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Sensitivity Analysis of Empirical Studies

Hans Nyquist'

Abstract: Results from an empirical study
depend on data, the statistical model, and
the statistical techniques used. The statisti-
cal techniques are in turn constructed
according to the model and a set of prin-
ciples of statistical inference. Since statisti-
cal models are ultimately false, a source
of uncertainty in the results is introduced.
This uncertainty is distinguished from the
sampling error, which traditionally is of
primary concern in the statistics literature.
Here, sensitivity analysis is defined as the
investigation of how model misspecification
and anomalous data points influence results.

1. Introduction

In an empirical study of a particular subject
matter it is often convenient to use a statisti-
cal model and statistical techniques for
analysing the data. However, being a simpli-
fication of reality, a statistical model is ulti-
mately false if one looks closely enough.
Assumptions such as normally distributed
observations, independent replications, and
linear functional forms are often made but
are rarely true. In addition, statistical
techniques are often selected according to
their properties, but these properties are
valid only if the model is true, implying a
noticeable risk of selecting an inferior
technique for the analysis. This does not
mean, however, that the use of statistical
models and statistical techniques is useless.
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Included in sensitivity analysis are methods
for assessing the influence of a particular
source on the results, and suggestions about
how to reduce unacceptably large influences.
The purpose of this paper is to define some
concepts of sensitivity analysis, illustrate the
concepts in a few examples, and, perhaps
most importantly, to emphasize the need for
further research within this area.
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What matters is whether the model is true
enough and whether the properties of the
statistical techniques used are valid enough
according to the purpose of the study. The
particular statistical techniques used in the
analysis, the model we consider, and the
data on which the conclusions are based are
components of considerable importance for
the results in an empirical study. In order to
determine the applicability of the results it is
necessary to analyse the influence on the
results from particular components of the
study. The main purpose of this paper is to
discuss a general approach for analysing the
results’ dependence on a specific model
specification or a specific set of data. Speci-
fically, the results’ sensitivity to alterations
in the model specification and alterations in
the data set is assessed. This type of analysis
is here called sensitivity analysis. If is also
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the aim of the paper to point out the need
for further research in this area.

An extensive discussion on different parts
of sensitivity analysis has existed for a long
time. For example, a rich literature on influ-
ential data points in linear regression is
available. The most well known textbooks
in this field include Belsley, Kuh, and
Welsch (1980), Cook and Weisberg (1982),
and Chatterjee and Hadi (1988). In addition
to this, a large number of research papers
have been published. On the other hand,
very few results about influential data points
in fields other than linear regression are
published. Pregibon (1981) and Chatterjee
and Hadi (1988, ch. 8) are two important
exceptions treating the analysis of
generalized linear models. The effects of a
misspecified model are again rather well
known in the case of linear regression (many
results appear in standard textbooks) but
only few results are published for other
models. An important exception here is the
field of robust statistics (see e.g., Huber 1981
and Hampel, Ronchetti, Rousseeuw, and
Stahel 1986) which can be said to have
emerged from the problem of erroneous
distributional assumptions.

While proposed assessments of sensitivity
are often ad hoc we discuss a general
strategy for performing a sensitivity analy-
sis, applicable to a large class of problems.

The present paper is organized as follows.
The role of sensitivity analysis and its rela-
tions to other steps in an empirical study is
discussed in the next section. The problem
of assessing the results’ dependence on
model assumptions and on data points are
discussed in Sections 3 and 4, respectively.
Two approaches to limit the effects of
influential model assumptions or influential
data points are presented in Section 5. The
final section contains some concluding
remarks.
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2. Sensitivity Analysis

A paradigm for statistical analysis of
empirical data is that discussed by Box
(1979, 1980), as illustrated in Fig. 1. The
process begins with formulating the problem
of interest in terms of a probability model.
The model consists of a set of assumptions,
such as assumed functional relations between
variables, assumptions about statistical
independence, and assumptions about prob-
ability distributions. Some of these assump-
tions are derived from a theory about the
subject matter under study. Examples of
these kinds of assumptions include the exist-
ence of a functional relation between price
and demand for a commodity in a model for
consumer demand, and assumptions about
the experimental units in a planned experi-
ment leading to the use of a block design. In
addition to such assumptions, the model
often contains assumptions of another kind,
here called auxiliary assumptions. Without
auxiliary assumptions an analysis is in many
situations impossible. In other situations,
auxiliary assumptions facilitate the analysis
considerably. Examples of auxiliary assump-
tions include assumptions about a specific
functional form relating price and demand
for commodities in a consumer demand
model, and assumptions about independ-
ence, homogeneity, and normality of error
terms in an analysis of data from a planned
experiment. In an empirical study, it is
usually desirable if results depend strongly
on assumptions that are consistent with
theories about the subject matter. On the
other hand, results can be misleading if they
depend too strongly on dubious model
assumptions that are made to facilitate the
analysis rather than being derived from
theories about the subject matter.

The arrow from the left-hand box to the
right-hand box indicates the procedure in
which the model is confronted with data and
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Criticism

Fig. 1. A paradigm for statistical analysis according to Box (1979, 1980)

results from the analysis are derived. Selec-
tion of the particular technique actually
used for the inference depends on the model.
For example, the maximum likelihood esti-
mator of the symmetry point under a model
of i.i.d. normally distributed observations is
the sample mean, while it is the sample
median under a model of ii.d. double
exponentially ~distributed observations.
However, the selection of a technique for
statistical inference also.depends on the
principles of statistical inference the analyst
believes are important as well as on the
analyst’s interpretation of probability. This
is illustrated by noting that the maximum
likelihood estimator of the symmetry point
under a model of i.i.d. double exponentially
distributed observations is the sample
median. The least squares estimator and the
method of moments estimator, which are
based on other principles of inference, are
the sample mean under the same model. Still
other principles in combination with an
additional assumption about a prior distri-
bution lead to a Bayes estimator. Hence, the
set of principles of statistical inference
adopted has implications for the selection of
statistical technique and, in this way, also
influences the results from the empirical
study. It should also be noted that seldom
does a principle yield satisfactory results in
all cases. This is of particular importance in
a world with models that are not true: an
estimator which is unbiased and has a mini-
mum variance property under a specified

model, may be far from unbiased and far
from the minimum variance property in the
current situation.

A more detailed scheme of the upper
arrow would then be as in Fig. 2. The infer-
ence can be regarded as a process whose
inputs are the model, the technique, and the
data, each being dependent on other factors,
and whose output is the results from the
empirical study.

The right-hand box in Fig. 1 denotes the
output from the inference, here called
results. In many applications, results are
point estimates, interval estimates of par-
ticular parameters, or conclusions from
tests of hypotheses formulated in the model.
Other examples of results from an inference
are predictions, forecasts, and decisions
about realizing particular actions selected
from larger sets of feasible actions.

In the outline of Box’s paradigm illus-
trated in Fig. 1, there is also an act of critical
assessment of the model, given the actual
results from the inference. This is labeled
criticism and is indicated by the arrow from
the right-hand box to the left-hand box. As
illustrated in Fig. 3 the aims of this criticism
are threefold. First, from the subject matter
point of view it is important to compare
results with what are expected from theory
and to explain and interpret results that do
not agree with implications from the theory.
Second, it is important to assess the influ-
ence of the auxiliary assumptions on the
results, here called analysis of model
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Fig. 2. A more detailed scheme of the upper arrow in Fig. 1

sensitivity. Questions like “how important
for the estimate on price elasticity is the
assumption about independent error terms”’
in a model for consumer demand, and “how
important for the conclusions about treat-
ment effects is the assumption about norm-
ally distributed errors” in an analysis of a
planned experiment are typical questions to
raise in this context. The third aim of the
criticism is related to the general idea in
empirical studies that we do not want a
small subset of data, extreme in some res-
pect, to have a large effect on the results. In
many applications we pursue balanced data
so that each data point has the same influ-
ence on the results. It is therefore important

Theories

to assess the sensitivity to particular obser-
vations (in the light of the model) and there-
by identify influential data points.

The term sensitivity analysis is here used
to denote the investigation of how a model
specification and particular data points
influence the results of an empirical study
(i.e., attention is restricted to the second and
the third aims of the criticism). It also con-
tains a discussion about how sensitivity can
be reduced.

3. Assessing Model Sensitivity

The models used in statistics are often
termed statistical models, or models of

about the
subject matter

T e -~ -
Sensitivity
analysis

Auxiliary

assumptions

Criticism Results

Fig. 3. A more detailed scheme of the lower arrow in Fig. 1
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random events. These terms highlight the
random nature of the phenomenon that is
modelled. In many cases the model is a par-
ametric model in the sense that a family of
probability models is used; each member of
the family is indexed by a value at a finite
dimensional parameter 6. Formally, the
possible outcome y of a model M is a speci-
fied set, the sample space, & = {y}. In a
parametric model each of the possible prob-
ability distributions of Y is indexed by a
value at 0 in a specified set, the parameter
space, Q = {0}, and is represented by a
probability function f(y, 8). According to
M the probability of an outcome y in a
measurable subset S of & is

P(S;0) = [/(,0)du(y)

where | is a specified (o-finite) measure on
. A parametric model is thus characterized

by <Q, Z, f, w-

Example 3.1. As an example of a para-
metric model, we consider the simple linear
regression model

9,+92x,-+u,~, i=1,...

i = , n

x, are known constants (without
measurement errors)

u; are stochastically independent error
terms, all with the same probability
distribution

u; are normally distributed with mean
zero and variance 0.

In this example ¥ = R", Q = R* x R*,
f(3;0) = (2n6,)™"

<o (- $ (- 0, - oux o)
i=1
and p is the Lebesgue measure on R".0

A parametric model is necessary when the
inference is based on likelihood arguments
or on sufficiency arguments for the con-
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struction of maximum likelihood estimators,
likelihood ratio tests, MVUE, best tests in
the Neyman-Pearson sense, etc.

The particular formulation of a model
depends on our knowledge about the sub-
ject matter under consideration, as it is
formulated in the theories applied. Several
assumptions in the model can often be
regarded as auxiliary assumptions. For
example, the assumption about no measure-
ment error in the explanatory variable Xx;
above depends on how the readings on x; are
made. If x, is the number of customers arriv-
ing to a queue, it seems that there is a good
chance to get an exact measurement on X;.
If, on the other hand, x; is a latent variable
(such as “intelligence”) which can only be
observed via a set of indicator variables, it is
impossible to get an exact measurement on
X;.

The model we use is in many respects a
simplified representation of the subject
matter under consideration. In particular, it
must be consistent with the subject matter
with respect to the characteristics under
study. However, we never require the model
to be true. Although, when selecting a
technique for statistical inference, and when
performing the inference, we act as if the
model were true. It is here often argued that
“small” deviations from the model assump-
tions only cause ““small” deviations from the
theoretical properties of the inference
technique selected. Being aware of the
approximate nature of the model the analyst
claims he or she is acting approximately in
accordance with the principles of inference
adapted, and is getting an approximately
correct answer to the problem. Unfor-
tunately, this argument may be completely
wrong. In some applications deviations
from the model assumptions can have very
large effects on the results, and the analyst
merely gets an approximate answer to the
wrong problem.
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For assessing the influence of a question-
able model assumption on a property of a
statistical technique, suppose that T is the
statistic considered and A,(M,) is the speci-
fied property of T (for example, the (popula-
tion) value of 7, the expected value of T, or
the variance of T') under the model M,.
Suppose further that M, is embedded into a
larger class, say .#, of models. It is then
often the case that .# itself constitutes a
(augmented) parametric model. Letting ¢
be the parameter indexing the members in
A such that M, is obtained for ¢ = 0 and
M, is an arbitrary member of .#, a possible
assessment of the sensitivity with respect to
changes in ¢ is obtained by comparing
Ar(M,) with A;(M,). In particular, we can
compute the relative change of A, and take
the limit as ¢ tends to zero, thus defining a
sensitivity function

SE(M; T, M,, A)
= !;_rg {Ar(My) — Ar (M)}

provided that the limit exists. If .# defines a
linear space and A; is an operator defined
on ./, the sensitivity function can be inter-
preted as a directional derivative of 4, at
M,.

Example 3.2. To illustrate the application
of the sensitivity function approach for
assessing model sensitivity, we consider the
case of measurement errors in a simple
linear regression model. The explanatory
variable x;in Example 3.1 is now assumed to
be observed indirectly through the variable
z; related to x; as

z; = x,+v, i=1,...,n

The least squares estimator of 0, is biased
when z;is substituted for x; in the regression.
If the measurement errors v; all have expec-
tation zero, variance ¢, and are indepen-
dent, the bias of the least squares estimator
of the slope 6, is known to be —0,¢/
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(o3 + ¢), where o7 is the variance of x,.
Using the definition of the sensitivity func-
tion we obtain

SF = lim {—0,0/(c% + ¢) — 0}/d

—92/0'.%

as the sensitivity of bias due to measurement
errors in the explanatory variable. Thus, the
relative change in bias properties for the
least squares estimator when a measurement
error with infinitesimal variance is added to
the explanatory variable is proportional to
the slope parameter and inversely propor-
tional to the variance of the explanatory
variable. If o2 is large compared to 6, this
kind of model deficiency would probably
not be harmful. On the other hand, the
sensitivity of bias is unbounded (positive or
negative depending on the sign of 0,) as o?
tends to zero. Similar arguments applied to
a multiple linear regression model suggest
that the errors-in-variable problem is par-
ticularly severe in cases with collinearities
among the explanatory variables. O

Example 3.3. As a second illustration of
how the sensitivity function can be applied
for assessing model sensitivity, we consider
an inference for analysing matched pairs
based on the permutation approach. Thus,
we consider a finite population in which
each subject receives a treatment at dose Z
and exhibits a response r. Each subject has
also a vector x of observed pretreatment
covariates and a scalar unobserved covariate
u. The purpose of the analysis is to test the
null hypothesis of no treatment effect.

For evaluating the effect of the unobserved
covariate # Rosenbaum (1989) proposes a
(semiparametric) model for the dose assign-
ments under the null hypothesis. Some not-
able special cases of the model include the
logit model for two doses, linear models for
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normally distributed doses, and certain log-
linear models for doses taking several dis-
crete values. The model contains a parameter
¢ with the property that if ¢ = 0 adjust-
ments for x suffice in testing the null hypoth-
esis, while ¢ # 0 implies that adjustments
for (x, u) would have sufficed had u been
observed.

Based on n matched pairsi = 1, ..., n,
we wish to test the null hypothesis. Test
statistics considered are of the form T =
T q,s;[V;d;],, where ¢, > 0 are scores
depending on (4,|, . . ., |d,]), di =1, — 11,
s; = 0arescores dependingon (t,, . . . , 2,),
t,=1Z, — Z,|, V, = Z; — Z, if pair i con-
sists of the pair of subjects (j, k) and
[a], = 1ifa > 0 and [d], = O otherwise.
Particular cases of this test statistic include
versions of Wilcoxon’s signed rank statistic
and a statistic that resembles, but is different
from, the Spearman rank correlation.

The null distribution of T depends on u
and therefore cannot be evaluated unless
¢ = 0. However, Rosenbaum (1989) shows
that, under some conditions, the null distri-
bution of T is asymptotically normal with
expectation ranging between Zp;g; and
(1 — p;)g: depending on u, and with vari-
ance p,(1 — p,)g:, where

exp (¢4/2)
exp (— ¢1:/2) + exp (¢1/2)

and g; = ¢;s;.

The sensitivity analysis suggested by
Rosenbaum (1989) is, in our notation,
defined by comparing the standardized
values of the test statistic, Ar($) =
(T — E(T))//var (T) for a range of values
on ¢ and using the upper as well as the lower
bound for the expectation E(T). The test is
considered sensitive if one value of Ar(0)
and A,(¢) suggest a rejection of the null
hypothesis while the other cannot support a
rejection. This sensitivity analysis is global
in the sense that a range of models is con-

b =
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sidered. A local sensitivity analysis is obtained
by considering the sensitivity function of 47
defined as the derivative of A, with respect
to ¢ at ¢ = 0. Straightforward calculus
yields :

Ar($) — 47(0)

218
lim —— = * &

i
4-0 b 2z}

where the sign depends on which of the two
extremes of expectation is used.

Rosenbaum (1989) provides a numerical
example adapted from Kelsey et al. (1978)
where the effects of oral contraceptives on
various breast diseases are studied. The test
statistic considered is defined by ¢; = 1 and
s; = t; (i.e., Tis the sum of the dose scores
for pairs in which the case had the higher
dose). With the data presented Rosenbaum
(1989) finds the test to be sensitive to effects
from a possible unobserved covariate.

The sensitivity function for the test statistic
in this case reduces to + (X ¢*)"?/2. Thus, a
less sensitive test appear if smaller absolute
dose differences are used. O

When ./ is parametric it is often possible
to formally test the model for a respecifi-
cation by testing the hypothesis ¢ = 0.
These tests, often referred to as specification
tests, are by now the subject of growing
research interest in statistics. Some recent
developments in this area, primarily directed
toward dependent error terms in linear
regression models, are collected in King and
Giles (1987). One well-known example of a
specification test is the Durbin-Watson test
for testing the hypothesis of no first-order
autoregression in the error terms of a linear
regression model. Here, M, is augmented by
a first-order autoregressive €rror process
with ¢ as the parameter and the hypothesis
¢ = 0 is tested.

The property Ay studied in specification
tests assesses how the model fits the data,
e.g., the log likelihood value at the fitted



174

model. Notice, however, that other proper-
ties of the same statistic tell other stories.
For example, although the introduction of
an additional explanatory variable is not
significant (specification test) it can have
large effects on estimates of parameters alre-
ady included in the model.

If it is not possible to formulate the larger
class of models .# as a parametric model, it
is more complicated to assess the sensitivity
to variations in the model. One approach is
to restrict attention to parametric subclasses
of .. Of course, this approach yields only
insight about model sensitivity to variations
within the subclasses considered.

When analysing sensitivity to deviations
from distributional assumptions various
nonparameterizable classes of models are,
for obvious reasons, often employed. One
type of subclasses of models that is frequently
used is formulated as follows: Suppose that
a randomly selected observation has prob-
ability 1 — ¢ of being generated by the
model M, and probability ¢ of being
generated by a second model, say M,. We
can think of (1 — ¢)M, + dM, as the rele-
vant model. This model fits particularly
well to the contamination neighborhood, to
be described in Section 4, but is also useful
for other nonparameterizable classes of
models.

The sensitivity function in this case is

SE(M,; T, M,, A)

= };_r}g [A-{(1 — d)M, + oM}

— Ar(My))/$.

In the particular case where A, is the
population value of the statistic T under
consideration and the alternative model M,
assigns pointmass 1 at the point z in the
sample space (represented by its probability
distribution function A,) the sensitivity
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function reduces to

IF(z; T, F)) = ling [T{(1 — e)F, + €A,}

- TE)e

which is recognized as the influence func-
tion, introduced by Hampel (1968, 1974)
and extensively discussed in the robustness
literature (e.g., Hampel et al. 1986 and
Huber 1981). The influence function can
thus be interpreted as a collection of direc-
tional derivatives (in the direction deter-
mined by A,) of T when T is interpreted as
a functional defined on a space of probabil-
ity distribution functions.

Under the model of i.i.d. N(u, o) obser-
vations, simple calculus shows that the influ-
ence function for the sample mean X is
z — p. Thus, the influence function is un-
bounded, indicating that in a large sample
the relative change of the sample mean can
be arbitrarily large when the sample is
contaminated with an infinitesimal propor-
tion of observations from M, (the popu-
lation in which all observations take the
value z).

The change of variance function (Rous-
seeuw 1981, 1982) is another tool for assess-
ing an estimator’s sensitivity to deviations in
the distributional assumption. For an esti-
mator T of a location parameter p in a
symmetric distribution, the change of vari-
ance function can be viewed as a sensitivity
function with A; being the (asymptotic)
variance of T; the models are represented by
their probability distribution functions and
M, is the probability distribution function
that assigns pointmass 1/2 at p — z and at
u + z in the sample space.

4. Assessing Data Sensitivity

Model evaluation is traditionally concerned
with questions such as (1) How well does
this model fit to data? (2) Are there any data
points that are not well described by the
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fitted model? (3) Are there any data points
that highly influence the results of the analy-
sis? Questions 1 and 2 are more directed
toward an analysis of results while question
3 asks for an assessment of the sensitivity of
results to particular data points. Applica-
tions of methods for assessing the influence
on results of particular data points are
therefore an important area common to
both model evaluation and sensitivity analy-
sis. There exists a large body of literature on
this topic, including Belsley et al. (1980)
primarily concerned with applications in
econometrics; Cook and Weisberg (1982)
and Chatterjee and Hadi (1988) discuss
influential observations in regression analy-
sis; Atkinson (1985) and Cook and Wang
(1983) deal with the influence of transfor-
mations in linear regression; Hadi and Wells
(1990) and Wang and Nyquist (1991) discuss
influential observations in eigenstructures of
data matrices; Mason and Gunst (1985),
Hadi (1988), and Nyquist (1988) discuss
observations creating or hiding collineari-
ties in linear regression; and Pregibon (1981)
deals with generalized linear models. Since
this literature covers most of the relevant
aspects of sensitivity due to data, we give
only a few remarks here.

To fix our ideas, suppose T = T(F)is a
statistic under consideration and suppose
2y, Zy, - - - » Z, are Observations drawn from
the model distribution F. Then, the ob-
served value on the statistic is

t = Hzy, 205 . -5 2y) = T(F,)

where F, is the empirical distribution func-
tion. A simple and natural way to assess the
influence of a particular observation, say z;,
on ¢ is to compare ¢ with ¢, the value on ¢
with z; deleted from the data

Ly = HZis s Zits Zigts v v s Z,)-

In particular, the difference
t — t(,) == (n —_ l)—lSIC(Zi; t)
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is related to the so called sample influence
function (SIC) (Mallows 1975), which is the
jack knife estimate of the influence function
of T evaluated at z; (Efron 1982).

An alternative assessment of the sensitiv-
ity is obtained through the empirical influ-
ence function (EIC) defined as the influence
function evaluated at the empirical distribu-
tion function F, (Mallows 1975). We now
give two examples illustrating how the em-
pirical influence function can be applied.

Example 4.1. Coursey and Nyquist (1988)
report on the performance of a single-
equation log-linear demand model with first
order autoregressive error terms. The model
considered is y, = By + Bixy, + Baxy + %,
u, = Qu,_, + v,, with different distribu-
tional assumptions on the disturbance terms
v,, where y, is the logarithm of per capita
quantity of a good purchased at time 7, x;,
the logarithm of per capita income, and x,,
the logarithm of the price of the commodity
relative to a price index of all prices. The
model was estimated using nondurable and
services commodity time series data for
Sweden and the United States. The model is
estimated using a Cochrane-Orcutt itera-
tion scheme in which each iteration consists
of two linear regressions. In the first regres-
sion y* = y, — ¢®y,_, is regressed on
xf, = x, — (p(k)xlr—l and  x} = Xy —
¢®x,,_, for a given value of @™. This regres-
sion results in the estimates (I — ¢®)B(°,
B®, and BY. In the second regression
b=y — ng) - B(lk)xlt - (k)x2' is regressed
on #,_, yielding the estimate **" and used
in the subsequent iteration. The iterations
are stopped in accordance with a covergence
criterion on the criterion function.

The first two rows of Table 1 report par-
ameter estimates and t-values when the
model is applied to annual data on con-
sumption of gas and oil in the United States
from 1946 to 1982. The estimates are all as
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Table 1. Estimated demand equation for consumption of gas and oil in the United States
(t-values in parentheses)
Bo B, B, )
Complete data 0.800 0.637 —0.220 0.943
(0.71) (4.70) (—6.72) (148)
Reduced data* —1.811 0.929 —0.207 0.899
(—2.31) (9.18) (—17.16) (84.9)

*For the reduced data estimates are computed after deleting the data point (x¥s, x¥s, y¥)
in the first regression and the data point (4,, i) in the second regression.

expected: The income elasticity B, is signifi-
cantly positive and the price elasticity B, is
significantly negative.

Detection of influential observations can
now be applied to each of the two regres-
sions. In particular, Table 2 reports obser-
vations with the five largest values on EIC in
the second regression, i.e., an assessment of
the observation’s influence on the estimate
of @. Obviously, observation 5 has an un-
usually large influence on the estimate of .
For illustrative purposes we estimate the
model with the data point (x}s, x¥s, y¥)
deleted in the first regression and the data
point (4, i) deleted in the second regres-
sion. The results obtained are reported in
the last two rows of Table 1. Estimates of
the elasticities are still as expected, although
they differ from the complete data estimates.
In particular, the income elasticity estimates
differ greatly by showing a 46% increase.

This analysis suggests that the obser-
vations from 1949 and 1950 obey a different
dynamic behavior than the other observa-

Table 2. Five largest values of EIC when i,
is regressed on i,_,

t EIC

0.158
—0.089
—0.057

0.067

0.051

—
O NI W

tions. Whether this is due to the data collec-
tion (changes in definitions, usually large
measurement errors, etc.) or to an overly
restrictive model remains to be explained. O

Example 4.2. This example considers the
problem of tracing observations that highly
influence the condition number of a data
matrix Z of size n x p. Writing the eigen-
values [, > I, > ... > I, of Z"Z as func-
tionalsof F,, [, = M(F,), . ..,I, = M (F,),
the condition number k of Z is the functional

ko= x(F) = {MEI\EF)}"
and the influence function of « is given by

0z o, 2)2}
M A

P

K
IF(z; F, x) = 5

where y, and vy, are the population eigenvec-
tors associated to the population eigen-
values A, and A,, respectively (Nyquist
1988). A measure of the relative change of
the condition number when adding one
observation z to a very large sample would
then be

IIF(z; F, x)|
- .

H(z) =

A finite sample approximation to H(z) is
obtained if the sample influence function is
substituted for the influence function. The
resulting diagnostic

|k - k(i)l

HS = - 1)—F—-—- -
i (=1 =
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has a nice interpretation as the relative
change in the condition number due to the
deletion of the ith observation. Here, k;, is
the condition number of the data matrix
with z, removed. This measure is suggested
by Hadi (1988) and discussed in Chatterjee
and Hadi (1988). Using the empirical influ-
ence function we alternatively obtain

(glrzi)z _ (g;Zi)z
1A l

4

H.E=l
' 2

where g, and g, are the observed sample
eigenvectors corresponding to /; and [,
respectively. An immediate advantage of HE
over HS is that HF is much easier to com-
pute. Computation of H® requires compu-
tation of eigenvalues of n + 1 matrices,
each of size p x p, while it suffices to com-
pute the largest and the smallest eigenvalue
and corresponding eigenvalues of Z7Z
when computing HF. Note however, that
Hadi (1988) also suggests a quite accurate
approximation to H;® which requires only
computation of eigenvalues of Z”Z and has
therefore the same computational advantage
as Hf. O
More generally, define

tyw) = HZyy oo s WZiy o v o5 Zy)

so that 7,(1) = ¢t and ¢,»(0) = ;. This
definition allows assessing the effect of
infinitesimal perturbations of z; by differen-
tiation of #;,(w) with respect to w, thus defin-
ing the empirical sensitivity function

ESF(z;, w, ©)
= lim {t5(w + 5) — to(W)}s

provided the limit exists. It is here interest-
ing to note that

ESF(z;, 1, f)

= lim{T( " _F
50 n+s
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* - i SA,-> — T(F,,)}/s

liil(;n (1 — Nn '[T{Q — NF,

+ rA} — TEr
= n'EIC(z;; 1)

where A, is the distribution function that
assigns pointmass 1 at z;. Thus, ESF(z;, 1, 1)
is related to the empirical influence function.
ESF(z;, 1, f) describes local changes in ¢ at
the fitted model while ESF(z;, 0, t) describes
local changes in ¢ after the ith observation
has been removed. ESF(z;, 0, f) has as yet
been little discussed in the literature. Its
properties and its potential use as an assess-
ment of a statistic’s sensitivity to data
remain to be clarified. It should also be
noted that, due to the mean value theorem,
we have that

to(1) — 1,(0)

_ 1yt .
(n — 1)7'SIC(z;; 1) -

— ESF(z, w; 1)

for some w, 0 < w < 1. That is, the sample
influence curve is related to the derivative of
t4,(w) evaluated at a point w lying inside the
unit interval. Furthermore, SIC can be
interpreted as a compromise between the
empirical influence function (equal to
nESF(z;, 1; £)) and (n — 1ESF(z;, 0; ).

Assessing the effects on estimates is per-
haps the most common type of analysis of
sensitivity to particular data points. It
should, however, be emphasized that it may
be relevant to consider other aspects of an
empirical study. In fact, the sensitivity of the
condition number, discussed in Example
4.2, is an illustration where the conditions
for a regression analysis rather than par-
ticular estimates of regression parameters
are considered.

A very interesting approach to assessing
sensitivity to data is that of local influence
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provided by Cook (1986). Of key impor-
tance in this approach is the curvature of the
likelihood displacement defined as

LD(w) = 2{L®) — L@®,)}

where L(0) is the log-likelihood function,
6 =9,_,, and 8, is the maximum likeli-
hood estimate of the model parameter 0
when the ith observation has weight w. By
considering the log-likelihood function as
the statistic of interest, in our notations
toy(w) = L(B,), we find that the local influ-
ence approach fits into the framework for
assessing sensitivity to data presented in this
section.

5. Approaches to Limit Model Sensitivity

The two previous sections have been con-
cerned with assessing the sensitivity of
results to model assumptions and particular
data points, respectively. This section is
devoted to a presentation of two different
approaches to take care of questionable,
influential model assumptions. The first
approach, the model formulation approach,
is based on an embedding of the model
M, into a larger class .# such that the
model assumption under consideration is
weakened in ./, i.e., the model is refor-
mulated to accommodate possible deviations
from M,. In the second approach, the sen-
sitivity function approach, the model M, is
kept unchanged, but the inference technique
is constructed to have a bounded sensitivity
function.

5.1. Model formulation approach

In this approach the approximative nature
of the model is emphasized by making the
model larger. If .# itself constitutes a
(augmented) parametric model, the members
in ./ being indexed by a parameter ¢, then
0 and ¢ can be estimated simultaneously
usually yielding an estimator of 0 that is less
sensitive to the model assumption unler
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consideration. In small samples this approach
would of course lead to an increased vari-
ance. However, this loss of precision should
be contrasted to the possible deterioration
of results that can appear when using the
smaller model M,.

Methods derived for parametric inference
are usually not applicable when the aug-
mented model is not parameterized. A reason
for this is that some principles of inference
cannot be interpreted in the augmented
model. The variance of a statistic, for
example, may depend on the distribution
from which the sample is drawn. If the
distribution is not known (up to a finite
dimensional parameter) the notion of mini-
mum variance for an estimator loses its
meaning. However, it is often the case that
a slight modification of the principles of
inference, essentially retaining their inter-
pretation, admit application to the aug-
mented model, and hence, new inference
methods with desirable properties can be
derived.

As an example, we consider the case
where an assumption about normally distri-
buted error terms in a linear regression
model is put into question. The distributional
assumption is then replaced by an assump-
tion that the error distribution belongs to a
certain class & of distributions, in which the
normal distribution is a particular member.
Examples of classes of distributions whose
members cannot be indexed by a finite
dimensional parameter include the Levy
neighborhood and the contamination
neighborhood. For two probability distri-
bution functions F and G define a distance
function p(F, G) as the infimum of allsz > 0
such that

Fu—h) —h<Guw<Fu+h+hn

for all u in the sample space. Then, p defines
a metric in the space of probability distri-
butions. The Levy neighborhood to the
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normal distribution is defined by

for a fixed and prespecified A > 0, where ®
is the probability distribution function for
the normal distribution. Since a sequence
{F,} of probability distributions converges
to a probability distribution Fif and only if
p(F,, F) — 0(seee.g., Feller 1971, ch. 8) the
use of Levy neighborhoods seems to be an
attractive alternative to an assumption
about normality based on Central Limit
Theorem arguments.

The contamination neighborhood to the
normal distribution is defined by

F = {F; Fu) = (1 — M)®u) + AG(w)}

for a fixed and prespecified A (0 < A < 1),
where G is any distribution function sym-
metric about zero. An interpretation of
this class of distributions is that the prob-
ability of obtaining an observation from the
normal distribution equals 1 — A, while A
is the probability of obtaining a “wild”
observation.

Usually no estimator dominates all other
estimators in terms of variance, when the
distribution is varied over the members in a
Levy or a contamination neighborhood.
Thus, it may happen that the smallest
possible variance is attained at different esti-
mators when the distribution is varied.
Hence, the principle of selecting the esti-
mator that gives the smallest variance is not
applicable when it is not known from which
distribution in % the observations are
drawn. The notion of variance can, how-
ever, be extended to a notion of sup variance,
the supremum of an estimator’s variance
where the supremum is taken over all distri-
butions in £ . The principle of inference is
accordingly changed to one of selecting the
estimator that gives the smallest sup vari-
ance. Alternatively, the choice of estimator
can be formulated in a decision theoretical
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framework. The set of available actions to
the analyst (decision maker) is the set of all
estimators in some specified class .# of
estimators and the set of possible states of
Nature is the class & of possible error distri-
butions. The loss received if the analyst
selects the estimator T € £ and the Nature
selects the distribution F € Z is the (asymp-
totic) variance V(T, F). An application of
the minimax principle as the decision rule
implies that the estimator that minimizes
(over estimators in .#) the maximal (over
distributions in &) (asymptotic) variance is
to be selected. This strategy was originally
suggested by Huber (1964).

It is here interesting to note that if £ is
the class of M-estimators and if & is a
contamination neighborhood to the normal
distribution, the minimax chosen estimator
O of the symmetry point in a univariate
sample is the Huber estimator, implicitly
defined by

where ,(s) = max (—¢, min (c, 5)); G is
the standard deviation; and ¢ > 0 is a con-
stant related to A, the probability of obtain-
ing an observation from the contamination
distribution G. A small value on A corre-
sponds to a large value on ¢ and vice versa.
In this estimator observations in the range
(@ — oc, & + oc) are considered as being
drawn from the normal distribution and are
kept unchanged, while observations outside
this range are moved to 6 — ocord + oc
depending on the size of the observation.
After this conditional transformation of
observations 8 is computed as the ordinary
sample mean.

Unfortunately, only a few theoretical
results are known for the Levy neighbor-
hood. In a recent article Collins and Wiens
(1989) summarize and extend the minimax
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theory for estimation of a location par-
ameter. Since its potential use in model
building is evident from a subject matter
point of view, it is important to continue the

research about the Levy neighborhood in

order to clarify its implications.

The theory for this approach is originally
derived for the case of unknown error distri-
butions. Its extension to cover problems
with other model assumptions seems, how-
ever, to be straightforward in many cases.
Further research to formulate the details is
therefore welcome.

5.2.  Sensitivity function approach

The technique used for statistical inference
in a particular application is often selected
according to some principles of inference.
Many of these principles are formulated as
optimality conditions in different respects.
For example, in the traditional theory of
hypothesis testing, the test statistic used
is selected so as to maximize power under
the alternative hypothesis, and, not to
forget, given the remaining assumptions in
the model. When estimating parameters,
consistency is often of primary concern.
Additionally, in many applications un-
biasedness and minimum variance are desir-
able properties. As a consequence, estimators
that are consistent, unbiased and, in com-
bination with that, have the smallest vari-
ance given a particular model are developed.

It should now be recognized that the
derived techniques are optimal only if the
model, including the auxiliary assumptions,
is true. Generally, there is no guarantee that
a technique which is optimal with respect to
a set of principles of inference and under a
model still is optimal if an auxiliary assump-
tion in the model is violated. This is the
starting point for the second approach to
take care of questionable influential model
assumptions. In this approach the principles
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of inference selected are supplemented by a
condition about a bounded sensitivity func-
tion. When estimating parameters then, we
rather look for an estimator that minimizes
variance among estimators that are consis-
tent, unbiased, and have bounded sensitivity
functions (with respect to the model assump-
tions from which we wish to bound the
influence). Hence, in this approach the
approximate nature of the stated model is
emphasized in the principles of inference
used and reflected in a more cautious selec-
tion of a statistical technique.

As an example we consider the errors-in-

‘variables model discussed in Example 3.2.

Under this model (assuming no measure-
ment errors) the least squares estimator is
optimal according to several sets of prin-
ciples of statistical inference. However, the
bias of the least squares estimator is sensi-
tive to the appearance of measurement
errors in the explanatory variable. It would
therefore be interesting to contrast the least
squares estimator to an estimator that is (i)
consistent, (ii) has bounded sensitivity with
respect to ¢, and (iii) has the highest effi-
ciency within a specified class of estimators.
Unfortunately, such an estimator has not
yet been developed. Research in this field is
therefore warmly welcome from a sensitivity
analysis point of view.

One of the approaches to robust esti-
mation (often referred to as the influence
function approach) is to use estimators with
bounded influence functions. An optimally
B-robust estimator (Hampel et al. 1986) is
defined as an estimator that is (i) consistent,
(ii) has a specified finite value on the gross
error sensitivity y*(T, F,) = sup,|IF(z; T, Fy)|,
and (iii) has the highest efficiency within a
specified class of estimators. In the class of
M-estimators, the optimally B-robust esti-
mator of the expectation p in a N(y, o)
distribution is the Huber estimator defined
in Section 5.1, but in this approach the con-
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stant c is related to a prespecified gross error
sensitivity. A large value on y*(T, F,) corre-
sponds here to a large value on ¢ and vice
versa.

6. Conclusions

Results from an empirical study depend on
data, the statistical model, and the statistical
techniques used. The statistical techniques
are, in turn, constructed according to the
model and a set of principles of statistical
inference. It has been argued that statistical
models used in empirical studies are ulti-
mately false. Therefore, the techniques
selected for the statistical inference often
work under other conditions than those
assumed, and consequently, a new source of
uncertainty is introduced. Note here that
this uncertainty is distinguished from, e.g.,
sampling error, which traditionally is the
error of primary concern in the statistical
literature and in empirical studies. Note also
that the uncertainty stems from the appli-
cation of the principles of statistical infer-
ence and not the principles themselves.

To assert that the results from an empiri-
cal study are sensitive to a particular auxili-
ary model assumption is not equivalent to
asserting that the assumption is not satis-
fied. It claims only that a small departure
from the assumption may drastically change
the results and eventually hide a parent pat-
tern. An empirical study cannot be dis-
missed only because its results are found to
be sensitive in some respect. However, the
appearance of sensitive results should lead
to an increased caution in forming conclu-
sions, interpretations, policy recommenda-
tions, etc., from the study.

The discussion in this paper has as its

primary concern to emphasize the impor-

tance of further research within the area of
sensitivity analysis. There is certainly a need
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for further theoretical development in order
to systematize the concepts of sensitivity
analysis and to clarify the relations between
the concepts. There is also a need to practice
sensitivity analysis in applications in order
to increase experience and to implement
sensitivity analysis as a step that is routinely
taken in empirical studies.
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