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Seasonal adjustment of weekly data poses special problems because the data are not
exactly periodic. The workhorse programs X-12 ARIMA, TRAMO/SEATS, and STAMP, are
not suitable. Harvey, Koopman, and Riani (1997) introduced a structural model in which
the seasonal component is modeled nonparametrically via periodic splines. Pierce, Grupe,
and Cleveland (1984) captured a deterministic seasonal component using regression on
trigonometric series within an ARIMA framework. The method advanced here uses the same
trigonometric components, but adopts a locally weighted regression to capture changing
seasonality. The method is illustrated with unemployment insurance claims data published by
the U.S. Bureau of Labor Statistics and steel production data. It is being used successfully for
these series and for weekly money supply series at the Federal Reserve.
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1. Introduction

Weekly time series provide timely updates for government and private observers of the

economy while they wait for the release of monthly or quarterly economic indicators. The

weekly unemployment insurance (UI) claims series produced by the U.S. Department of

Labor and money supply series from the Federal Reserve are prominent examples.

These series are compiled for weeks ending on a given day of the week, Saturday in the

examples used here. The position of Saturdays within a year varies from year to year, and

they may occur 52 or 53 times. This violates the basic periodic time series structure

assumed by X-12-ARIMA, TRAMO/SEATS, and STAMP. The SABL method of

Cleveland, Dunn, and Terpenning (1978) transforms weekly data to create a series of

period 52 and applies robust versions of the seasonal and trend smoothers of X-11.

The Kalman filter methods of Gersch and Kitagawa (1983) also assume a fixed number of

periods, but could be extended to add multiple regressions and their corresponding

hyperparameters.
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A locally weighted least squares procedure is suggested here, which can be used with a

weekly design matrix having 52 or 53 observations in a year. Weighting schemes to

achieve localized parameter estimates are determined by signal extraction formulas in

conjunction with appropriate objective functions. The method is currently being applied at

the U.S. Bureau of Labor Statistics, the Federal Reserve, and the Bank of Canada.

Computational efficiency is important for local weighting procedures, as there is

potential for doing a complete regression for each data point. A ten-year design matrix for

weekly data may be 522 by 64 (ten years of weeks by 60 trig functions plus slope and

outliers), requiring a substantial amount of computing for each regression. Cleveland,

Devlin, and Grosse (1988) solve this problem in a more general context. They establish a

procedure for selecting points at which to do the regressions and interpolating in between.

The method suggested here takes advantage of the periodicity of the seasonal design

matrix X. The value of X 0X/n is the same for any number of complete years of monthly

data containing n months, and is very nearly so for five or more complete years of weekly

data. This implies that only one computation of the inverse of X 0X is needed to estimate the

dynamic regression. The computation can begin at any point within a year, so little

flexibility is lost in using complete years of data.

Closely related work appears in Harvey and Koopman (1993), Harvey, Koopman, and

Riani (1997), and Poirier (1973). They use state-space models in conjunction with periodic

spline smoothing to achieve a similar result. The spacing of the spline knots and the values of

the variance ratios have significant implications for the results. Holiday effects may evolve

with their model, but the overall procedure will be judged by some as more complex.

2. The Method

We analyze data for weeks ending on Saturday, but a similar line of argument follows for

weeks ending on other days. The peculiar feature of weekly data is that Week 1 of a year

can be associated with a range of dates from January 1 to January 7, the date of the first

Saturday in our case. Further, if Week 1 falls on January 1, there will be 53 weeks in the

year rather than 52. This is illustrated in the seasonal factor plot of Figure 1. The solid line

is the daily interpolation of weekly factors for part of a year estimated with a model that

keeps the factors for a given day of the year the same each year. The boxes show factors for

the year 2002. The circles show factors for the year 1999, which would appear quite

different without the interpolated values.

The analysis begins with a regression model for a series y, which is the observed series

after suitable transformation and detrending. Series used in this article were logged and

differenced. Thus, we model y as consisting of a seasonal component and error:

y ¼ Xbþ e ð1Þ

For the seasonal component of year s, we employ trigonometric variables with

fundamental frequency 1/365 (or 1/366):

Xsðt; 2j2 1Þ ¼ sinð2pij=365Þ; Xsðt; 2jÞ ¼ cosð2pij=365Þ ð2Þ

where i ¼ iðs; tÞ is the day of the year s on which week t ends and j ¼ 1; 2::::p/2. We

choose p sufficiently large to capture the dynamics of the seasonal pattern. The index t runs
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from 1 to ns, which is 52 or 53. We stack the yearly matrices into an overall design matrix

in X in levels. Now let X represent the first difference of this matrix. Assuming X is defined

for K complete years, it has dimension n £ p, where n ¼ S
K
s¼1ns. To achieve a weighted

regression, we employ an n £ n diagonal weight matrix W and apply the standard

solutions:

b̂ ¼ ½X 0WX�21X 0Wy ð3Þ

ŷ ¼ X½X 0WX�21X 0Wy ð4Þ

The regression parameter estimates b̂ minimize ð y2 XbÞ0Wð y2 XbÞ. The term of (4)

requiring an inverse corresponding to a three-year series may be expanded as
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For Sws ¼ 1 and identical Xs matrices (e.g., for monthly data), X0WX simplifies to X 0
sXs.

Even though the Xs are different for weekly series, the X 0
sXs are identical for years with 52

weeks. Years with 53 weeks are infrequent enough so we can evaluate Equation (5) simply

as X 0X. Also, we have

X 0Wy ¼ w1X
0
1y1 þ w2X

0
2y2 þ w3X

0
3y3 ð6Þ

Looking back at (3), we see b̂ is a weighted sum of regression coefficients for individual

years. Our estimated seasonal component for year s becomes

ŷs ¼ Xs½X
0X�21

X
wiX

0
iyi ð7Þ

Use of identical weights ws would correspond to the results in Pierce, Grupe, and

Cleveland (1984). To allow for moving seasonality, we can apply the above method once

Fig. 1. Shifting Day-of- Year of Weekly Seasonal Factors
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for each year, choosing a weight matrix W geared to that particular year and using the

results only for that year’s seasonal component. Let Ip represent a p £ p identity matrix,

and let wij be the weight applied to year j to estimate year i factors. With three years, we

may write

ŷ1

ŷ2
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The choice of the wij for each year is to be determined. Years close to the year being

estimated should get most weight. We use a formula from signal extraction theory (see

Cleveland and Tiao (1976) and references). The seasonal factors for a given week of the

year (or month for monthly data) are assumed to follow an autocorrelated random walk.

The detrended data are this seasonal part plus white noise, which means no

autocorrelations in the detrended, seasonally adjusted series of lag one year. Given the

model

yt ¼ ut þ et ð9Þ

ð1 2 BÞð1 2 fBÞut ¼ at ð10Þ

with white noise terms et and at, the weights to estimate ut given y form the desired W*

matrix. These are obtained from

E½ujy� ¼ I þ n
X21

u

h i21

y ¼ W*y ð11Þ

where n ¼ s2
e=s

2
a and Su is the autocorrelation matrix of u. The values w*

ij are the weights

wij in Equation (8). The weights are more concentrated (distant years have less effect) for

smaller values of f and n, but the pattern is much more sensitive to changes in n. Two

examples of W* for a series of length 9 years are given in Table 1 and Table 2. The rows

are labeled for the year being estimated and contain the weights for that year (bold) and

adjacent years. Note that the last rows show symmetric weight patterns. For seasonal series

with more noise, it makes sense to use more data to extract an estimate of the seasonal

signal. With n ¼ 10, the first three years provide more than 80 percent of the weight for

year 1; with n ¼ 24, they provide about two-thirds of the weight.

Table 1. Year Weights for Given f and n

f ¼ :5 n ¼ 24

Year
1 0.285 0.226 0.165 0.116 0.078 0.052 0.035 0.024 0.018
2 0.226 0.215 0.174 0.130 0.092 0.064 0.044 0.031 0.024
3 0.165 0.174 0.177 0.148 0.113 0.083 0.060 0.044 0.035
4 0.116 0.130 0.148 0.160 0.138 0.109 0.083 0.064 0.052
5 0.078 0.092 0.113 0.138 0.155 0.138 0.113 0.092 0.078

Phase shift
2.001 1.319 0.788 0.366 0.000 20.366 20.788 21.319 22.001
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Tables 3 and 4 show the weights for X-11 seasonal adjustment with 3 £ 5 and 3 £ 9

seasonal filters, respectively (cf. Shiskin, Young, and Musgrave 1967). While there is a

rough correspondence with the filters from the signal extraction formula, the signal

extraction weights exhibit exponential decay and tend to concentrate on the year being

estimated more.

The results of these operations might be termed a seasonal kernel regression, with the

shape of the kernel and smoothing parameter determined by n (or f and n if f is allowed to

vary). Use of the signal extraction formula automatically supplies correct kernel shapes at

the ends of the series. The problem of choosing n remains. In kernel or smoothing spline

regressions, the smoothing parameter is optimized by minimizing some sort of penalized

residual sum-of-squares, or a cross-validation technique, Silverman (1984). As suggested

in Härdle et al. (1988), convergence is slow and the surface rather flat. As there is no

simple objective criterion for a seasonally adjusted series, we have chosen to create sets of

seasonal factors for a grid of n and p values and compute the smoothness of the resulting

seasonally adjusted series using concurrent and projected factors and the size of revisions

when new data are added. Thus, part of our evaluation is like the approach in Grillenzoni

(1994) of minimizing one-step-ahead projection errors. We would expect the methods set

forth in Harvey, Koopman, and Riani (1997) to be capable of similar results, but do not

have the software to make a direct comparison possible.

3. Unemployment Insurance Claims

Among closely watched economic series is Initial Claims from the Unemployment

Insurance program. Claims data come from administrative records collected from

individual government employment offices across the U.S., first assembled at the state

level, and then forwarded to the Department of Labor (DOL), Washington, DC. Each

Table 2. Year Weights for Given f and n

f ¼ :5 n ¼ 10

Year
1 0.384 0.271 0.169 0.096 0.049 0.023 0.008 0.002 -0.002
2 0.271 0.264 0.197 0.127 0.074 0.039 0.019 0.007 0.002
3 0.169 0.197 0.218 0.170 0.114 0.068 0.037 0.019 0.008
4 0.096 0.127 0.170 0.203 0.163 0.111 0.068 0.039 0.023
5 0.049 0.074 0.114 0.163 0.200 0.163 0.114 0.074 0.049

Phase shift
1.254 0.706 0.358 0.146 0.000 20.146 20.358 20.706 21.254

Table 3. Year Weights for 3 £ 5 Seasonal Filter in X-11

Year
1 0.283 0.283 0.283 0.150 0.000 0.000 0.000 0.000 0.000
2 0.250 0.250 0.250 0.183 0.067 0.000 0.000 0.000 0.000
3 0.150 0.217 0.217 0.217 0.133 0.067 0.000 0.000 0.000
4 0.067 0.133 0.200 0.200 0.200 0.133 0.067 0.000 0.000
5 0.000 0.067 0.133 0.200 0.200 0.200 0.133 0.067 0.000
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weekly report reflects activity from Sunday through Saturday. Initial Claims (IC) are

reported the following Thursday and Continuing Claims a week later. With less than a

week’s time lag, Initial Claims are clearly one of the most timely indicators of the state of

the economy. Press releases and many media accounts contain both weekly figures and

less volatile 4-week moving averages. Especially during times of greater economic

uncertainty, the claims data have received more than usual attention.

We estimate the seasonal component using 60 variables, sine and cosine terms for 30

seasonal frequencies, 2pi/365, i ¼ 1 to 30. This is enough to capture periodic effects as

short as two weeks. With holiday effects and outliers, the total number of regression terms

is below 90, not excessive with data spans of length 600 and above. The choice of 30

frequencies was made by examining reductions in residual sums of squares for varying sets

of frequencies. Table 5 shows the reductions from adding to the number of frequencies (nf)

in groups of 6 from 6 to 30. The residual sums of squares (ss) after fitting a nonseasonal

ARIMA model to the seasonally adjusted series are shown in the second row and the mean

square differences (msd) from adding frequencies in the next. The F values are shown in

the final row.

The number of degrees of freedom associated with a weighted regression is

trðXðX 0VXÞ21X 0VÞ, where V is a diagonal matrix containing the weights. For our

application this equals the trace of the annual weight matrix partially illustrated in

Tables 1–2. This is in agreement with calculations described in Zhang (2003, Section 3)

for varying coefficient models. The residual F tests justify our choice of 30 frequencies.

The 95 percent significance value for the F test is below 2, so all the additions are highly

Table 4. Year Weights for 3 £ 9 Seasonal Filter in X-11

Year
1 0.246 0.221 0.197 0.173 0.112 0.051 0.000 0.000 2 0.000
2 0.208 0.192 0.176 0.160 0.144 0.092 0.028 0.000 0.000
3 0.173 0.163 0.154 0.143 0.133 0.123 0.079 0.032 0.000
4 0.141 0.137 0.132 0.128 0.123 0.117 0.113 0.075 0.034
5 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111

Table 5. Ratios of Seasonal Factors,

Post-Thanksgiving to Thanksgiving

Weeks

End-date Week Year rT

11/24 47 2001 1.44
11/25 48 2000 1.45
11/25 47 1995 1.43
11/26 48 1994 1.42
11/27 48 1999 1.41
11/27 48 1993 1.40
11/28 48 1998 1.36
11/29 48 1997 1.31
11/30 48 2002 1.28
11/30 48 1996 1.26
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significant. Holiday and outlier variables were included when selecting the number of

frequency components to avoid biasing the result toward using higher frequencies.

The next step was to select n, with the fixed-weight regression regarded as a very large

value of n. Table 6 contrasts use of a fixed-weight regression with n ¼ 16 in local

weighting. Series root mean square differences at lags 1, 4, 13, and 26 were computed over

the series spans ending in 1999, 2000, and 2001; these differences are used as indicators of

residual seasonality. It is clear that the corresponding values for n ¼ 16 are all smaller,

particularly for monthly and quarterly differences. Within each column the values get

larger for longer lags, as longer lags capture more trend. Corresponding results for the year

K þ 1 (when projected factors would apply) show smaller differences between methods,

suggesting that concurrent adjustment would be best. As one would expect, factor

revisions as new data come in are smaller for the fixed-weight regression model. A value

of n ¼ 10 gave only slightly smoother results in the current period and larger numbers for

revisions and year-ahead smoothness statistics.

We now present graphical evidence of the improvement. Figure 2 illustrates the

difference between the locally weighted and fixed regression seasonal factors. At various

points in the graph we see more smoothness with local weights (solid) than with fixed

weights (dashed). Note in particular that in years 2000, 2001, and 2002 the use of local

weighting eliminates a sharp rise and drop around the middle of the year (present with

fixed weighting) and makes the December-January period smoother. The spurious

mid-year rise and fall helped spur the investigation into adopting local weighting. Part of

the change in the summer claims filing pattern can be explained by a change in annual

model change-over practices in the automotive industry.

Another view of the changing seasonality is given in Figure 3, which shows the

evolution of the first 24 trigonometric coefficients characterizing the seasonal pattern. For

each frequency component there is a plot showing changes in its coefficient over time

about a horizontal line giving its mean value. For example, the first cosine coefficient is

Table 6. Residual SS Reductions from Adding

Frequencies for Initial Claims

nf 6 12 18 24 30
SS 3,020 1,581 1,204 944 773
msd na 120 31.4 21.6 14.2
F na 60 15.7 14.4 10.7

Table 7. Effect of Local Weighting for Initial Claims on Root Mean

Square Differences

Fixed weights n ¼ 16

Year 1999 2000 2001 1999 2000 2001
1st diff 14.6 15.1 15.6 12.8 13.0 12.9
4th diff 20.6 20.7 21.4 17.0 17.1 17.5
13th diff 28.8 29.2 30.0 25.0 24.8 26.1
26th diff 35.1 35.1 35.1 32.8 32.8 34.9
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Fig. 2. Seasonally Adjusted Initial Claims

Fig. 3. Evolution of Trigonometric Coefficients for Initial Claims
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near 2 initially and then declines to about 1.7. A number of the coefficients show marked

changes over time.

Every government holiday is potentially significant for this series because it represents

loss of a day for filing claims. All require special treatment, as they affect different weeks

in different years. Thanksgiving can occur in either week 47 or 48. New Year’s Day is by

definition in Week 1. When it falls on Sunday, corresponding to a late Week 1, its effects

are split between Weeks 1 and 2; otherwise, its effects come in Week 2. While not a

Federal holiday, Easter affects claims activity and moves between Weeks 12–17. Special

variables are introduced for occurrence of July 4 on Wednesday and for particular patterns

related to Christmas. For examining holiday effects, one may create year-over-year plots

of not seasonally adjusted series and seasonally adjusted series not accounting for that

holiday.

Thanksgiving in particular illustrates the need to consider holidays along with the day of

the year. In addition to the Thursday holiday, Friday is likely to be a lighter than average

day for initial claims. In compensation, the following week will have increased activity.

Table 7 contains ratios of seasonal factors rT ¼ sf Tþ1=sf T , where T denotes the week

containing Thanksgiving and sfT is the seasonal factor for that week. These are arranged by

end-date of Thanksgiving week. The ratios decrease monotonically as the end-date

advances (with 2001 being a slight exception). The ratios are all well above 1, but range

from 1.26 to 1.45, a substantial difference.

Outlier and intervention specification was an iterative process involving (1) automatic

outlier detection with X-12-ARIMA, using residuals from the fixed regression method,

and (2) outlier significance testing with the fixed regression program. Economic effects of

the September 11, 2001 attacks varied in timing and magnitude, depending on the type of

business. After testing several alternatives, eight weeks between September and

November 2001 were classified as additive outliers (AO’s). All had t-statistics between 2.9

and 5.0. An important criterion for their selection was not biasing the seasonal pattern

existing prior to 9/11/01. The dashed lines in Figure 4 plot seasonal factors for the last half

of 2000 with no outlier treatment for the post-9/11 period and with treatment using the 8

AO’s. Seasonal factors based on an input span through 8/27/01 are shown as a solid line.

Especially in late September and October we see better agreement between the solid and

dashed lines using the outlier treatment.

4. Steel Production

Raw steel production data from the American Iron and Steel Institute are received weekly

at the Federal Reserve. Figure 5 shows raw steel production since 1995. The 1995 and

1996 patterns reflect earlier patterns when production tended to be high toward the end of

the first quarter and then decline through the year’s end. In later years the third quarter is

relatively higher and production falls off more sharply at the end of the year. Periods of

shutdowns at the end of years 2000 and 2001 are evident. The seasonal pattern shift can be

seen in the chart of seasonal factors, Figure 6. This shows the daily pattern of the

trigonometric expansion using the locally estimated values for the years shown.

Table 8 gives some statistics on residuals from seasonally adjusted series, after

modeling remaining autocorrelations, for various choices of numbers of trigonometric
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components keeping f fixed at 0.5 and n ¼ 20. The root mean square differences of the

seasonally adjusted series for corresponding numbers of frequencies are given in Table 9.

The top half of Table 9 gives values for the entire series through the ending year

T. The lower half of the table gives values for year T þ 1, corresponding to projected

Fig. 5. Weekly Production of Raw Steel

Fig. 4. Effect of Post-9/11/01 Specification on Weekly Seasonal Factors for Initial Claims
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factors. We chose nf ¼ 24 as getting sufficiently smooth series without too much evidence

of overfitting suggested by increasing values in the lower half of the table. Most of the

seasonality at monthly or lower frequencies is removed with only 24 trigonometric

components.

Fig. 6. Seasonal Factors for Raw Steel

Table 8. Residual SS Reductions from Adding Frequencies

for Steel

nf 6 12 18 24 30
SS 6,973 6,114 5,585 5,049 4,587
msd na 47.7 29.3 29.7 25.6
F na 6.8 4.2 4.9 4.5

Table 9. Smoothness Measures with Increasing Numbers of

Trig Components for Steel

Year ¼ T

nf 6 12 18 24 30
1st diff RMS 52 50 47 44 42
4th diff RMS 74 69 68 66 66
13th diff RMS 108 107 105 105 104
26th diff RMS 156 155 154 154 153

Year ¼ T þ 1

nf 6 12 18 24 30
1st diff RMS 63 65 67 69 73
4th diff RMS 110 109 110 111 112
13th diff RMS 142 142 142 143 143
26th diff RMS 164 162 160 160 159
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