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We consider the problem of linear regression where the data are split up and held by different
parties. We conceptualize the existence of a single combined database containing all of
the information for the individuals in the separate databases and for the union of the variables.
We propose an approach that gives full statistical calculation on this combined database
without actually combining information sources. We focus on computing linear regression
and ridge regression estimates, as well as certain goodness of fit statistics. We make use
of homomorphic encryption in constructing a protocol for regression analysis which adheres
to the definitions of security laid out in the cryptography literature. Our approach provides
only the final result of the calculations, in contrast with other methods that share intermediate
values and thus present an opportunity for compromise of privacy. We perform an experiment
on a dataset extracted from the Current Population Survey, with 51,016 cases and 22
covariates, to show that our approach is practical for moderate-sized problems.
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1. Introduction

Preserving the confidentiality of individually identifiable information in statistical

databases has a long statistical tradition, although within the world of official statistics

efforts to do so have focused on perturbing the data through some form of data masking in

order to allow for the calculation of simple summary statistics rather than on accurate

statistical inference for more elaborate statistical models. There is an active debate in the

statistical literature on how to best achieve confidentiality while also allowing for useful

statistical analyses; see e.g., Duncan et al. (2001).

Here we consider the problem of multiple regression calculations where the data

are divided among several parties, each of whom is unwilling to reveal their data. This

problem occurs for example where the data consist of health insurance billings and

records, and the parties are health insurance agencies. In this case, there are legal barriers

which prevent the release of data, however a regression performed on the union of the

parties’ data may have better properties than a regression on either (incomplete) data set.

Similar problems arise when parties have done surveys on the same set of individuals at
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different times, and wish to implement regressions on the union of variables in the multiple

surveys, but are unwilling to share the data.

It has long been argued that a superior way to protect the confidentiality of statistical data

is to restrict access to those data and to simply provide results from statistical modeling

such as regression coefficients and standard errors.3 For recent examples of this line of work

which also include a focus on regression diagnostics, see O’Keefe and Good (2007; 2008;

2009) and Reiter (2003). If we deem the regression coefficients to be “too sensitive to

release” then we can also consider output perturbation in the spirit of the recent cryptographic

literature on e-differential privacy; see e.g., Dwork (2008) and Nissim (2008). By and large,

the cited literature has been focused more on privacy protection and less on the utility and

accuracy of the resulting statistical releases, or it treats the resulting analysis problem far

more generically as one of learning from noisy data; see e.g., Chen et al. (2009).

Other approaches include the use of data masking such as the addition of normally

distributed noise to the underlying data; cf. Duncan and Pearson (1991) and the recent

review by Duncan and Stokes (2009). This leads, in the case of regression analysis, to

inference using measurement error models that have a long history in statistics, eg., see

Fuller (1993). Duncan et al. (2001a, b) and Trottini et al. (2004) discuss the risk-utility

tradeoffs associated with such an approach. We contrast this focused statistical use of

masked data with suggestion in the datamining literature of a fundamentally different sort,

e.g., Du et al. (2004). As an alternative to the traditional additive noise approach to data

masking, Ting et al. (2008) suggest using a more subtle perturbation method for protecting

confidential continuous microdata –– Random Orthogonal Matrix Masking

(ROMM)––which preserves the sufficient statistics for multivariate normal distributions,

and thus is statistically defensible, but serves the function of more traditional data

masking, and they illustrate ROMM in the context of multiple regression analysis.

In this article we consider a related but different problem in privacy protection,

associated with statistical calculations across multiple databases, studied in the context of

regression analysis by Karr et al. (2005; 2006; 2009). In our setting, there are two distinct

issues of privacy––that of the individuals whose data are in the different data bases and

that of the owners of the databases. For the former, if data are merged across sources,

privacy protection for the linked individual files goes well beyond the privacy issues that

are considered with regard to the data within the individual sources. Even if there were not

an issue associated with individual privacy protection, the database owners might not wish

or be able to share their data with others directly.

There has been much recent work on the problem of securely estimating regression

coefficients. A survey of earlier techniques is to be found in Vaidya et al. (2005) (Chapter 5).

Those techniques hinge on so-called secure matrix multiplication subprotocols.

Essentially since estimating regression coefficients boils down to matrix products, a

secure regression protocol can be made by composing secure matrix products. However

the protocols they give for computing the matrix products have certain drawbacks which

may limit their practicality. First, some rely on the existence of a trusted third party (or at

3 For example, see http://www.ssa.gov/policy/docs/rsnotes/rsn2009-01.html and http://hrsonline.isr.umich.edu/
index.php?p¼resappguide
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least a partially trusted third party). Such a trusted party may not exist in practice. In fact

the field of cryptographic protocols (Goldreich 2004) was born to get around this

difficulty. The other matrix product protocols they give do not meet the requirements for

security under the stringent but well-accepted definitions from the cryptography literature,

which we explain below in Section 2. These authors achieve a much weaker definition of

security which may imply that more private information is being leaked than is absolutely

necessary. We note, however, that all of the protocols they present are easy to implement

and efficient to run. Therefore such protocols are advantageous if maintaining strict

security is not part of the goal.

The method for secure regression due to Karr et al. (2005; 2006; 2009) is based similarly

on a method for secure matrix products. These authors stop, however, after securely

computing the full data covariance matrix, at which point it is shared by all (as is the

response vector). While this makes the protocol computationally very attractive, and

allows parties to locally compute a wide variety of diagnostics, it also presents a

compromise with respect to data privacy. Revealing the data covariance matrix is not

necessary for computing the coefficient vector, and hence causes the leakage of more

private information than is strictly necessary. As an example, we explore the unavoidable

leakage due to computing the coefficients in Appendix A and find that in general the data

covariance matrix is not leaked.

Previous methods for privacy preserving data mining have focused on cases where the

data are split between the parties in a certain regular fashion. The two most common

patterns are “horizontal partitioning” where each party has a subset of the cases, and

“vertical partitioning” where each party has a subset of the features. We propose a protocol

that will work irrespective of the partitioning scheme, and may be used in the general case

wherever parties hold interlocking parts of the database. This is the situation which may

occur when the parties are data warehouses. Note that although our protocol is general and

works for any partitioning scheme, certain regular structures will allow for further

optimizations, but we will not discuss them.

In Section 2, we outline the privacy guarantees that our protocol gives, and then, in

Sections 3 and 4, we describe the protocol for two parties before showing, in Section 5, how

to extend our approach to multiple parties. We then perform a simulation of the protocol

(and make the code available) to show that it is fast enough to be useful in practice. We

conclude by considering the possible invasion of privacy which occurs from simply having

the regression coefficients, from the perspective of statistical disclosure limitation.

2. Setting

We consider a setting where K $ 2 parties each hold a part of the design matrix X [ Rn£p

and the response vector y [ Rn, and they are interested in analyzing the statistical

regression model:

y ¼ Xbþ e : ð1Þ

Their goal is to compute the estimated regression coefficient vector or estimated ridge

regression vector:
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b̂ ¼ ðXTXÞ21XTy; ð2Þ

b̂l ¼ ðXTX þ lIÞ21XTy: ð3Þ

We first assume that there is no missing data, so that each entry in X and y is known to

exactly one party. If there is overlapping data then the parties must either agree to use one

party’s data, or securely compute a weighted average (e.g., as a measurement error). We

proceed by assuming the former. We also assume that each case has a unique identifier

which is known to every party. Obtaining such identifiers when they do not naturally exist

(e.g., social security numbers or ID numbers) is the problem of record linkage, and is given

a secure treatment in, e.g., Scannapieco et al. (2007). Under these assumptions, each party

may take whatever data is known to him, and assemble it into a design matrix and response

vector with missing values (where the missing values are the data belonging to the other

parties). Denote the input held by party i as Xi [ Rn£p, yi [ Rn. We suppose that each

party replaces those elements unknown to him by zeroes. Then if the matrices were

“superimposed” (i.e., by summing them), we would obtain the full design matrix and

response vector. We make no further assumptions about the structure of the data. Note that

this is a relaxation of the requirements for the protocol of Karr et al. (2009), which works

when the parties each hold complete columns of X.

We build up a protocol (see, e.g., Goldreich 2004) for computing (2) and (3). The

protocol is sequence of steps which consist of parties doing local computations, and

transmitting messages to other parties. We aim for the cryptographic definition of security

under a “semi-honest” model. This model of security assumes that each party will follow the

protocol and use their true input values, but will also be curious about the other parties’

secret inputs. A protocol is secure so long as the messages received by the parties during

execution of the protocol do not leak information about the secret inputs which belong to

each party.

The requirement for security in this setting is that the transcript of messages received by

a party can be “simulated” based on nothing more than the input known to that party, and

the output of the protocol. Formally, this requires a probabilistic polynomial time

algorithm (the simulator) which takes the input of a party, the output, and the random seed

that the party uses, and outputs a transcript of messages which is computationally

indistinguishable from a transcript generated during a run of the protocol. Computational

indistinguishability is defined formally in Goldreich (2004; 1998) but for our purposes we

note the following ways to achieve the requirement:

. Messages which are encryptions due to a semantically secure (see e.g., Goldreich

2004) public key encryption scheme may be simulated by encrypting any arbitrary

value with the same public key.

. Random samples from a distribution which depends only on the input and output may

be simulated by drawing from that distribution (so long as the random number

generator produces draws computationally indistinguishable from the distribution).

. Random samples which depend on a secret value may be simulated so long as the

distribution is sufficiently close (e.g., in variation distance) to one with no

dependence on the secret value. Here sufficiently close means that the variation
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distance between the distributions is a negligible function of some security parameter

(Goldreich 2004).

Intuitively, if the messages can be simulated in such a manner, then they can reveal no

information about the inputs belonging to other parties beyond that revealed by the output.

An example of a protocol which does not achieve this definition of security is one where

all parties send their data to Party 1, who computes the estimate locally on the combined

data and then sends it back to all other parties. In this case the messages received by Party 1

consist of the data of other parties, and in general it is impossible to simulate these

messages given only the input and output belonging to Party 1. Likewise the protocol of

Karr et al. (2009) does not achieve this definition of security, but since the full data

covariance matrix is shared between all parties, this reveals more information than just the

estimate b̂.

This privacy definition makes no guarantees when faced with a party who is malicious

and is willing to deliberately deviate from the protocol in an attempt to learn the other

parties’ secret inputs. We note however that a protocol which is secure in this semi-honest

model may be “compiled” into a protocol secure against malicious parties (Goldreich

2004) but may be too inefficient for practical use.

A final point is that this security model simply ensures that the computation of the

estimate does not reveal more information than the parameter itself. As Lindel and Pinkas

(2002) point out, it makes no statement about whether the estimate should be computed in

the first place. For example if there are two parties, one of whom holds a single case and

another who holds many cases, the latter may be able to compare the parameter output by

the protocol to a parameter he computes locally on his data only. This may reveal

information about the case held by the first party. In this article, we presume that the

parties have decided that the benefit of knowing b̂ outweighs whatever private information

it leaks. We show in Appendix A that under the two most common data partitioning

(vertical and horizontal partitioning), it is rather difficult for either party to learn anything

about the other party’s data.

We can also transform the estimated parameter vector using a differential-privacy

technique such as that presented by Chaudhuri and Monteleoni (2008) during the protocol,

if the parties deem such protection necessary. This is a relatively straightforward extension

of the methodology we describe in this article.

3. A Two-Party Protocol for Computing Sums and Products

One of the earliest results in the field of cryptographic protocols, due to Yao (1982), is that

any computation which can be encoded as a Boolean circuit (i.e., a function on the field

GF(2)) may be computed securely by a reduction to “oblivious transfer” (see Goldreich

(2004) for more details). Therefore one way to construct a protocol for (2) would be to

construct a huge circuit to compute all the sums and products and the matrix inverse, and

have each party feed the individual bits of their inputs into the circuit. While this would

work, it may be too slow to use in practice, since even the simplest operations, e.g.,

summing two numbers, would require a number of oblivious transfers proportional to the

size of the operands in bits. In this section, we will first describe a trivial extension to Yao’s

original idea, which computes on the integers where the operations are multiplication
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and addition. We then describe how we may extend this technique to work for finite

precision real numbers. We focus on a two-party protocol, then in a later section we

describe how to extend the protocol to K . 2 parties.

Our protocol makes heavy use of a particular homomorphic encryption scheme due to

Paillier (1999). This is a public key cryptography scheme (Goldreich 2004), that allows

two important operations. First, two values encrypted with the same public key may be

multiplied together to give an encryption of the sum of the values. Second, an encrypted

value may be taken to some power, yielding an encryption of the product of the values. If

we use En(a) to denote the encryption of a using the public key n, then Paillier’s

cryptosystem has the properties:

EnðaÞ�EnðbÞ mod n ¼ Enðaþ bÞ; EnðaÞ
c mod n ¼ Enða�cÞ

Since the operations of modular multiplication and modular exponentiation are widely

used in modern cryptography, e.g., in RSA encryption, they are implemented in a number

of mathematical packages such as GMP (www.gmplib.org).

A semantically secure system (Goldreich 2004) implies that encryptions of different

values are computationally indistinguishable. Paillier’s cryptosystem requires a choice of

the public key length, k, which determines the hardness of breaking the encryption, as well

as the length of the “ciphertexts” (the encryptions themselves), and the range of values

which may be encrypted. We recommend using k ¼ 1,024 bits since this gives a good

balance of security and efficiency in practice. The key length k becomes the security

parameter to our protocol.

We first note that in Yao’s original protocol (Goldreich 2004; Yao 1982), the main

idea is to keep intermediate values (i.e., the outputs of the intermediate layers of

logic gates in the circuit) as “additive shares.” That is, rather than a particular party

holding an output bit s, it is “shared” between the two parties in the sense that party i holds

a bit si so that s1%s2 ¼ s (where % means “exclusive or”). This way, since each party

knows only his value, he learns nothing about the true value of s. The final output of

the protocol is obtained by the parties combining their shares of the output to reveale

the value.

We can easily extend the idea to Z=nZ where n is the public key to an instantiation of

Paillier’s encryption scheme. Shares are now numbers in Zn ¼ {0 : : : n2 1} instead of

bits, “exclusive or” becomes “addition modulo n,” “and” becomes “multiplication modulo

n.” We will refer to the numbers ai [ Zn so that
P

i ai ; a mod n as an “n-sharing” of a.

First note that an n-sharing of the sum of two n-sharings may be computed locally by each

party, by performing a modular addition. Computing shares of products requires

interaction between the parties. We can modify the protocol of Goethals et al. (2004) to

obtain shares of the product (rather than the product itself).

In this article, our first contribution is to extend the protocols for computation on Z=nZ

to approximate the same computations on real numbers by using a fixed precision

arithmetic scheme. We use a “2s complement” approach to represent negative numbers,

and then a division by a constant to represent real numbers to some fixed precision.

Journal of Official Statistics674



The mapping from Zn to the fixed precision real numbers is:

f : Zn ! R; f ðaÞ ¼ M21

a a #
n

2

a2 n a .
n

2

8><
>: ð4Þ

In this way, we associate each element of Zn with an element in R. The constant M

determines the balance between the range of values which may be represented, and the

precision of the fractional quantities which may be represented. A higher value for M

yields numbers with greater precision but with a smaller range. Note that we may not just

naively apply the protocol for integers, since multiplication of two numbers in this

representation results in a stray factor of M (e.g., f ðabÞ ¼ Mf ðaÞf ðbÞÞ. Unfortunately, we

cannot simply alter the protocol to include a multiplication by the multiplicative inverse of

M (if it exists), since we would first need to round the encrypted product to a multiple of M

(which would require a subprotocol in itself). Furthermore, we may not simply construct

an n-sharing of the product and then divide each share locally, since then we may end up

with results which are off by multiples of nM 21. The reason for this is that the shares may

add up to a multiple of n more than the hidden value (due to their definition which used

modular addition).

Our proposed solution is to first assume that an upper bound P exists for the magnitude

of the product. We then obtain n-shares of the product in such a way so that they may be

locally converted to P-shares. Concretely, supposing we have the encryption E(Mab)

where a, b are not integers but rather these fixed point numbers, we first obtain shares mod

P, choosing P to be a multiple of M, which we write P ¼ kM. Hence we obtain c1 þ c2

mod kM ¼ Mab, we see that c1 þ c2 ¼ Mab þ k 0M. Then since we have an encryption of

the product as well as a P-sharing, we may obtain an encryption of the difference between

the sum of shares and the true value of the product (i.e., the multiple of P which is removed

by the modular addition). We therefore may obtain the encryption of c1 þ c2 2

Mab ¼ k 0M. By choosing M to be a number with a multiplicative inverse in the ring

mod n, we may then securely divide this residual by M. Thus, we may securely obtain

M 21Mk0 ¼ k0. With this in hand we first locally divide the shares c1, c2 by M, yielding a

new sharing with an error of k0. Then we may correct this error by sharing the value

k0 which was already securely computed, and subtracting these shares locally. The

protocol is presented in two parts, the first part turns an encryption into a P-sharing

(Figure 1), and the second part turns an encryption and, its corresponding P-sharing into an

n-sharing of the floor of the product divided by M (Figure 2).

Below we state the two required protocols. With them we can construct a simple

protocol for computing a sharing of a product of shares. The first step is to obtain the

encryption of the product, and then run the protocol of Figure 2. To obtain the encryption

of the product, the idea is for the party who knows the private keys to send encryption of his

shares along with the encryption of his product of shares to the other party. This way the

other party may construct the encryption of the product, using the homomorphic properties

of Paillier’s encryption. Furthermore this complete protocol is secure, since the messages

being passed are encrypted values under a semantically secure encryption scheme.
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Then security follows from the composition theorem (essentially, using a secure protocol

as a subroutine will still yield a secure protocol); see for instance, Goldreich (2004).

We first demonstrate that the protocol of Figure 1 is correct. At Step 2, we have that

sþ r ; p mod n and so sþ r þ ðP=2Þ ; pþ ðP=2Þ mod n. Since s; r [ Zn we have that

0 # s þ r # 2n, and so either sþ r þ ðP=2Þ ¼ pþ ðP=2Þ or sþ r þ ðP=2Þ ¼ pþ

ðP=2Þ þ n. Since in Step 1 we constructed r to be greater than P, which is greater than

p þ (P/2), we see that the latter condition holds. Therefore the sum of outputs mod P is:

sþr2nmodP¼ sþr2nþ
P

2
2
P

2
modP¼pþn2nþ

P

2
2
P

2
modP¼pmodP ð5Þ

and so the protocol computes a P sharing of p.

To show that the protocol is secure in the face of semi-honest parties, we construct a

simulator for the view of each party during execution. The only message sent in this

protocol is E( p 2 r) in Step 1. The decryption of this value is not uniform on Zn since the

noise added was in the interval {P, : : : , n}, so the value s is uniform on a subset of Zn

which depends on the variable. Nevertheless, since that subset consists of the

Party 1 has the private key to an instance of Paillier's encryption scheme, Party 2 knows
the corresponding public key n, and has the encryption under n of a value p, denoted
E(p). Furthermore p is bounded so that 2|p| < P, or in other words p ∈ {0 … P/2}  ∪
{n – P/2 … n –1}.

•  Step 1 Party 2 draws r uniformly at random from the set {P … n – 1} then computes
  E(p – r) by means of the homomorphic properties of the crypto system. This encrypted
  value is sent to Party 1.

•  Input

•  Step 2 Party 1 decrypts the value to obtain s = p − r mod n.

•  Output Party 1 outputs s – n mod P and Party 2 outputs r mod P, where “mod” in
  this case means the operator which returns the remainder from integer division by P.

Fig. 1. A protocol for generating a P-sharing of an encrypted value

• InputInput
  Party 1 has the private key to an instance of Paillier's encryption scheme, Party 2 knows
  the corresponding public key n, and has the encryption under n of a value p, denoted
  E(p). Furthermore p is bounded so that 2|p| < P, or in other words p ∈ {0...P/2} ∪
  {n  – P/2...n – 1}. M = 2m is a power of 2, and P is a multiple of M.

• SStep 1 The parties run the protocol of Figure 1, and obtain the P-sharing p1, p2 of p.

• Step 2Step 2 Party 1 encrypts p1 and sends E(p1) to Party 2, who uses the homomorphic
  properties to compute E(p1 + p2) and then E(p) = E(p1 + p2 – p).

• Step 3Step 3 Party 2 uses the multiplicative inverse of M along with the homomorphic properties,
  to compute E(M –1p), then draws r uniformly from {0...n – 1} and sends
  E(M–1p – r) to Party 1.

• Step 4 Party 1 decrypts the message to obtain s = M –1p – r mod n.

• Output Party 1 outputs         – s mod n. Party 2 outputs         – r mod n.p1
M

p2
M

^

^

^

^

Fig. 2. A protocol for securely computing the floor of the division of an encrypted value by a public constant M
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overwhelming majority of Zn, the distribution is computationally indistinguishable from a

uniform distribution. Denoting the distribution of s as UP
n , and the uniform distribution on

Zn by Un, consider the variation distance:

1

2

Xn
x¼0

jUP
n ðxÞ2 UnðxÞj ¼

m2

n
#

P2

2k
ð6Þ

Since P is a constant, we have that the variation distance between the two distributions is

bounded above by a negligible function of the security parameter k, which implies that the

two distributions are computationally indistinguishable (see Goldreich 1998, page 81).

Therefore we may draw values from Un to simulate the message received by Party 1.

We now turn to the protocol of Figure 2. We have that, in Step 2, p̂ is a multiple of P,

which is itself a multiple of M. The multiplicative inverse of M is ((n þ l)/2)m mod n.

Multiplying p̂ by this value then gives

M21p̂ ¼
j p̂

M

k
:

The sum of the output is:

j p1

M

k
2 sþ

j p2

M

k
2 r mod n ¼

j p1

M

k
þ
j p2

M

k
2
j p̂

M

k
mod n

¼
j pþ p̂

M

k
2
j p̂

M

k
þ e1 ¼

j p

M

k
þ e2 mod n

where je1j # M21 and je2j # 2M21 are error terms resulting from taking the sum of the

floors as opposed to the floor of the sum.

The protocol is secure since all messages are either encrypted under a semantically

secure encryption scheme, or are distributed uniformly at random in the set {0: : : n 2 1}.

In the first case, such messages may be simulated by encrypting a random value with the

public key n. In the latter case, messages may be simulated by drawing a number

uniformly at random from the set {0: : : n 2 1}.

We conclude this section by noting that with these constructions we have a means to

compute a function consisting of sums and products on the real numbers. There is

approximation involved, since only those real numbers which correspond to multiples of

M 21 may be represented exactly. Using a large value for M such as 264 yields sufficient

precision for our purposes.

4. A Two-Party Protocol for Secure Linear Regression

Using the tools of Section 3 we may construct a secure protocol for evaluating (2) and (3).

First, using the constructions for sums and products we may compute additive shares of the

data covariance matrix X TX and the vector X Ty. All that remains is to securely invert the

covariance matrix. We use a technique explored by Guo and Higham (2006) which

reduces the problem of inverting a matrix to the problem of computing sums and products

of matrices, which we may do securely with the above constructions.
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4.1. Matrix Inversion

First, we note that we can obtain the reciprocal of a number a without any actual division

by an application of Newton’s method to the function f ðxÞ ¼ x21 2 a. Iterations follow

xsþ1 ¼ xsð2 2 axsÞ, which requires multiplication and subtraction only.

It turns out that we can apply the same scheme to matrix inversion; see for instance, Guo

and Higham (2006) and references therein. A numerically stable, coupled iteration for

computing A 21, takes the form:

Xsþ1 ¼ 2Xs 2 XsMs; X0 ¼ c21I;

Msþ1 ¼ 2Ms 2M2
s ; M0 ¼ c21A;

ð7Þ

where Ms ¼ XsA, and c is to be chosen by the user. A possible choice, leading to a

quadratic convergence of Xs ! A21ðMs ! IÞ, is c ¼ max iliðAÞ. In our actual

implementation we consider instead the trace (which dominates the largest eigenvalue,

as the matrix in question is positive definite), since we can compute shares of the trace

from shares of the matrix locally by each party. To compute c21 we use the same iteration,

with scalars instead of matrices. For this iteration we initialize with an arbitrarily small

e . 0 (as convergence depends on the magnitude of the initial value being lower than that

of the inverse we compute).

This technique is iterative, so we have a choice regarding how many iterations to run.

We may either employ a convergence check after each iteration, or instead simply upper

bound the number of iterations required for convergence and just perform that many

iterations. The former choice may terminate after fewer iterations, however the number of

iterations performed will unnecessarily reveal information about the input. For example,

when computing the reciprocal, a larger value of a will take fewer iterations to converge.

For computing a reciprocal, an extremely conservative lower bound on the number

of iterations required is 2 log2 M. After this many iterations even the smallest value

representable (M 21) will be inverted. For our suggested M ¼ 264 we may then iterate for

128 iterations to be guaranteed to compute the reciprocal.

Computing the inverse of a matrix is a more expensive operation, since 2p2.8 products

are required at each iteration (using Strassen’s approach for matrix multiplication),

therefore we seek a tighter lower bound on the number of iterations required for

convergence. Unfortunately, the exact number of iterations required for convergence

depends on the eigenvalues of the matrix, which we assume should be secret. Note that we

have convergence as soon as Ms ¼ I p£p, as then the X iterate of (7) ceases changing.

Denote by li(s) the ith eigenvalue of Ms, then we have that the eigenvalues of Msþ 1 follow

liðsþ 1Þ ¼ 2liðsÞ2 l2
i ðsÞ: ð8Þ

We can restate the condition for convergence as li(s) ¼ 1 for all i. Unfortunately, unless

we have a lower bound for the lowest eigenvalue of the matrix M0, we must use 2 log2 M

iterations as before. In our case, A ¼ X TX, and so the smallest eigenvalue of M0 depends

on the condition number of the sample covariance matrix, that is, the ratio of the largest

and smallest eigenvalues. If the parties have prior information that their covariance matrix

will be well conditioned, then this could be the basis for choosing the number of iterations
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to run, for instance, if as a preprocess they engaged in a protocol for uncorrelating the

variables, or standardizing them.

If there is no usable bound on the condition number, then the parties may either run for

2 log2 M iterations as before, or may choose to test for convergence every few iterations,

and stop when convergence is achieved. This way would leak information about the

condition number of the covariance matrix, which may be acceptable depending on how

the data is shared between the parties. By increasing the number of iterations between

convergence checks, the amount of information leaked decreases, since the mapping from

matrices to iteration numbers becomes coarser. To test convergence we suggest testing

whether Tr(Ms) $ p 2 e for some small epsilon. As the method converges, Ms tends

towards the identity matrix, and so the trace equals p when the algorithm has converged.

Moreover, it stays below p until that point, and so only a one-sided check is required.

Performing this test on additive shares of the matrix trace is equivalent to one of the first

protocols in cryptography, the so-called “Millionaires Problem.” A protocol for evaluating

the “greater-than” predicate is given in for example, Blake and Kolesnikov (2004). An

alternative to the above is to first standardize the data, which gives some improvement to

the condition of the matrix, and then to run for some fixed number of iterations decided

a-priori. If the number is sufficiently large, the result will be accurate.

4.2. A Complete Protocol for Multiple Linear Regression

By putting together all the techniques we have constructed so far, we are in a position to

propose a complete protocol for the linear and ridge regression. The protocol begins by

using the constructions of Section 3 to compute additive shares of X TX and X Ty. Using the

above method for matrix inversion, we may then compute additive shares of (X TX)21.

Finally we compute shares of the product (X TX)21X Ty. After this, each party should send

his shares of the parameter to the other party. After receiving all the shares, each party may

then do a modular addition to reveal the final estimated vector b̂. To extend this to ridge

regression, all that is required is for one party to add lI to his share of X TX (or

alternatively, for each party to add 221lI to their shares). Security of the full protocol

follows from the composition theorem (see, e.g., Goldreich 2004) where secure

subprotocols compose into a larger secure protocol.

For the protocol to be correct, we must be careful in choosing P so that it is a correct

upper bound. First we note that P should bound every element of X TX. A loose upper

bound on the magnitude of these values is to take the largest element of xm ¼ maxi, jjXi,jj

and take P $ px2
m. It is reasonable that parties may be unwilling to divulge the maximum

magnitude of elements of X. In this case we may base P off a very loose upper bound for

the maximum, for instance, the maximum size of an integer. In our experiments we choose

P ¼ 2128 and M ¼ 264 as this gives the ability to store numbers with magnitude up to 263.

For this choice, using 1,024 bit long keys is also fine, as the bound obtained in (6) is

vanishingly small.

5. Extension to K > 2 Parties

We note that our protocol has two main phases. The first phase is the secure computation

of the data covariance matrix from the inputs, and the second phase is the inversion of
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this matrix. We see that in extending to three or more parties, the first phase decomposes

into a set of pairwise interactions between parties, and so the existing protocol may be

used by each pair, to generate a share of the data covariance matrix. This is due to the

decomposition:

XTX ¼
i

X
XT
i

j

X
Xj ¼

i

X
XT
i Xi þ

i–j

X
XT
i Xj þ XT

j þ Xi

Each term on the right-hand side may be computed locally by the respective party, then

each term in the second sum may be computed by invoking our basic construction for

products with two parties. Lastly, each pair of parties will need exactly one party who

knows the key to the instance of Paillier’s encryption scheme. Therefore there will be more

instances of Paillier’s encryption scheme used during execution of the protocol. Since the

sharing of outputs generated by our product protocols depend on the public keys used, we

need some way to ensure that all the outputs of the pairwise protocol invocations can be

transformed into sharing with a common n.

To convert the shares, the main idea is to create a P-sharing for some upper bound P,

then compare the encrypted sum of shares to the encrypted sum of n-shares (i.e., the

encryption of the hidden value). Subtracting one from the other gives a term which is a

multiple of P. The idea is to divide by P (if P has a multiplicative inverse in the ring

mod n), then share the first two bits of the result. This way, it is possible to construct the

encryption of the same multiple of P under a new public key m. This value may then be

shared with techniques similar to those described in Figure 1.

After running this protocol the K parties will have a n sharing of the data covariance and

X Ty, where n is a public key to which only one party knows the private keys. At this point

one possibility is for the parties to break into two groups, and pool their shares within each

group. Then each group could act as a single “party” and invoke the two-party version of

the matrix inversion protocol. This technically would achieve the definition of privacy,

however it would give an opportunity for two parties to try to collude to learn these

intermediate values. Therefore we instead extend the protocols for computing products of

shares, so that all K parties are involved in the computation. This way it takes all the parties

to “collude” in this way in order to be guaranteed to learn the intermediate values.

The first step is to generalize the protocol for computing the P-sharing of the product.

The idea is that, like Figure 1 one party will know the private key, and a different party will

know the encryption of the product. The parties will form a chain and pass the encrypted

value along, so that each party will add a random draw to the encrypted value, until it

finally arrives at the party who holds the key, who decrypts it. This way every party is

given an n-share of the product. In order to convert this value to a P-share we must be

careful about the domain of the random variables, so that we may ensure that the multiple

of n which appears in their sum is known to us (as in Figure 1 where we constructed r so

that the sum was equal to n plus the product). Here we suggest to ensure the sum is

(K 2 1)n plus the hidden value.

Correctness of this protocol follows a similar argument as the two party protocol.

Showing security of this protocol is more complicated, since the distribution of s is no

longer uniform. The reason is that the sum of uniform draws is distributed in a way which

is peaked around the expectation, and nonuniform. Nevertheless it is possible to show that
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the variation distance between two such distributions whose expectations differ by less

than P is negligible as log n increases.

Having generated a P-sharing of the products, we can easily extend the protocol of

Figure 2 to a K-party protocol. The main idea of the protocol of Figure 2 is to compare the

sum of shares to the encryption of the true value, and then create a term which gets added

to the scaled shares in order to cancel whatever stray factor comes from the sharing. Now,

in Step 2, the encrypted sum involves terms from all parties. In Step 3, after multiplying

the encryption by the inverse of M, the encryption needs to be passed to each party (as in

the above protocol) so that each one has a chance to get a piece of the sharing of the value,

before it arrives back at Party 1 who decrypts it.

We note that this protocol is more complicated than the two-party protocol.

Nevertheless as we show above, a subset of the parties may not subvert the protocol so

long as they remain semi-honest. Perhaps more of a concern is to determine which party

will act as the holder of the private key. We note that the computational demands placed

upon the parties are roughly the same so this decision likely has little impact on the overall

running time. The order of the parties in the round-robin type protocol could be decided by

for instance, attempting to minimize the total round trip time (e.g., to choose the ordering

which results in the smallest average latency between neighbors in the ordering). Although

this is technically a computationally hard problem (the “traveling salesman” problem), for

a small number of parties as we envision here it may be performed reasonably quickly.

6. Scalability

We now adress the scalability of this approach by examining the number of invocations of

the subprotocols as a function of the number of covariates p and samples in the data n (note

that in this section n is the size of the data and not a public key). We break the protocol

down into three parts, the construction of X TX, X Ty, the inversion of X TX, and finally the

matrix-vector multiply to yield the estimate. We only count the number of secure products

required by the protocol, since sums are carried out locally and therefore have a very small

impact on the runtime.

Party 1 has the private key to an instance of Paillier's encryption scheme, party K has
the encryption under n of a value p, denoted E(p). Furthermore p is bounded so that
2|p| < P, or in other words p ∈ {0 … P/2} ∪ {n – P/2 … n – 1}. Every party knows the public
key n.

•  Input

•  Step 2 Step 1 is iterated for each party until the encryption arrives at Party 1.

•  Step 3 Party 1 decrypts the value to obtain s = r –Σ ri mod n.K
i=2

•  Output Party 1 outputs s – (K – 1)n mod P and Party i > 1 outputs ri mod P, where
 "mod" in this case means the operator which returns the remainder from integer division
 by P.

•  Step 1 Whichever party holds the encryption (Party i) draws ri uniformly at random
 from the set {       n +    … n – 1}. He then computes this value for the encrypted value by
 means of the homomorphic properties of the crypto system. This encrypted value is
 sent to Party i – 1.

K – 1
K

P
K

Fig. 3. A K-party protocol for generating a P-sharing of an encrypted value
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We first consider the construction of X TX, X Ty. For horizontally partitioned data this

step is trivial as the parties locally compute these quantities on their sample, which yields a

sharing of the full quantities. In the case of vertically partitioned data, our protocol

requires inner products of vectors of size n (namely y and the columns of the design

matrix). Evidently each such inner product requires n secure multiplications. Therefore

this stage of the computation requires time linear in n. Suppose the parties each have pi of

these vectors so that
PP

i¼1pi ¼ pþ 1, then the number of inner products required isP
i–j pipj. This quantity is bounded above by 421Pp 2 þ 221p (for example with two

parties, the worst case is when each has half of the columns). So we see that the time taken

at this stage grows at most quadratically in the number of covariates p.

The matrix inversion (irrespective of the partitioning scheme) requires O( p2log p)

multiplications. The reason is that each step of our iterative scheme requires a matrix

multiplication of two p £ p matrices, and the number of steps for convergence is O(log p).

Since we envision a scenario in which p ,, n, the time for this step is overshadowed by

the above step. Likewise the final step consists of a multiplication of a p £ p matrix with a

p £ 1 vector. This takes p 2 multiplications. Therefore the computational burden of our

protocol is contained within the construction of the first two terms.

As we noted above for K . 2 parties, there is opportunity to parallelize the computation

of shares of X TX since the product breaks down into pairwise products between parties. If

the number of cases is large, then each of these computations may take a long time to

complete. We see that we may break down each product into a sum of products over

horizontal slices of the matrices. If we have XT
i ¼ XT

i;1;X
T
i;2

� �
and XT

j ¼ XT
j;1;X

T
j;2

� �
, and

the corresponding blocks are the same size, then:

XT
i Xj ¼ XT

i;1;Xj;1 þ XT
i;2Xj;2:

Thus each pair of parties may agree on a partitioning of the data matrix, so that they may

compute products of the blocks in parallel and then at the end sum their shares locally.

This data splitting technique yields a procedure which is “embarrassingly parallel” and so

we anticipate that if the blocks are approximately equal size, then the procedure should be

sped up by a factor equal to the number of blocks (modulo differences in hardware used for

different blocks of the partition). We also note that the matrix inversion procedure is built

out of matrix multiplies of matrices of shares. It is possible to parallelize each of these

products in the same way, although that matrix is only p £ p and so we anticipate the

products not taking long on even one machine (for, e.g., p up to 20 or so).

7. Model Checking and Inference

Obtaining the regression coefficient estimates is just the tip of the inference iceberg, as far

as modeling and inference are concerned. Checking the aptness of the fitted model is

usually carried out by exploring functions of the regression residuals. The coefficient of

determination R 2 is a standard summary of the predictive ability of the regression

equation:

R2 ¼ 1 2
eTeXn

i¼1
ð yi 2 �yÞ2
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where e ¼ (I 2 H)y is the residual vector, given in terms of the so-called hat matrix

H ¼ X(X TX)21X T. By using the constructions of this article, we can construct a protocol

for estimating the coefficient of determination. We can compute the “hat” matrix H by

means of the protocols for sums and products, making use of the matrix inversion outlined

in Section 4.1. We would then apply the same protocols to the numerator and to the

denominator, leading to a secure computation of R2, once we “invert” the denominator.

Similarly we can compute variants on R2, and other summary functions used in model

search.

Testing the fit of the linear regression is yet another important statistical concern. Model

inferences about the estimated coefficient vector, which include constructing confidence

intervals and performing hypothesis testing, require an estimate of the noise variance and

an estimate of the covariance matrix of the coefficients estimate. The former is given by

ŝ2 ¼ eTe=ðn2 p2 1Þ when the design is in Rn£p, and the latter is ŝ2ðXTXÞ21. These two

estimates are linear functions of the “hat” matrix. Therefore, we can construct a protocol to

compute them. The square roots of diagonal elements of ŝ2ðXTXÞ21 are the standard

errors of the coefficient estimates. These are necessary, as mentioned above, for the

construction of confidence intervals for the coefficient estimates as well as for hypothesis

tests about the latter. Instead of explicitly calculating and releasing these standard errors,

we may construct fully secure protocols which only reveal p-values related to hypothesis

tests. Taking one step further along that path, we can report an interval containing the

p-value instead of the exact figure. For example, if the p-value is .0005, one may report

“smaller than .001.” By doing so, we guarantee that no adversary can unwind a formula to

determine a coefficient’s standard error.

As we mentioned towards the end of Section 2, we are primarily concerned here with

leakage from the computation itself, and not from whatever can be learned from the

output. Appendix A explores possible leakage when the output consists solely of

the estimated parameter vector. When the goal is to produce other summaries beyond the

parameter vector (such as the coefficient of determination), then the output of the protocol

must be modified to include these statistics, in order to enjoy the security guarantees

described in the article. In such a case, an assessment of the security implications of

revealing such statistics is necessary.

7.1. The Release of the Full Covariance Matrix

When the goal is a detailed statistical analysis then the parties might choose to share the

full data covariance matrix X TX. This is the setting explored in for instance, Karr et al.

(2009). Although the protocol we proposed above computes the regression coefficients

directly, note that it is trivially modified to reveal the statistics {X TX, X Ty} instead, so that

the parties themselves may carry out the remaining analysis “in situ.” We could achieve

this by running the protocol to compute the shares of {X TX, X Ty}, but before the matrix

inversion takes place. Thereupon the parties would pool these shares to recover the

requisite statistics, at which point the protocol would end. In making this change we have

redefined the protocol so that these values would take the place of the regression

coefficients as the output of the protocol. As we stated previously, our protocol only seeks

to prevent the leakage of private information due to the computation itself, and it is
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ambivalent about privacy implications due to the output itself. Therefore before

considering such a modification, the parties would have to agree that the data covariance

matrix is essential to the analysis and that therefore they can tolerate whatever risk to

privacy it introduces. To see that (in general) the regression coefficients reveal less

information than the data covariance matrix please see Appendix A below.

In the event that the parties choose to share the data covariance matrix, it is plausible that

the protocol of Karr et al. (2009) is more appropriate from the perspective of computational

efficiency––since it relies on techniques which are less burdensome than homomorphic

encryption. Nevertheless our approach is clearly advantageous when security is a top priority,

since it maintains the cryptographic definition of security, whereas their protocol achieves a

weaker notion of security. How important this distinction will be depends heavily on the data

in question and whatever properties of the information are known beforehand.

The comparison with the work of Karr et al. (2009) (and alike) brings us naturally to a

discussion about a risk-utility paradigm. Associated with every statistical disclosure

limitation method, or any statistical protocol aimed at providing statistical analysis

without compromising privacy, there is a risk-utility tradeoff that gets affected by changes

in the method’s parameters (see Duncan et al. 2001a, b). In contrast to the approach of Karr

et al. (2009), we note that the utility here may be measured by computational efficiency

rather than by statistical efficiency. When the decision is to share data covariances

matrices, both our approach and the approach of (Karr et al. 2009) provide the same

(statistically efficient) answer. It is the computational aspects in which the two approaches

differ. Our approach provides stronger security guarantees, and therefore may require

longer computations. It is up to the managers of information organizations to decide what

is more important for them in a specific task.

8. Simulation Experiments

As Karr et al. (2009) mention, the repeated application of public key cryptography (which

we advocate) is slower than alternative techniques that supposedly preserve privacy,

although without achieving the strict definition we adhere to. We demonstrate that our

protocol is useful in practice by implementing a simulator of a three party setup, using

1,024 bit long keys.

We used the GMP library to handle the arithmetic operations on the large numbers required

during the protocol. We simulated the computation required for the three party version of the

protocol. Our simulations took place on individual machines, rather than two computers

communicating over a network, and so our timings do not take into account the time taken to

transfer data between the parties. Instead our experiments show that the amount of

computation required to run our protocol is acceptably small even with large datasets.

For the experiment we took the Current Population Survey data,4 which consists of

51,016 cases with 23 covariates each (after converting categorical covariates into sets

of binary flags). Each case represents one household and the covariates consist of

measurements such as income, education level etc. We constructed a regression problem

4 http://www.bls.gov/CPS/

Journal of Official Statistics684



where the response is the log of the household income, and the other 22 covariates are used

as predictors. We split the data among the three parties in a column-wise fashion, so that

each party held a data set which was the union of a set of columns, and the parties’ datasets

did not overlap with each other. The simulated parties held 10, 8 and 4 covariates

respectively, with each holding the same set of attributes for all the cases. We note that

although we described our approach in the context of continuous covariates, it handles

binary flags equally well, by using values of 0.0, 1.0 for these covariates.

We split the data matrix into three blocks for computing the data covariance matrix, as

indicated in (6), so there were nine machines used in computing this stage of the protocol

(three for each pair of parties). For inverting the matrix, we used only one machine. We

standardized the data ahead of time so that the problem would be better conditioned. We also

halted the matrix inversion procedure after 40 iterations, as opposed to the 128 which would

be necessary to guarantee “convergence” if the problem was extremely ill-conditioned.

Comparing the estimated parameters to the regression coefficients estimated using R locally

on one machine, we found that the estimates agreed up to at least 3 decimal places. The

disagreement in the remaining digits can be attributed to the matrix inversion procedure, and

the slight loss of precision faced by our fixed point arithmetic scheme. Greater precision

would be obtained by taking larger values for the constants P and M, but this would also

require larger public keys (and hence computation and communication overhead) to ensure

the same degree of security. Overall, our experiment took two days to complete, where the

first day roughly corresponded to the computation of the shares of the covariance matrix, and

the second day corresponded to inverting the matrix on one computer.

We believe that we could speed up these calculations substantially by making further

use of parallelization.

9. Discussion

In this article, we have presented a protocol which achieves the cryptographic definition of

security, when the only output is the regression coefficient estimates, and perhaps multiple

statistics related to the goodness of fit. We have demonstrated that a fully secure approach

to linear regression based on the homomorphic encryption is practical for use on

moderately large datasets shared between several parties. We emphasize that our protocol

(like any cryptographic protocol) prevents leakage of information which may arise from

the computation itself. It does not address any leakage which results from the output.

Below in Appendix A we give some comments on the amount of leakage under different

input partitioning schemes.

Our approach offers more rigorous guarantees with respect to the privacy of the input

data than previous such protocols. But since we use computationally demanding

cryptographic primitives to achieve this security, our protocol is rather slow when

compared with that of Karr et al. (2009). It is important to understand the strengths and

weaknesses of both methods in order to make an informed choice about which is more

appropriate to use in a particular situation.

First, we recall that the subprotocol used for products and sums in Karr et al. (2009) fails

to meet the standards of the cryptographic definition of security. To eschew this issue we

may consider an alternative protocol, which uses, for instance, our above methods for
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products and sums to construct X TX and X Ty, at which points these statistics are

reassembled from the shares and then disseminated amongst the parties. This would give a

secure analog to their protocol that is clearly less computationally demanding than our full

protocol since it does not require the secure matrix inversion or the final round of secure

inner products for computing the final estimate. Rather, these operations are performed

locally by each party. Whether or not it provides a sufficient privacy guarantee depends on

whether the data covariance matrix and the projection of y onto the covariates are

appropriate to release. From the discussion in Appendix A, we see that these statistics

cannot be reconstructed completely from the regression coefficients, and therefore our full

secure protocol does not release them. If the parties somehow come to the consensus that

these statistics do not impinge on privacy, then clearly the above modification of (Karr

et al. 2009) is appropriate to use instead.

We can, in principle, combine both approaches and at the same time attempt to make the

output satisfy a formal definition of privacy such as “e-differential privacy,” an approach

due to Dwork (2008) and Nissim (2008). Dwork et al. (2006) discuss efficient ways to do

this for several problems involving the secure evaluation of sums, whereas our protocols

involve calculation of secure sums and products. This combined secure-private approach

would involve computing some form of perturbed regression coefficients and statistics for

assessing goodness of fit.

A very different approach involves carrying out data sanitization directly on the data held

by the parties. This would entail the parties each adding random noise to their data in an effort

to preserve individuals’ privacy, while maintaining some form of utility in the data. Next, the

parties would share these sanitized databases among themselves, at which point they could

perform whatever statistical analysis they wanted. This approach requires a formal definition

of privacy to be achieved via the sanitization process, for instance, using “e-differential

privacy.” Were we to insist on this cryptographic definition of privacy, the use of a

sanitization scheme would thwart the data merger, except in the case of horizontal

partitioning, and even then it would affect the regression coefficients and related goodness of

fit statistics. There is no developed theory that would allow us to carry out accurate statistical

inference under such a scheme. Therefore, although the approach is a conceptually appealing

alternative, we would need to do further work before it would be practical for multi-party

statistical calculations, especially in moderate to high-dimensional problems.

The problem of secure regression is far from solved, however, since we have yet to deal

with missing data (e.g., by multiple imputation), measurement error, and possibly

overlapping entries, in a secure way. Furthermore, record linkage due to a statistical model

may be incorrect and result in biased estimates of model parameters. Extensions of the

present work would include approaches that are robust to these kinds of errors, and also

methods for generalized linear models such as logistic and poisson regression.

Appendix

A. Privacy Implications Associated with the Release of OLS Estimates

Our protocol computes the ordinary least squares regression estimates for a design and

response vector which is somehow shared between two parties. The OLS is a function of
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the inputs from the parties consisting of “private” data. The definitions used in

constructing the protocol itself ensure that nothing is revealed besides the estimated

parameter vector and whatever is implied by it. Here we investigate the implications of

knowing an OLS estimator which is based partially on the private data of another party.

The main idea is to look at the set of data matrices which could be input by the other

party and would produce the same coefficients vector as the one observed during an actual

run of the protocol. First let b̂ ¼ b̂ðX1;X2; y1; y2Þ be the coefficients computed by our

protocol, on the inputs (X1, y1) belonging to Party 1, and (X2, y2) belonging to Party 2. We

will examine the structure of the set:

M2 ¼ {ðM; vÞjb̂ðX1;X2; y1; y2Þ ¼ b̂ðX1;M; y1; vÞ}

All that Party 1 may conclude after running the protocol with Party 2, is that the data

belonging to Party 2 is an element of set M2. The construction is the same for the privacy of

Party 1. If this set contains a single element (i.e., if b̂ had an inverse) then Party 1 would know

the data of Party 2 and completely violate his privacy. On the other hand if the set M2 is large,

then Party 1 may only conclude whatever is implied by the structure of the set (i.e., whatever

properties are shared by every element). We will examine the structure of the set under two

common data partitioning schemes. Note that although we concentrate on a setup which

mimics the two-party protocol, the same ideas carry through for analysis of the case where

there are multiple parties. We may either say that Party 1 wants to investigate the other parties’

data by himself in which case take (X2, y2) to mean the union of the data belonging to other

parties, or perhaps several parties will collude to try to reveal the data of another party, in

which case take (X1, y1) to mean the union of the data of the colluding parties.

A.1. Horizontally Partitioned Data

Consider the case where there are two parties who each have a horizontal slice of the

design matrix and the response vector. We have X ¼ XT
1 ;X

T
2

� �T
where X [ RðnþmÞ£p,

X1 [ Rn£p and X2 [ Rm£p. Also y ¼ yT1 ; y
T
2

� �T
for y [ Rnþm, y1 [ Rn and y2 [ Rm:

We can write he OLS estimator as:

b̂ðX1;M; y1; vÞ ¼ XT
1X1 þMTM

� �21
XT

1 y1 þMTv
� �

and so we have:

XT
1X1 þMTM

� �
b̂ ¼ X

Ty1

1 þMTv

XT
1X1

� �
b̂2 XT

1 y1 ¼ MTv2MTMb̂

D ¼ MT ðv2Mb̂Þ;

where we have defined D accordingly. If we assume that X1 is of full rank (i.e., rank p) then

we have that D is in one-to-one correspondence with b̂. We may then rewrite the set M2:

M2 ¼ {ðM; vÞ [ Rm£p £ RmjMT ðv2Mb̂Þ ¼ D}

where b̂ ¼ b̂ðX1;X2; y1; y2Þ. Therefore all Party 1 may conclude is the equality implied in

the definition of the set. Note that if he drew a full rank matrix M [ Rm£p at random and
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set v ¼ MðMTMÞ21DþMb̂, then the pair (M, v) could be used in place of the data of

Party 2, and would produce the same coefficient vector. Note that v2Mb̂ is the

coordinates of D in the row space of M. For m . p this is not unique since the rows form

an overcomplete basis for the space. Therefore, we have that the design held by Party 2

could be any m £ p matrix where D is in the row space, and associated with each choice is

a set of at least one vector which could be the response vector. Since M2 contains so many

different elements which are all over the space of matrices M, it will be difficult for Party 1

to conclude anything about the data matrix.

A.2. Vertically Partitioned Data

Consider the case where there are two parties, each with a matrix of covariates X1 [ Rn£p,

X2 [ Rn£q, and Party 1 holds the response vector y [ Rn. We take X ¼ ðX1;X2Þ [

Rn£ð pþqÞ as the complete matrix of predictors. Our protocol computes the coefficient

vector:

b̂ðX1;X2; yÞ ¼ ½ðX1;X2Þ
T ðX1;X2Þ�

21ðX1;X2Þ
Ty ¼ ðXTXÞ21XTy

We will start by investigating what Party 1 (the holder of the response) may learn about

the predictors belonging to Party 2. First note that we may write the formula for b̂ in terms

of the block matrix, and use the technique for inverting a block matrix:

b̂ðX1;M;yÞ ¼
XT

1X1 XT
1M

MTX1 MTM

 !21
XT

1

MT

 !
y

¼

XT
1X12XT

1MðMTMÞ21MTX1

� �21
XT

1 y2XT
1MðMTMÞ21MTy

� �
MTM2MTX1 XT

1X1

� �21
XT

1M
� �21

2MTX1 XT
1X1

� �21
XT

1 yþMTy
� �

0
B@

1
CA

It will be useful to express each M in terms of its projection onto the column space of X1

and note a few properties:

M ¼ X1Aþ ~M

A ¼ XT
1X1

� �21
XT

1M

~MTX1 ¼ ðM 2 X1AÞ
TX1 ¼ MTX1 2 ATXT

1X1 ¼ MTX1 2MTX1 ¼ 0

~MTM ¼ ~MTX1Aþ ~MT ~M ¼ 0Aþ ~MT ~M ¼ ~MT ~M

Thus ~M is a matrix where every column is orthogonal to every column of X1. A [ Rp£q is

the matrix which gives the projection of each column of M into the column space of X1.

Note that we tacitly assumed that X is not rank deficient, and thus we consider only M (and

hence A) which are also not rank deficient.
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Applying these equalities, and simplifying the matrix form by applying the matrix

inversion lemma to the matrix inverse in the top row yields:

b̂ ¼
b̂1

b̂2

0
@

1
A ¼

XT
1X1

� �21
XT

1 y2 Að ~MT ~MÞ21 ~MTy

ð ~MT ~MÞ21 ~MTy

0
@

1
A

¼
XT

1X1

� �21
XT

1 y2 Ab̂2

b̂2

0
@

1
A

In this way, we can index the set M2 by A and ~M:

M2¼{M[Rn£qjM¼X1Aþ ~M for ðA; ~MÞ[ ~M2}

M̂2 ¼{ðA; ~MÞ[Rp£q£Rn£qj ~MTX1¼0; ð ~MT ~MÞ21 ~MTy¼b̂2; Ab̂2¼ðXT
1X1Þ

21XT
1 y2b̂1}

¼{A[Rp£qjAb̂2¼ðXT
1X1Þ

21XT
1 y2b̂1}£{ ~M[Rn£qj ~MTX1¼0; ð ~MT ~MÞ21 ~MTy¼b̂2}

¼ A2£ ~M2

We see that the elements of A2 are the matrices where ðXT
1X1Þ

21XT
1 y2 b̂1 is in the

column space, and the coordinates are given by b̂2. When q ¼ 1 and b̂2 – 0 the set

contains exactly one element, and so Party 1 learns:

MTX1 ¼ ATXT
1X1

Hence the off diagonal blocks of the data covariance matrix would be revealed to Party 1.

For q . 1 this information is not revealed.

For ~M2, we note that the column space of every element is in the left nullspace of X1

which is an (n 2 p)-dimensional space. Further, if any element of b̂2 is zero, then the

corresponding column of ~M is orthogonal to y. Columns corresponding to nonzero

elements of b̂2 are not orthogonal to y. If we choose a set of p vectors spanning a

p-dimensional subspace of the left nullspace of X1, and if we respect the previous

condition regarding y, we can choose an appropriate scaling to ensure that b̂2 gives the

coordinates of the projection of y into that subspace.
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