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Sequential Poisson Sampling

EsbjoÈrn Ohlsson1

1. Introduction

Consider a ®nite population U � f1; 2;¼;Ng recorded in a list frame, together with some

positive auxiliary variable p � �p1; p2;¼; pN�. In a typical application we have a strati®ed

design, in which case what we consider here is a single, arbitrary stratum. We assume that

pi > 0 for all i and that (within the stratum)XN

1

pi � 1 �1:1�

Within strata, we want to sample units with probabilities proportional to pi. We shall think

of pi as some measure of the size of unit i, and say that a sampling procedure is strictly

probabilities proportional to size (pps) if

Pr�i [ s� � npi; i � 1; 2;¼;N �1:2�

where i [ s denotes that unit i is included in the sample s, and n is the desired sample size.

Sigman and Monsour (1995) note the use of pps sampling for business surveys, especially

for price index estimation. In this kind of application, n is typically of moderate or large

size, cf., DaleÂn and Ohlsson (1995). This is in contrast to the case with pps sampling in

multi-stage surveys, where n � 1 or 2 is common.

Poisson sampling is a simple way to draw a probability proportional to size (pps) sample from
a ®nite population. It also offers an easy way to update a sample while retaining as many units
as possible from the previous sample, and/or to minimize overlap of different samples. A
drawback of Poisson sampling is the random sample size. We present a ®xed size alteration
of Poisson sampling, sequential Poisson sampling, designed for, and used in, the Swedish
Consumer Price Index (CPI). We show that the respective estimators associated with ordinary
and sequential Poisson sampling, are both asymptotically normally distributed and unbiased
as well as equally ef®cient. Simulations on CPI data verify approximate unbiasedness and
approximate equality of variances, plus equally good performance of associated estimators
of variance. Therefore, sequential Poisson sampling is preferable, because of the ®xed size.
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In strata with moderate size N, there may be a substantial loss in ef®ciency if sampling

is done with replacement, see Section 4 for some examples. Hence, there is a need for

techniques for pps sampling without replacement.

A simple without replacement pps procedure is Poisson sampling. To each unit in the

frame we associate an independent random number, denoted by Xi for unit i. Each Xi is

uniformly distributed on the interval [0,1]. Unit i is included in the sample if

Xi # npi �1:3�

Poisson sampling is obviously strictly pps. Examples of the use of Poisson sampling

include the U.S. Bureau of the Census's Annual Survey of Manufacturers (Ogus and Clark

1971) and the Swedish CPI before 1989 (Ohlsson 1990).

In a repeated survey we often want a large overlap of subsequent samples, for ef®ciency

and cost reduction. On the other hand, we want the sample to re¯ect changes in the popu-

lation such as births, deaths and changes in size measure or classi®cation. Brewer, Early,

and Joyce (1972) suggested the use of Poisson sampling in connection with permanent

random numbers (PRN) to solve this problem. The idea is to let the Xi from the ®rst sample

be permanently associated with the population units. The next Poisson sample is drawn

from the updated population using the same random numbers as before. Hence, in (1.3)

n and pi will vary from time to time to re¯ect population and design changes, while a

sample overlap is obtained because Xi will be the same on all sampling occasions. The

amount of overlap will, of course, depend on the amount of changes in the population.

We may also change strati®cation and still retain a large part of the old sample, due to

the use of PRN.

With PRN it is also possible to reduce the overlap between samples for different surveys

taken from the same frame, even if the surveys have different design. This type of overlap

control is an important tool for spreading respondent burden in business surveys. Poisson

sampling with PRN is used for this purpose in New Zealand, see Templeton (1990). A

PRN technique for srswor (simple random sampling without replacement) was suggested

by Atmer, Thulin, and BaÈcklund (1975) and is now used for most business surveys

at Statistics Sweden. For an overview of sample coordination with PRN in different

countries, see Ohlsson (1995a). A drawback of Poisson sampling is that the realized

sample size m is random, with expectation n. Since m is approximately Poisson distributed,

with variance n, the deviations from the desired size n may be considerable. With moder-

ate sample sizes within a large number of strata the result may be serious deviations from

an optimal allocation. We may also have to increase the sample size in some strata in order

to avoid the possibility of getting empty samples.

We conclude that it is desirable to have a modi®cation of Poisson sampling that yields a

®xed sample size n, while still allowing the use of PRN for sample updating and overlap

control. Preferably, the method should be as simple to use as Poisson sampling. Such a

procedure, sequential Poisson sampling, is presented in Section 2.2 below. An additional

advantage of sequential Poisson sampling is the possibility to get a ®xed number of

in-scope units in the sample even if the frame contains out-of-scope units, see Section

2.4. From 1989 sequential Poisson sampling has replaced Poisson sampling as the major

sampling procedure for the Swedish Consumer Price Index (CPI), see Ohlsson (1990).

Brewer et al. (1972) gave a technique called collocated sampling for reducing, but not
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eliminating, the variability of the Poisson sample size. As shown in Ohlsson (1995a), this

technique is not as well suited for PRN sample coordination as ordinary and sequential

Poisson sampling.

In the literature there is an abundance of ®xed size pps procedures, see Brewer and

Hanif (1983) for an overview. However, algorithms for updating samples drawn with these

procedures are not available for general n. Sunter (1989) gives a procedure which in

principle allows general n, but solves only the restricted problem of updating size

measures, keeping strata and allocation ®xed. For the special case n � 1, techniques for

updating pps samples are given by Key®tz (1951) and Kish and Scott (1971).

A problem with sequential Poisson sampling is that no closed expressions can be

given for the ®rst and second order inclusion probabilities. Hence, the standard theory

for unbiased (Horvitz-Thompson) estimators cannot be used. Nevertheless, as we shall

see, estimation and variance estimation is as simple for sequential as for ordinary Poisson

sampling.

Though sequential Poisson sampling is very simple to use in practice, its theory is quite

intricate. A main purpose of this article is to provide the theory for inference from sequen-

tial Poisson samples, pertaining to point estimation, variance and interval estimation

(using approximate normality). This is done by giving asymptotic theory and (in case

of point and variance estimation) simulation results. We also compare the ef®ciency of

sequential and ordinary Poisson sampling. In particular, the estimators for both procedures

are shown to be asymptotically normal, asymptotically unbiased and asymptotically

equally ef®cient.

In Section 2 we present sequential Poisson sampling, estimators and variance estima-

tors. Stringent asymptotic results are presented in Section 3, while proofs are postponed

to the appendix. Section 4 contains a report on simulation results, followed by our conclu-

sions in Section 5.

A Historical Note. Ogus and Clark (1971) report that Poisson sampling has been used at

the U.S. Bureau of the Census since (at least) 1959. The earliest appearances of the name

``Poisson sampling'' in the literature seem to be in articles by HaÂjek (1960) for equal

probabilities and HaÂjek (1964) for varying probabilities. The name probably goes back

to the term ``Poisson trials,'' mentioned by Feller (1950, p. 234). SaÈrndal, Swensson,

and Wretman (1992) introduced the name ``Bernoulli sampling'' for equal probability

Poisson sampling.

2. Ordinary and Sequential Poisson Sampling

In the sequel, we denote (ordinary) Poisson sampling by PS and sequential Poisson

sampling by SPS. In order for (1.2) to be possible we assume from now on that

npi # 1; i � 1; 2;¼;N �2:1�

In practice this can always be achieved by transferring exceedingly large units to a ``take-

all'' stratum. The object of the survey is to estimate the total of the study variable

y � �y1; y2;¼; yN�, i.e.,

Y �
XN

1

yi �2:2�
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2.1. Poisson sampling

PS was described in the preceding section. Note that the probability of getting an empty

sample is

Pr�m � 0� �
YN
i�1

�1 ÿ npi� # eÿn
�2:3�

It cannot be recommended to use PS unless this probability is negligible, which we will

assume from now on. The unbiased (Horvitz-Thompson) estimator of Y is

ÃYHT �
1

n

X
i [ s

yi

pi

�2:4�

The following expression for the variance of ÃYHT is easy to derive, see e.g., SaÈrndal et al.

(1992, p. 86),

Var � ÃYHT � �
1

n

XN

i�1

�1 ÿ npi�
yi

pi

� �2

pi �2:5�

As suggested by (2.5), ÃYHT is usually of poor precision. Brewer et al. (1972), suggested a

natural alternative estimator

ÃYR �

1

m

X
i [ s

yi

pi

if m > 0

0 if m � 0

8<: �2:6�

The conventional assignment of the value 0 to ÃYR in case m � 0 is necessary to make

the estimator well de®ned. Note that ÃYR is the ordinary ratio estimator using p as auxiliary

information. Hence, Result 7.3.1 in SaÈrndal et al. (1992, p. 248) can be used to derive the

following approximate expression for the variance of ÃYR,

j 2
�

1

n

XN

i�1

�1 ÿ npi�
yi

pi

ÿ Y

� �2

pi �2:7�

Formula (2.7) can also be obtained from (4.2.26) in Brewer and Hanif (1983), by

replacing Pr(m � 0) by 0 there. To get con®dence intervals we must further know that
ÃYR is approximately normally distributed.

Proposition 2.1. The Poisson sampling estimator ÃYR is, under general conditions,

approximately normally distributed with mean Y and variance j 2.

This somewhat loosely formulated proposition is justi®ed by a heuristic proof in the

appendix, by a strict asymptotic result, Theorem 3.1, and by simulations in Section 4. A

slight improvement of j 2 is given in Remark 2.1.

If the ``fpc'' (1 ÿ npi) is neglected, a comparison of (2.5) and (2.7) shows that ÃYR

reduces the variance by Y 2=n. The simulation studies in Sunter (1977) and our Section 4

indicate that ÃYR is indeed of much better precision than ÃYHT in situations where pps

sampling is appropriate. SaÈrndal (1996) also advocates the use of ÃYR and the approxima-

tion (2.7), which correspond to his Equations (31) and (32).
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2.2. Sequential Poisson sampling

The disadvantages of the random Poisson sample size were discussed in the introduction.

We now present SPS, our ®xed size alteration of PS. From the random numbers Xi we form

the transformed random numbers

yi � Xi =pi �2:8�

The PS inclusion rule (1.3) is trivially equivalent to: Include unit i in the sample if (and

only if) yi # n. This formulation of PS suggests the alteration to select the n units having

the smallest yi.

De®nition 2.1. A sample is said to be drawn by sequential Poisson sampling (SPS) of

size n if it consists of the n units with the smallest transformed random numbers yi, where

yi is de®ned in (2.8).

SPS was introduced as an outlet sampling procedure in the Swedish Consumer Price

Index in 1989, see Ohlsson (1990). It is easy to show by example that, unfortunately,

SPS is not strict pps, again see Ohlsson (1990). From its close relation to Poisson sampling

it is natural to conjecture that SPS is approximately pps, though. The simulation results in

Section 4 give strong support for this conjecture. This leads us to consider the following

estimator in connection with SPS,

ÃYS �
1

n

X
i [ s

yi

pi

�2:9�

Proposition 2.2. The sequential Poisson sampling estimator ÃYS is, under general condi-

tions, approximately normally distributed with mean Y and variance j 2.

Thus, in particular, Proposition 2.2. states that ÃYS is approximately unbiased and has

the same approximate variance as ÃYR. This proposition is justi®ed heuristically in the

appendix, by an asymptotic result in Theorem 3.2 and by simulations in Section 4.

Remark 2.1. When all the pi are equal, SPS is nothing but simple random sampling

without replacement (srswor). In this case (2.7) reduces to the well-known formula for

the variance of the srswor estimator of Y , except for a factor �N ÿ 1�=N. In order to ``cali-

brate'' j 2 against this known ``standard'' one may multiply with a correction factor

N=�N ÿ 1�,

j 2
�

1

n

N

�N ÿ 1�

XN

i�1

�1 ÿ npi�
yi

pi

ÿ Y

� �2

pi �2:10�

PS, on the other hand, is not equivalent to srswor in the equal probability case. However,

its variance is approximately that of srswor, see SaÈrndal et al. (1992, Equation 3.2.7).

Hence, the N=�N ÿ 1� correction of j 2 may be proper in the PS case, too.

2.3. Variation estimation

For the sake of completeness we shall present variance estimators for PS and SPS, without

going into theoretical details. Brewer and Hanif (1983, p. 83) suggest the following
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``conventional estimator'' of the variance of the PS estimator.

Äv� ÃYR� �
1

n2

X
i [ s

�1 ÿ npi�
yi

pi

ÿ ÃYR

� �2

�Pr�m � 0� ÃY 2
R �2:11�

Brewer and Hanif also state that ``a more stable estimator is obtained by multiplying the

®rst expression on the right hand side by n=m.'' This is possible only if m > 0. We continue

to assume that Pr(m � 0) is negligible and omit the right-most term in (2.11). By arguing

as in Remark 2.1 we rather correct v� ÃYR� by the quantity n=�m ÿ 1��, assuming m > 1

(which is necessary for variance estimation anyhow). This leads us to consider the following

variance estimator for PS (which is left unde®ned for the case m # 1).

v� ÃYR� �
1

n�m ÿ 1�

X
i [ s

�1 ÿ npi�
yi

pi

ÿ ÃYR

� �2

�2:12�

The ``conventional estimator'' in case of SPS would be (2.11) without the right-most

term. Again by a ``calibration to srswor'' argument the suggestion is to multiply this

quantity by n=�n ÿ 1�. Thus, we arrive at the following variance estimator for SPS,

v� ÃYS� �
1

n�n ÿ 1�

X
i [ s

�1 ÿ npi�
yi

pi

ÿ ÃYs

� �2

�2:13�

which in the equal probability case reduces to the conventional, unbiased srswor variance

estimator. The simulation studies give support for the use of the ``calibrated'' estimators

of (2.12) and (2.13).

2.4. Some notes on sampling in practice

When performing SPS in practice we need not norm the auxiliary variable as in (1.1) since

multiplication of pi with a constant leaves the SPS sample unchanged. Hence, an SPS

sample is drawn simply as follows. First pass through the ®le once to generate yi. If the

auxiliary variable is not normed as in (1.1), compute its sum S during this single pass

of the ®le. Next sort the ®le in descending order of yi. The ®rst n units on the sorted

list constitute the sample. By aid of S we check (2.1). The moving of a few units to a

``take-all'' stratum due to violation of (2.1) does not alter the sample, so we do not

have to redraw the sample as with PS. The take-all units must of course be properly

handled in the estimation process.

Because of the sorting, the procedure is neither list-sequential nor draw-sequential in

the sense of SaÈrndal et al. (1992, pp. 25±26). After sorting, SPS may be considered

sequential in both respects, i.e., we draw a new unit by simply taking the next unit on

the sorted list. With the list-sequential procedure PS we would have to pass through the

whole list once more, which is inconvenient when sampling from a large register. This

is the background to the name sequential PS.

Finally, some words on the application of SPS to the CPI. The retail trade section of

Statistic Sweden's business register contains quite a lot of establishments that are out-

of-scope for the CPI and cannot be detected from information in the register. With SPS

it is possible to get a sample with a ®xed number of in-scopes by simply excluding the

out-of-scopes found in the sample and extending the sample with the next unit on the
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list. By the independence of the involved random numbers, it is realized that the resulting

``net'' sample is just an SPS sample from an imaginary list of in-scope units. The

traditional technique to achieve a ®xed net sample, two-phase sampling, would be more

expensive and is not suited for PRN coordination. Through PRN, the SPS samples for

the Swedish CPI are not only coordinated over time but also with srswor

samples for other business surveys. For more information about the CPI application of

SPS we refer to Ohlsson (1990) and DaleÂn and Ohlsson (1995).

3. Asymptotic Results

Asymptotic results for ®nite populations require the introduction of a sequence of

populations fUk; k � 1; 2; 3;¼g, in which n and N tend to in®nity. When referring

to the k th member of this sequence we will add an index k to all quantities introduced

in the previous sections. The ®rst theorem is the asymptotic counterpart to

Proposition 2.1. Let !d N�0; 1� denote convergence in distribution to the standard normal

distribution.

Theorem 3.1. Suppose Conditions (C1) and (C2) below are ful®lled. Then

ÃYRk ÿ Yk

jk

!d N�0; 1� as k ! ¥ �3:1�

The following is the asymptotic counterpart to Proposition 2.2.

Theorem 3.2. Suppose conditions (C1) and (C2) below are ful®lled. Then

ÃYSk ÿ Yk

jk

!d N�0; 1� as k ! ¥ �3:2�

The proofs of these theorems are given in Ohlsson (1995b). From Theorems 3.1 and 3.2

we conclude in particular that ÃYS and ÃYR are both asymptotically unbiased and that they

are asymptotically equally ef®cient.

We now introduce the Conditions (C1) and (C2) previously referred to. Introduce the

population mean ÅYk � Yk=Nk and de®ne the following ``pps population variance''

h2
k �

XNk

i�1

yki

Nk pki

ÿ ÅYk

� �2

pki �3:3�

The conditions are

�C1�

maxi

yki

Nk pki

ÿ ÅYk

���� ���������
nk

p
hk

! 0 as k ! ¥

(C2) There is a universal constant a, 0 < a < 1, such that for all i and k,

nk pki # 1 ÿ a < 1.

Remark 3.1. It is readily seen that (C1) implies nk ! ¥, and hence Nk ! ¥: ·

Remark 3.2. Since 1 �
P

i pki # Nk maxifpkig, (C2) implies nk=Nk # 1 ÿ a < 1. ·
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3.1. Interpretation of the conditions

Despite the fact that Conditions (C1) and (C2) are suf®cient, but not necessary, for (3.1)

and (3.2) we believe that they give an idea of when the approximations of Propositions 2.1

and 2.2 are accurate.

We apply pps sampling when we believe in a strong relationship between the ys and ps.

Condition (C1) indicates that we should avoid ``outliers'' (on a standardized scale) in this

relationship in order for the approximations to be good. Since such outliers would increase

the variance, the statement of Cochran (1977, p. 44) on srswor that ``good sampling

practice tends to make the normal approximation more valid'' applies to PS and SPS, too.

Condition (C2) indicates that it might be a good idea to move units with inclusion prob-

ability very close to 1 to the take-all stratum. This recommendation is also supported by

the simulation results in Section 4.

By Remark 3.1, we have an implicit condition that n should be large. In the PS case, n

must in particular be large enough for Pr(m � 0) to be negligible.

4. Numerical Illustrations

Here we report results from two simulation (Monte Carlo) studies on PS and SPS. The

object is to investigate the accuracy of the approximations in Propositions 2.1 and 2.2,

to compare the precision of SPS to that of PS and to investigate the behaviour of the pro-

posed variance estimators. The simulations were performed with the SAS system for PCs.

The built-in random number generator RANUNI was used (with positive argument).

4.1. The CPI investigation of estimators and inclusion probabilities

Before the introduction of SPS in the Swedish CPI, its properties were investigated in a

simulation study, parts of which were reported in Ohlsson (1990). Here we recapitulate

these results.

Three populations were used in the study, represented by I±III below:

I. The total 1989 population of Swedish department stores, except for some out of

scope units and the units which require inclusion probability 1. The measure of

size, p, was the one actually used in the CPI, viz. number of employees plus one.

The target value, Y , was a price index for a pair of men's socks from December

1987 to December 1988. This index is a weighted mean of price ratios for the

stores, with weights p. Actual prices are of course only known for the CPI sample.

For the other units, a value was imputed using the distribution of the known price

changes. Since y is p times the price ratio, y and p are highly correlated here.

II. To get a very small population every tenth unit in population I was taken out to

form population II.

III. A population with less correlation between y and p was found in the ``take-all'' part

of the stratum ``manufacturing of machinery'' in Statistics Sweden's annual survey

of ®nancial accounts. The size p was again the number of employees plus one,

while y was ``investments.''

Population I was investigated for two different sample sizes, n � 41, the actual size of
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the 1989 CPI sample of department stores, and n � 5, about the smallest sample size in

any CPI stratum. The other populations were examined with just one, somewhat arbitrary,

choice of n each.

Table 1 contains the numerical results. For reference, several quantities that can be com-

puted exactly are included, in particular the standard deviation (SD) of simple random

sampling with replacement (srswr) and of pps sampling with replacement ( ppswr). The

relationship between these two ®gures may be used as an indicator of how well the population

is suited for pps sampling.

In each step of the simulation, an independent set of random numbers was generated

(the Xs in Section 2.1). This set was used to draw a PS sample and an SPS sample. The

positive correlation due to the use of the same set of random numbers for both samples

should, if anything, increase the precision in comparisons between the two. In Table 1,

the mean and standard deviation over the simulations are reported as ``Monte Carlo

mean'' and ``Monte Carlo SD.''

When comparing the output, it should be kept in mind that the number of iterations vary

from set-up to set-up. The ``Monte Carlo'' standard error of the mean of ÃYS is, e.g., only

3:01=
������������
6; 000

p
� 0:039 in set-up 1 but 9:27=

������������
1; 500

p
� 0:239 in set-up 2. In the latter case,

1,500 iterations were enough to illustrate the large difference between ÃYS and ÃYR, while a

larger number of iterations was considered necessary for the other set-ups.

By comparing the SD for ppswr (pps with replacement) to the value of j, we ®nd that

in the realistic set-ups 1 and 4, we obtain around 10% variance reduction by using

without replacement pps sampling. As expected, Table 1 shows that ÃYHT is often of

very poor precision.

Next we examine the simulation results for set-ups 1, 3, and 4. Here, both ÃYR and ÃYS

are nearly unbiased and the bias is always a negligible part of their mean squared error.

The approximation of the standard deviation by j in (2.10) works very well for both ÃYR

and ÃYS. In all three cases, ÃYS has the smallest standard deviation, but the difference to
ÃYR is small.
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Table 1. Mean and standard deviation of the PS and SPS estimators

Set-up 1 2 3 4

Population I I II III
N 260 260 25 477
n 41 5 9 50
No. of iterations 6,000 1,500 7,020 6,000
Pr(m � 0) 3 � 0ÿ21 6 � 10ÿ3 8 � 10ÿ7 6 � 10ÿ30

Y 106.93 106.93 106.46 18.822
Monte Carlo mean of ÃYR 106.93 106.00* 106.71 18.887
Monte Carlo mean of ÃYS 106.92 107.02 106.38 18.838
SD of srswr 12.00 34.36 25.96 6.10
SD of ppswr 3.34 9.55 9.22 3.85
SD of ÃYHT from (2.5) 14.94 48.08 25.46 4.16
j from (2.10) 2.99 9.45 7.01 3.52
Monte Carlo SD of ÃYR 3.03 14.26* 7.36 3.57
Monte Carlo SD of ÃYS 3.01 9.27 7.01 3.54

NOTE: *Estimator set to 0 for empty samples, in accordance with (2.6).



In set-up 2 we have a relatively high value of Pr(m � 0), and consequently some

Poisson samples became empty here. The ®gures for ÃYR are included for the sake of com-

pleteness, though one cannot recommend the use of Poisson sampling for such small n. For

SPS, on the other hand, ÃYS is almost unbiased and the Monte Carlo SD is quite close to j,

even with n as small as 5.

A trivial calculation shows that, if anything, the corrected version of j, (2.10), performs

better than the uncorrected (2.7).

The approximate unbiasedness of ÃYS suggests that the SPS inclusion probabilities

should be close to ful®lling (1.2), i.e., that SPS is approximately pps. This can be investi-

gated directly by recording the relative frequency of inclusion in the simulated samples

for every population unit. The entire results in all four set-ups is too extensive to report

here. In Table 2 we give the desired and observed inclusion probabilities (inclusion

frequencies) for a selection of the 260 units in set-up 1, ordered by size. 95% Monte Carlo

con®dence bounds were computed using the normal approximation to the binomial

distribution.

We see that SPS is very close to strict pps with this set-up. The largest deviation (the

only one being statistically signi®cant at the 5% level) occurs for the largest unit, but is

still very small. The other set-ups give the same picture, by and large. The largest deviation

in any set-up was an observed probability of 96% where we wanted 91% (this difference
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Table 2. Inclusion probabilities for SPS, set-up 1. Units sorted by size

ID Desired Observed Con®dence
probabilities probabilities bounds

1 0.031 0.031 6 0.004
2 0.033 0.032 6 0.004
3 0.037 0.037 6 0.005
4 0.037 0.042 6 0.005
5 0.041 0.043 6 0.005

¼ ¼¼ ¼
101 0.111 0.112 6 0.008
102 0.111 0.110 6 0.008
103 0.112 0.115 6 0.008
104 0.112 0.106 6 0.008
105 0.114 0.111 6 0.008
¼ ¼¼ ¼
201 0.204 0.198 6 0.010
202 0.207 0.206 6 0.010
203 0.207 0.209 6 0.010
204 0.210 0.218 6 0.010
205 0.211 0.204 6 0.010
¼ ¼¼ ¼
256 0.569 0.564 6 0.013
257 0.569 0.573 6 0.013
258 0.576 0.583 6 0.012
259 0.640 0.650 6 0.012
260 0.741 0.754 6 0.011



is highly signi®cant with a Monte Carlo p-value of less than 10ÿ10). The fact that the

largest deviations occur for the very largest units, together with Condition (C2), suggests

that it may be a good idea to move a few units with desired inclusion probability close to 1

to the take-all stratum.

4.2. An investigation of estimators and variance estimators

Our next simulation study was performed in 1994, mainly to investigate the behaviour of

the variance estimators v� ÃYR� and v� ÃYS�, de®ned in (2.12) and (2.13), respectively. The

study also gives further information on the mean and standard deviation of ÃYR and ÃYS.

Here we use price changes from December 1991 to December 1992 for some fresh

vegetables and pieces of furniture, as recorded by the Swedish CPI survey. The size

measure p and target variable y are as in Section 4.1. (As seen in the tables, several prices

actually decreased in 1992.) No imputations were made this time ± our populations are

the actual CPI samples.

The ®rst four populations correspond to one CPI item each. The following, larger,

populations were formed by putting together price quotations for different items two

and two. For example, the population for set-up 5 below is the union of all price quotations

for two vegetable items, treated here as prices of a single item.

In Table 3 we list the same quantities as in Table 1, plus the square root of the Monte

Carlo mean of v� ÃYR� and v� ÃYS�, and the Monte Carlo standard deviation of v� ÃYR� and v� ÃYS�.

The conclusions from Table 1 remain valid. Furthermore, the square roots of the Monte

Carlo means of both variance estimators are close to j and to the Monte Carlo SDs of ÃYR

and ÃYS, respectively. It is not hard to see that the division by (m ÿ 1) in (2.12) and (n ÿ 1)

in (2.13), rather than by m and n, reduces the bias. Finally, v� ÃYR� and v� ÃYS� are approxi-

mately equally stable, as measured by their Monte Carlo SDs. If anything, the latter is

more stable.

5. Conclusions

In our opinion, simplicity is a virtue of a sampling procedure. Both PS and SPS are very

simple to use in practice; with computer packages, they typically require even less

programming than pps with replacement. With PRN, either procedure gives a simple solu-

tion to the problem of updating pps samples while retaining a large number of units, and

to other sample coordination problems. When using pps with replacement, one could

repeatedly use the Kish and Scott (1971) method for updating n � 1 samples. This method

is much more complicated than the PRN approach, though, and cannot be used for con-

trolling overlap with other surveys. Hence, even in cases where the variance reduction

of using without replacement sampling is small, PS and SPS are preferable to with

replacement sampling when we are conducting a repeated survey.

PS has the merit over SPS of being strictly pps. One may doubt the value of this merit,

though, since the estimator based on this fact, the Horvitz-Thompson estimator, is very

inef®cient for PS. Conditionally on the sample size, Poisson is no longer strictly pps.

For the ratio-type estimator that is recommended for use with PS we have to rely on

approximate results for the mean and variance, just as is the case with SPS. We have

shown that the SPS estimator and the PS ratio estimator are asymptotically equally
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Table 3. Mean and standard deviation of PS and SPS estimators and variance estimators. SD� standard deviation

Set-up 1 2 3 4 5 6 7 8

Item type Vegetab. Vegetab. Furniture Furniture Vegetab. Vegetab. Furniture Furniture
N 63 55 48 48 124 116 96 94
n 10 10 10 10 20 20 22 22
No. of iterations 1,500 1,500 2,218 1,500 1,500 1,500 1,500 1,500
Pr(m � 0) 3 � 10ÿ6 1 � 10ÿ6 7 � 10ÿ7 7 � 10ÿ7 3 � 10ÿ6 1 � 10ÿ6 7 � 10ÿ7 7 � 10ÿ7

Y 81.02 97.25 104.78 105.37 89.45 95.79 105.08 99.04
Monte Carlo mean of ÃYR 80.88 97.14 104.86 105.36 89.39 95.86 105.10 99.07
Monte Carlo mean of ÃYS 80.93 97.12 104.86 105.42 89.27 95.86 105.10 99.03
SD of srswr 30.22 33.05 37.39 36.19 22.96 23.71 24.55 22.38
SD of ppswr 12.38 7.03 3.90 3.93 7.23 5.48 2.64 3.00

SD of ÃYHT from (2.5) 23.72 25.06 24.48 25.04 17.40 17.69 15.99 15.27
j from (2.10) 10.74 6.09 3.29 3.25 6.20 4.50 2.12 2.20
Monte Carlo SD of ÃYR 11.20 6.05 3.28 3.28 6.26 4.68 2.12 2.22
Monte Carlo SD of ÃYS 10.91 5.93 3.19 3.18 6.09 4.64 2.11 2.20p

Monte Carlo mean of v� ÃYR� 10.54 5.99 3.19 3.17 6.17 4.48 2.10 2.19p
Monte Carlo mean of v� ÃYS� 10.54 6.02 3.21 3.19 6.17 4.49 2.11 2.20

Monte Carlo SD of v� ÃYR� 113.42 19.02 9.98 10.11 28.50 6.37 2.90 1.47
Monte Carlo SD of v� ÃYS� 107.99 18.44 9.80 9.98 27.96 6.30 2.89 1.48



ef®cient. The simulations also show that there is little to choose between these estimators

on ef®ciency grounds.

Being almost equal in the above respects, the choice between PS and SPS must fall on

SPS because of its ®xed sample size, and (for some applications) because of the possibility

of sampling a ®xed number of in-scope units. The ®xed size allows us to use SPS in cases

where PS is at risk of giving an empty sample, e.g., when n � 5. The properties of SPS

for small samples (n < 5, say) remain to be investigated, though.

Appendix: Heuristics Proofs

Here we give heuristic arguments for the approximation results Propositions 2.1 and 2.2

in a ``®nite'' (single population) situation. The formal proofs of the corresponding asymp-

totic results, Theorems 3.1 and 3.2, are given in Ohlsson (1995b).

We ®rst de®ne an auxiliary stochastic process fZ�t�; t $ 0g.

Z�t� �
1

n

XN

i�1

yi

pi

ÿ Y

� �
1fyi # tg �A:1�

where 1f´g denotes the indicator function. Again, we neglect the possibility m � 0 in the

Poisson case, assuming n to be large. An ordinary Taylor linearization of the ratio ÃYR now

yields

ÃYR ÿ Y �
n ÃYHT ÿ mY

m
< ÃYHT ÿ

m

n
Y � Z�n� �A:2�

The summation in Z�t� will get non-zero contributions from objects with yi # t, i.e., for

units in a Poisson sample of expected size t. Let T be the lowest value of t for which we

get exactly n units in this sample. Then T � y�n�, the nth smallest of the y. From (A.1) and

(2.9) we see that ÃYS ÿ Y � Z�T �. Viewed this way, sequential Poisson sampling is a

Poisson sample for which we have adjusted the expected size to get a sample of exactly

size n. The probability distribution of T will intuitively be centered around n. This

motivates the approximation

ÃYS ÿ Y � Z�T � < Z�n� �A:3�

Giving an asymptotic result corresponding to the approximation in (A.3) is the core of

the stringent proof in Ohlsson (1995b). The proof relies on results in RoseÂn (1997).

Having established the approximations (A.2) and (A.3), the rest is an easy task. It is

readily seen that Z�n� has zero mean and variance j 2 given by (2.7). Furthermore, Z�n�

is a sum of independent random variables and is thus approximately normally distributed,

by the Lindeberg-Liapunov central limit theorem. In Ohlsson (1995b), the Conditions (C1)

and (C2) are shown to be suf®cient for this theorem to be valid.
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