m—1

These assumptions are satisfied in all four simulation studies of Section 3. The B can be
estimated by simulating a very large number of synthetic data sets based on the observed
data.

The value of m can then be selected so that (18) is some small fraction, say one-
tenth, of u,,,. We compare to u,,, because it is easier to compute than Var(g,,). Since
Uy = Var(g,,), values of m chosen this way should be larger than values of m chosen
with comparisons to Var(g,,). In the simulations of Section 3, requiring the approxi-
mate Var(T,|X,Y,I) to be one-tenth of u,,, suggests that m =40 in the SRS
example, m = 20 in the STRS example, and m = 30 in the PPS and CLUS examples.
Simulation studies with these values of m produce 7, <0 in less than 1% of the
replications.

Since Var(T;) and Var(q,,) depend on the properties of the analyst’s estimator and the
imputer’s method of data generation, reasonable values of m vary from setting to setting.
For any collected data set, imputers can use the method of this section to derive values of m
for a variety of likely analysts’ estimators. Then, the imputers can select an m that
satisfactorily balances costs and inferential accuracy.
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Table 6. Variances in SRS simulation for different ny,

Pgyn Avg. Var(q,y) Avg. T, Var. T
100 1.051 1.042 0.115
1,000 1.028 1.028 0.052
10,000 1.023 1.030 0.045

4.2.  The number of units in synthetic data sets

The number of released units, ny, , affects the values of b,, and 7,,. This is easily realized
by noting that o,, = 0 when n,, = N. When 9,, = 0, it is always true that 7, > 0. Of
course, releasing N units is not practical for many surveys. Thus, imputers need to consider
how many units to release in the synthetic data sets.

Toassess this question, we can examine how Var(q,,) and Var(T;) change as n,, increases.
Both of these quantities depend on E(7,, | X, Y, I) through B = u,;,, + E(9,,1X, Y, I). Since
E@®,|X,Y,I) decreases with 1/n,, increasing ny, reduces Var(qg,) and Var(Ty).
However, when n,, is relatively large, increases in ng,, do not decrease E(v,,|X, Y, I)
substantially, so that reductions in Var(g,,) and Var(T,) are likely to be small. This
is demonstrated in Table 6, which displays results of 1,000 replications of the SRS
simulation using m = 100 and ny, = 100, n,, = 1,000, and n,, = 10, 000.

As this table shows, Var(q,o) decreases slightly when going from n,, = 100 to
ng, = 1,000, and there is hardly any change when going from ng, = 1,000 to
Ny, = 10,000. For all values of n,,,, T, remains unbiased. Its variance decreases by about
55% when going from n,, = 100 to n, = 1,000, but it decreases only by about 15%
when going from ng,, = 1,000 to n,, = 10,000.

Reductions in variance of T reduce the risk that 7, < 0. They also increase the degrees
of freedom, »,, in the reference #-distribution. Thus, it is advantageous inferentially to
release as many units as is feasible in the data set. However, releasing more units increases
storage costs and increases the likelihood that the same unit will appear multiple times,
which could have ramifications for disclosure protection. For large ng,,, these results
suggest that the gains in estimation accuracy from increasing n,,,, may not be worth these
costs.

4.3.  The inclusion of design information in synthetic data sets

By generating synthetic data from simple random samples of completed-data populations,
the imputer can release data that can be analyzed with standard likelihood or Bayesian
approaches that ignore the design. However, there are still advantages to releasing design
information. When design information is related to the survey variables, as in the PPS and
CLUS simulations, analysts with access to the design information can properly include
this information in their models. Additionally, releasing stratum or cluster indicators
makes it easier for analysts to perform within-stratum or within-cluster analyses.
Releasing design information also can help analysts make synthetic data inferences
about estimands that do not explicitly depend on such information. For example, consider
estimating the population mean in the STRS simulation with a simple expansion estimator,
Y;, as analysts might do if stratum indicators are not released. Because the synthetic data
are generated from the right models, Y, = >, Y,;/m is unbiased. However, the value of m
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Table 7. Point and variance estimates when m = 100 in STRS simulation

Est. Aveg. 00 Var(qio0) % of T, <0 Avg. of pos. T Avg. T
Vo 5491 20 0 23 23
Y. 54.91 25 36 62 1.92

needed to estimate Var(Y ) accurately increases dramatically. This can be seen in Table 7,
which displays the results of simulations of the STRS setting with m = 100. The estimated
variances for Y, are often negative, whereas the estimated variances for Y, from (12)
are always positive. Based on the method outlined in Section 4.1, to obtain adequate
variance estimates using Y,,, we require m = 1,000. Imputers may find it more
manageable to release the stratum indicators instead of releasing this many data sets.

Inferences using Y,,, are poor in this example because its associated Var(T,) = .38,
which is larger than Var(Y,,) = .25. Besides increasing m, we can reduce Var(T,) by
increasing ngy,. In fact, in 100 replications of this simulation with n,, = 1,000, the
Var(T,) = .07 and all of the T > 0. Still, releasing design information may be preferable
to releasing larger data sets.

5. Concluding Remarks

The results of this article contribute to a growing interest in the release of synthetic data for
disclosure avoidance. The simulation studies suggest that valid inferences can be obtained
from synthetic data sets for complex designs. The studies also suggest that agencies con-
sidering this approach should not select the number of released data sets blindly, for the
usual m = 5 advice does not always hold. On the other hand, it appears that inferences
are relatively insensitive to the choice of ng,,, so long as it is reasonably large. Agencies
also should consider releasing design information to help analysts obtain valid inferences.
Of course, agencies considering the release of synthetic data should assess how following
these implementation guidelines affects costs and confidentiality.

The flexibility of the synthetic data approach provides further advantages. Imputations
can be corrected for measurement or nonsampling error, and released data can include
geographic information to facilitate small area estimation (Raghunathan et al. 2002).
Synthetic data sets can serve as training data sets for researchers who require special
access to highly confidential data (U.S. General Accounting Office 2001). Agencies can
provide synthetic administrative records linked to released data in place of actual records.

There are formidable challenges to implementing the full simulation approach in
practice. Imputation models must reflect the structure of the data with reasonable
accuracy. The public must be convinced to use multiply-imputed, synthetic data. Ongoing
research on nonparametric imputation models may help overcome these challenges.

6. References

Abowd, J.M. and Woodcock, S.D. (2001). Disclosure Limitation in Longitudinal Linked
Data. In P. Doyle, J. Lane, L. Zayatz, and J. Theeuwes (eds.) Confidentiality,
Disclosure, and Data Access: Theory and Practical Applications for Statistical
Agencies, 215-277. North-Holland, Amsterdam.



Reiter: Satisfying Disclosure Restrictions With Synthetic Data Sets 543

Fay, R.E. (1996). Alternative Paradigms for the Analysis of Imputed Survey Data. Journal
of the American Statistical Association, 91, 490—498.

Fienberg, S.E., Makov, U.E., and Steele, R.J. (1998). Disclosure Limitation Using
Perturbation and Related Methods for Categorical Data. Journal of Official Statistics,
14, 485-502.

Hinkins, S., Parsons, V., and Scheuren, F. (1999). Inverse Sampling Algorithm for NHIS
Confidentiality Protection. Proceedings of the American Statistical Association, Section
on Survey Research Methods, 485-502.

Kennickell, A.B. (1997). Multiple Imputation and Disclosure Protection: The Case of the
1995 Survey of Consumer Finances. In W. Alvey and B. Jamerson (eds) Record
Linkage Techniques, 248-267. National Academy Press, Washington, D.C.

Little, R.J.A. (1993). Statistical Analysis of Masked Data. Journal of Official Statistics, 9,
407-426.

Raghunathan, T.E., Reiter, J.P., and Rubin, D.B. (2002). Multiple Imputation for
Statistical Disclosure Limitation. Technical Report, Department of Biostatistics,
University of Michigan.

Rubin, D.B. (1987). Multiple Imputation for Nonresponse in Surveys. Wiley.

Rubin, D.B. (1993). Discussion: Statistical Disclosure Limitation. Journal of Official
Statistics, 9, 462-468.

Rubin, D.B. (1996). Multiple Imputation After 184 Years. Journal of the American
Statistical Association, 91, 473—489.

Sarndal, C., Swensson, B., and Wretman, J. (1992). Model Assisted Survey Sampling.
Springer-Verlag.

Sunter, A.B. (1997). List Sequential Sampling with Equal or Unequal Probabilities
without Replacement. Applied Statistics, 26, 261-268.

U.S. General Accounting Office (2001). Record Linkage and Privacy: Issues in Creating
New Federal Research and Statistical Information. U.S. General Accounting Office,
Washington, DC.

Willenborg, L. and de Waal, T. (1996). Statistical Disclosure Control in Practice.
Springer-Verlag.

Received September 2001
Revised June 2002



