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This article is a contribution to the discussion on the utility of spatial models in the context of
Small Area Estimation (SAE) (see Cressie 1991; Pfeffermann 2002; Saei and Chambers 2003,
2005; Singh et al. 2005; Pratesi and Salvati 2008). The attention is on the Fay–Herriot model
and its Mean Squared Error (MSE) when a common autocorrelation parameter among small
areas is included. Firstly, we discuss the extent to which the spatial effects in data used for
SAE motivate the introduction of an autocorrelation parameter in the Fay–Herriot model.
Secondly, the performance of MSE estimators is discussed through a simulation study where
the joint effect of the area level sampling variance and of the parameter estimation is shown.
The importance of the strength of spatial autocorrelation among small areas is confirmed. The
results are tenable for different sampling variance patterns. A case study with spatial
dependence in the data is presented and estimates at small area level are provided.
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1. Introduction

This article is a contribution to the discussion on the utility of spatial models in the context

of SAE (see Cressie 1991; Pfeffermann 2002; Saei and Chambers 2003, 2005; Singh et al.

2005; Pratesi and Salvati 2008). It is well-known that in many situations the location of the

small areas can be so important as to cast doubt on the assumption of spatial independence

in the Fay–Herriot model (1979). In the literature related to SAE this problem, however, is

not new. In fact, Clayton and Kaldor (1987) suggested the use of spatial models, as against

spatial independence, in disease mapping and Cressie and Chan (1989) applied spatial

models in a pioneering work on socio-economic data. More specifically, in the context of

SAE, the idea of extending the Fay–Herriot model to include spatial correlation was first

proposed by Cressie (1991), although it was not completely developed for SAE. More

recently, Pfeffermann (2002) has shown that the loss in efficiency in SAE can be

substantial when correlation between small areas is ignored, but noted that unless this

correlation is quite strong, Fay–Herriot models with a correlation parameter do not lead to

significant efficiency gains. Other contributions, such as those of Saei and Chambers

(2003, 2005), have emphasized the importance of time and area effects in SAE.
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Very recently the problem of introducing a common autocorrelation parameter among

small areas through the Simultaneously Autoregressive (SAR) process has been taken into

account and extended to the Fay–Herriot model (Salvati 2004; Singh et al. 2005; Petrucci

et al. 2005; Petrucci and Salvati 2006; Pratesi and Salvati 2008).

This article addresses two research questions. Firstly, we analyse the extent to which the

spatial effects in data used for SAE justify the introduction of an autocorrelation parameter in

the Fay–Herriot model. In practice, strong spatial autocorrelations are rarely encountered in

survey data applications although some exceptions in the fields of geology, agriculture,

environmental science, health and epidemiology have been encountered. Our prime intention

here is to compare the performance of the Best Linear Unbiased Predictor (BLUP) with that of

the Spatial Best Linear Unbiased Predictor (SBLUP) by moving from weak to strong spatial

correlation in the target variable. Secondly, we focus our attention on the estimation of the

MSEs of the Empirical Best Linear Unbiased Predictor (EBLUP) and Spatial EBLUP

(SEBLUP) proposed in Singh et al. (2005). This is carried out via a simulation experiment

which also provides evidence on the joint effects on the width of the confidence intervals for

the small area parameter estimates of the following components: the known sampling

variances (wi) of the direct estimators of the small area means, the common variance (s 2
u ) of

the random area effects in the model and the spatial autocorrelation parameter (r).

The article is organized as follows. Section 2 defines the general area level spatial model

and the point estimation problem. Section 3 is devoted to the MSE estimation problem. The

performance of the MSE estimators is discussed in Section 4 through a simulation study; the

properties of various estimators are evaluated using the results in Sections 3 and 4. Section 5

illustrates a survey data application where there are spatial effects in data used for SAE.

Section 6 concludes with our final comments and recommendations for future research.

2. Small Area Estimation Models

There are several alternatives for introducing spatial autocorrelation in SAE and for

producing reliable estimates for the target variables (Petrucci et al. 2005). We will focus

our attention on the introduction of the SAR process in the Fay–Herriot model.

Let q be the m £ 1 vector of the parameters of inferential interest (small area total yi,

small area mean �yi with i ¼ 1: : :m) and assume that the direct estimator q̂ is available and

design unbiased, i.e.,

q̂ ¼ qþ e ð2:1Þ

where e is a vector of independent sampling errors with mean vector 0 and known diagonal

variance matrix R ¼ diagðwiÞ, wi representing the sampling variances of the direct

estimators of the area parameters of interest. Usually wi is unknown and is estimated by a

“generalized variance function” applied not only to the specific area sample, but to the

whole sample as well; for details see Wolter (1985, Chapter 5) and Wang and Fuller

(2003). The result is treated as a good estimate of the sampling variance, which is a very

strong assumption. We do not explore its limits here because in our study the wi patterns

are given, but we are aware that the issue requires further research.

The spatial dependence among small areas is introduced by specifying a linear mixed

model with spatially correlated random area effects for q, i.e.,

q ¼ Xbþ Zv ð2:2Þ
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where X is the m £ p matrix of the specific area auxiliary covariates

xi ¼ ðxi1; xi2; : : : ; xipÞ, b is the p £ 1 vector of regression parameters, Z is an m £ m

matrix of known positive constants and v is an m £ 1 vector of spatially correlated random

area effects given by the following autoregressive process with spatial autoregressive

coefficient r and m £ m spatial interaction matrix W (see Cressie 1993; Anselin 1992):

v ¼ rWvþ u ) v ¼ ðI2 rWÞ21u ð2:3Þ

where u is an m £ 1 vector of random area effects, independent of e, with zero mean and

constant variance s 2
u and I is an m £ m identity matrix.

The W matrix describes the spatial interaction structure of the small areas, usually

defined through the neighbourhood relationship between areas; generally speaking, W

has a value of 1 in row i and column j if areas i and j are neighbours. The

autoregressive coefficient r defines the strength of the spatial relationship among the

random effects associated with neighbouring areas. Generally, for ease of interpretation,

the spatial interaction matrix is defined in row standardized form, in which the row

elements sum to one; in this case r is called a spatial autocorrelation parameter

(Banerjee et al. 2004).

Combining (2.1) and (2.2), the estimator with spatially correlated errors can be

written as:

q̂ ¼ Xbþ ZðI2 rWÞ21uþ e ð2:4Þ

The error terms v have the m £ m Simultaneously Autoregressive (SAR) covariance

matrix:

G ¼ s 2
u I2 rWT
� �

I2 rW
� �� �21

ð2:5Þ

and the covariance matrix of q̂ is given by:

V ¼ Rþ ZGZT

Under Model (2.4), the Spatial Best Linear Unbiased Predictor (SBLUP) estimator of qi

is (using XT to indicate the transpose of matrix X):

~q
S

i s 2
u ; r

� �
¼ xi ~bþ bTi GZT Rþ ZGZT

� �21
q̂2 X ~b

� �
ð2:6Þ

where ~b ¼ ðXTV21XÞ21XTV21q̂ and bTi is a 1 £ m vector (0; 0: : :0; 1: : :0) with value

1 in the i th position. The predictor is obtained from Henderson’s 1975 results for general

linear mixed models involving fixed and random effects. The SBLUP, when r ¼ 0,

reduces to the BLUP, i.e., an independent random specific area effects model.

The SBLUP estimator ~q
S

i s 2
u ; r

� �
in (2.6) depends on the unknown variance component

s 2
u and spatial autocorrelation parameter r. Substituting their asymptotically consistent

estimators ŝ 2
u ; r̂, obtained either by Maximum Likelihood (ML) or Restricted Maximum

Likelihood (REML) methods based on the normality assumption of the random effects, the

following two-stage estimator ~q
S

i ŝ 2
u ; r̂

� �
, called the SEBLUP, is obtained:

~q
S

i ŝ 2
u ; r̂

� �
¼ xib̂þ bTi ĜZT Rþ ZĜZT

� �21
�
q̂2 Xb̂

�
ð2:7Þ
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The ML estimators of s 2
u and r can be obtained iteratively using the “Nelder-Mead”

algorithm (Nelder and Mead 1965) and the “scoring” algorithm (Rao 2003) in sequence.

The use of these procedures sequentially is necessary because the log-likelihood function

has a global maximum as well as some local maximums; for more details see Singh et al.

(2005) and Pratesi and Salvati (2008).

3. The Mean Squared Error Problem

The MSE of the SBLUP depends on the unknown variance component s 2
u and on the

spatial autocorrelation parameter r and can be written as (Singh et al. 2005; Pratesi and

Salvati 2008):

MSE ~q
S

i s 2
u ; r

� �h i
¼ g1i s

2
u ; r

� �
þ g2i s

2
u ; r

� �
ð3:1Þ

where the first term, g1i s
2
u ; r

� �
, is due to the estimation of the random effects and is of

order O(1) and the second term, g2i s
2
u ; r

� �
, is due to the estimation of b and is of order

O(m 21) for large m (Singh et al. 2005). The details of the calculation are reported in

Appendix A.

Under regularity conditions, together with the assumption of a large m and ignoring the

terms of the order O(m 21), the following second-order approximation to the

MSE ~q
S

i ŝ 2
u ; r̂

� �h i
of the SEBLUP is obtained (Singh et al. 2005; Pratesi and Salvati 2008):

MSE ~q
S

i ŝ 2
u ; r̂

� �h i
< g1i s

2
u ; r

� �
þ g2i s

2
u ; r

� �
þ g3i s

2
u ; r

� �
ð3:2Þ

where the variance component s 2
u and the spatial autocorrelation coefficient r, assuming

normality of the random effects, can be estimated by either Maximum Likelihood (ML) or

Restricted Maximum Likelihood (REML) methods, and g3i s
2
u ; r

� �
can be obtained by

following the results of Kackar and Harville (1984), Prasad and Rao (1990), Datta and

Lahiri (2000), Singh et al. (2005) and Pratesi and Salvati (2008); see Appendix A for

details of the computation of g3i s
2
u ; r

� �
.

In practical applications, an approximately unbiased estimator of the MSE of ~q
S

i ŝ 2
u ; r̂

� �
is given by (Singh et al. 2005; Pratesi and Salvati 2008):

mse ~q
S

i ŝ 2
u ; r̂

� �h i
< g1i ŝ

2
u ; r̂

� �
þ g2i ŝ

2
u ; r̂

� �
þ 2g3i ŝ

2
u ; r̂

� �
ð3:3Þ

when ŝ 2
u and r̂ are REML estimators. On the other hand, if the ML procedure is used for

estimating the parameters, the mse ~q
S

i ŝ 2
u ; r̂

� �h i
is given by:

mse ~q
S

i ŝ 2
u ; r̂

� �h i
< g1i ŝ

2
u ; r̂

� �
2 bTML ŝ 2

u ; r̂
� �

7g1i ŝ
2
u ; r̂

� �
þ g2i ŝ

2
u ; r̂

� �
þ 2g3i ŝ

2
u ; r̂

� �
ð3:4Þ

The extra term bTML ŝ 2
u ; r̂

� �
7g1i ŝ

2
u ; r̂

� �
is due to the bias of g1i ŝ

2
u ; r̂

� �
(see Pratesi and

Salvati 2008).

Expressions (3.3) and (3.4) are strictly valid only if V has a linear covariance structure

(Rao 2003); however, from the results of Harville and Jeske (1992) and Zimmerman and
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Cressie (1992), Expressions (3.3) and (3.4) could be taken as approximate unbiased

estimators of the MSE (Pratesi and Salvati 2008).

For large m and neglecting all terms of order O(m 21), Singh et al. (2005) proposed yet

another expression for the estimator of the MSE based on subtracting from Expressions

(3.3) and (3.4) an extra term g5i ŝ
2
u ; r̂

� �
depending on the presence of spatial

autocorrelation which makes the covariance structure of V nonlinear. The component

g5i ŝ
2
u ; r̂

� �
up to order O(m 21) is reported in Appendix A.

As mentioned above, we focus our attention in this article on the performance of

Estimator (3.3) with and without the introduction of the extra term g5i ŝ
2
u ; r̂

� �
suggested in

Singh et al. (2005) in order to provide evidence on the empirical effect of the spatial

autocorrelation. The properties of the estimators are evaluated via the simulation

experiments in Section 4.

4. The Simulation Experiments

The finite-sample performances of the MSE estimators of the SBLUP and SEBLUP have

been investigated through Monte Carlo experiments carried out for the area level estimator

(2.4) with an intercept and one covariate variable: q̂i ¼ 1 þ 2xi þ vi þ ei. The x-values

were generated from a Chi-square distribution with 20 degrees of freedom.

It is reasonable to assume that the spatial estimator performs better when the spatially

correlated random effects model provides a good fit rather than an imprecise one, so we

generated 90,000 data sets using the spatial regression model (3.3) with random area

effects of neighbouring areas correlated according to the SAR dispersion matrix with an

established spatial autoregressive coefficient. The experiment was designed following

Datta et al. (2005). Letting s 2
u ¼ 1, independent random variables v ¼ ½v1; v2; : : : ; vm�

T

from a MVN 0;s 2
u I2 rWT
� �

I2 rW
� �� �21

� �
and e ¼ ½e1; e2; : : : ; em�

T from a

MVNð0; diagðwiÞÞ were generated for specified sampling variances wi. The number of

small areas m is set to 42 and divided into five groups G1;G2; : : : ;G5, with the first four

groups containing eight areas and group G5 containing 10 areas. The wi’s within each

group are held constant. In particular, three different wi -patterns were chosen: (a) 0.7, 0.6,

0.5, 0.4, 0.3; (b) 2.0, 0.6, 0.5, 0.4, 0.2; (c) 4.0, 0.6, 0.5, 0.4, 0.1. Hence, for example, the

wi’s in the group G1 are set to 0.7 for pattern (a), to 2.0 for pattern (b), to 4.0 for pattern (c)

and likewise for the other groups. As can be seen, the variability in the sampling variance

values wi is largest in pattern (c) and least in pattern (a). Intermediate values are found in

pattern (b).

The SAR dispersion matrix was generated with r ¼ ^0:25;^0:5;^0:75 and

neighbourhood matrix structure W defined randomly by assigning neighbourhoods to

each area as follows: for the fixed number of small areas m ¼ 42, the spatial weight wij is

assigned a value of 1 if the random number drawn from a uniform distribution [0,1] is

greater than 0.5 and zero otherwise. The maximum number of neighbours for each area

was set to 5, and the W matrix was standardized by rows so that we can refer to r as an

autocorrelation parameter. The W matrix was kept fixed for the whole simulation

experiments.

For each sample drawn, the mean of each small area was estimated using (i) the SBLUP

estimator (Expression (2.6)), (ii) the SEBLUP estimator (Expression (2.7)), (iii) the BLUP
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estimator and (iv) the EBLUP estimator; the last two estimators, BLUP and EBLUP, may

be easily obtained from (2.6) and (2.7) by setting r ¼ 0. Further references may be found

in Rao (2003, Sections 6.2.1 and 6.2.3).

Let yit denote the simulated mean for small area i in the t th simulation, t ¼ 1; : : : ; T ,

and ŷit be the BLUP, SBLUP, EBLUP, and SEBLUP estimates. The performances of the

estimates ŷit have been summarized by their Average Relative Root MSE (ARRMSE) and

Average Relative Bias (ARB), defined as follows:

ARRMSE ¼
1

m

Xm
i¼1

MSEðŷiÞ
1=2

� �
�yi

£ 100 withMSEðŷiÞ ¼
1

T

XT
t¼1

ŷit 2 yit
� �2

and

�yi ¼
1

T

XT
t¼1

yit

ARB ¼
1

m

Xm
i¼1

1

T

XT
t¼1

ŷit 2 yit
� �

yit

					
					 £ 100

The performance of the EBLUP and SEBLUP estimators ~yit has been evaluated also on

the basis of their Average Empirical Mean Squared Error (AEMSE):

AEMSE ¼
1

m

Xm
i¼1

1

T

XT
t¼1

ŷit 2 yit
� �2

The purpose of ARB and ARRMSE is to compare the performance of estimators, while

the purpose of AEMSE is to provide a benchmark for comparing the performance of

estimators of mean squared errors. The MSEi of SEBLUP in each area is estimated by

Expression (3.3) (mse1i). Its average over the T simulations and m areas is called Amse1.

The estimation is performed also by including the term g5i s
2
u ; r̂

� �
indicated in Equation

(A.1.6). The resulting estimator is called mse2i and its average is Amse2. The MSEi of

EBLUP is estimated by the well-known Expression (6.2.36) in Rao (2003). Its average

over the T simulations and m areas is called the Average estimated mean squared error

(Amse).

The whole simulation experiment was carried out with the use of a series of new

programmes running under the R environment. The main results are summarized in

Tables 1, 2, and 3 and Figure 1.

4.1. Comparison of BLUP vs SBLUP (s 2
u and r known)

Table 1 reports the values of the ARRMSE (%) and ARB (%) of the BLUP and SBLUP

estimators, distinguishing between the three wi -patterns (a), (b) and (c).

The results offer an insight into the average bias and mean squared error of the

estimators for varying values of the spatial correlation in the target variable.

The average bias and mean squared errors of the BLUP and SBLUP estimators, for

varying values of the spatial correlation coefficient, are notably different. Whereas for the

SBLUP estimator positive values of r have only a slightly greater effect on relative bias

and MSE than their negative counterparts, for the BLUP estimator the results are very

Journal of Official Statistics42



Table 1. Comparison BLUP, SBLUP: ARB (%), ARRMSE (%) for m ¼ 42, s2
u ¼ 1, r ¼ ^0:25;^0:5;^0:75

and wi -patterns (a), (b) and (c)

Pattern

(a) (b) (c)

Spatial Correlation ARB ARRMSE ARB ARRMSE ARB ARRMSE

SBLUP
0.75 0.04 1.52 0.04 1.59 0.04 1.59
0.5 0.03 1.51 0.04 1.57 0.04 1.56
0.25 0.03 1.51 0.04 1.56 0.04 1.54
20.25 0.04 1.51 0.04 1.57 0.04 1.54
20.5 0.04 1.52 0.04 1.58 0.04 1.56
20.75 0.04 1.53 0.04 1.60 0.04 1.59
BLUP
0.75 0.25 11.38 0.25 10.46 0.25 10.15
0.5 0.06 2.51 0.06 2.48 0.06 2.51
0.25 0.04 1.58 0.04 1.64 0.04 1.64
20.25 0.04 1.55 0.04 1.61 0.04 1.60
20.5 0.04 1.80 0.04 1.86 0.05 1.90
20.75 0.06 2.74 0.05 2.65 0.06 2.84

Table 2. Comparison EBLUP, SEBLUP: Average of the empirical Mean Squared Error (AEMSE), Average of

the estimated Mean Squared Error (Amse, Amse1, Amse2) for m ¼ 42, s2
u ¼ 1, r ¼ ^0:25;^0:5;^0:75

SEBLUP EBLUP

Spatial Correlation AEMSE Amse1 Amse2 AEMSE Amse

wi -pattern (a)
0.75 0.346 0.346 0.344 0.388 0.401
0.5 0.346 0.342 0.337 0.357 0.358
0.25 0.348 0.344 0.336 0.343 0.338
20.25 0.351 0.347 0.337 0.345 0.337
20.5 0.354 0.348 0.339 0.356 0.349
20.75 0.357 0.351 0.344 0.372 0.367
wi-pattern (b)
0.75 0.402 0.412 0.408 0.475 0.485
0.5 0.395 0.399 0.389 0.409 0.411
0.25 0.392 0.394 0.381 0.383 0.382
20.25 0.393 0.393 0.377 0.384 0.380
20.5 0.400 0.397 0.384 0.401 0.398
20.75 0.409 0.407 0.397 0.429 0.427
wi-pattern (c)
0.75 0.441 0.464 0.455 0.533 0.538
0.5 0.417 0.434 0.419 0.429 0.431
0.25 0.404 0.415 0.397 0.393 0.394
20.25 0.403 0.404 0.386 0.392 0.393
20.5 0.413 0.413 0.396 0.414 0.416
20.75 0.431 0.432 0.418 0.453 0.455
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asymmetric. For example, the average bias of the SBLUP estimator for pattern (a) is 0.04

when r ¼ ^0:75, but the corresponding values for the BLUP estimator are 0.06

when r ¼ 20:75 and 0.25 when r ¼ 0:75. Similar results are obtained for the wi -patterns

(b) and (c).

Table 3. Comparison EBLUP, SEBLUP:ARB (%), ARRMSE (%) for m ¼ 42, s2
u ¼ 1, r ¼ ^0:25;^0:5;^0:75

and wi -patterns (a), (b) and (c)

Pattern

(a) (b) (c)

Spatial Correlation ARB ARRMSE ARB ARRMSE ARB ARRMSE

SEBLUP
0.75 0.06 1.54 0.07 1.62 0.08 1.63
0.5 0.06 1.54 0.07 1.61 0.07 1.60
0.25 0.06 1.54 0.06 1.60 0.08 1.58
20.25 0.06 1.55 0.06 1.61 0.08 1.57
20.5 0.06 1.55 0.06 1.62 0.08 1.60
20.75 0.06 1.56 0.06 1.64 0.08 1.63
EBLUP
0.75 0.06 1.63 0.06 1.74 0.07 1.76
0.5 0.06 1.56 0.06 1.63 0.06 1.62
0.25 0.06 1.54 0.06 1.60 0.06 1.57
20.25 0.06 1.55 0.06 1.60 0.06 1.58
20.5 0.06 1.56 0.06 1.63 0.06 1.61
20.75 0.06 1.59 0.07 1.67 0.07 1.66

Fig. 1. Ratio between the Empirical MSEi (EMSEi) of SEBLUP and EBLUP for m ¼ 42, s2
u ¼ 1,

r ¼ ^0:25;^0:75 and wi -pattern (a) and (c)
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What is interesting to note is that there seems to be very little variation between the

three wi -patterns. An important and reassuring overall result that emerges from Table 1 is

that for the same value of r the relative bias and MSEs are larger for the BLUP estimator,

with the differences between the two estimators increasing rather notably together with

increases in the positive values of r.

4.2. Comparison of EBLUP vs SEBLUP (s 2
u and r not known)

Figure 1 contains our main results on the behaviour of the empirical MSEi of the EBLUP

and the SEBLUP in each of the m ¼ 42 areas. Table 2 compares the performance of the

estimators on the basis of the Average Empirical MSE. In Table 3 the estimators are

compared in terms of ARB and ARRMSE.

We begin by focussing our attention on the ratio of the empirical MSE of the SEBLUP

and EBLUP estimators (Figure 1). The objective is to see whether – and if so when – the

two estimators achieve similar MSE values. Our expectation is that the two estimates

should be different in the case of relevant spatial correlation and achieve common levels

when spatial correlation is low. The results obtained under wi -pattern (c) (dashed line) and

wi -pattern (a) (solid line) are shown in Figure 1 in order to evidence any dependency on

the sampling variability wi in the small areas.

We observe that the ratio is always lower than 1 in the presence of a high positive spatial

correlation (r ¼ 0:75), suggesting that the SEBLUP is always more accurate than the

EBLUP in this case. This is most probably due to the ability of the spatial Fay–Herriot

model to capture the presence of spatial effects in data used in the SAE. Given a high r, we

note that the lowest values of the ratio correspond to areas included in the group G1 where

the sampling variability wi is highest. The dashed and solid lines follow the same trajectory

when the sampling variances in the areas are the same, i.e., areas 9 to 32, which fall in

Groups 2, 3, and 4. On the other hand, when the spatial correlation is weak (r ¼ 0:25) the

ratio, as expected, is very close to 1 for all the 42 areas.

Table 2 shows the average of the empirical MSEi (AEMSE) and the Amse1, Amse2, Amse

estimators for m ¼ 42, s 2
u ¼ 1, r ¼ ^0:25;^0:5;^0:75 and all three wi -patterns.

Two results stand out in Table 2. The first refers to all the MSE estimates whose values

increase along with the sampling variability in the area groups and independently of the

values of r; in fact, the MSE estimates are at their lowest levels for wi -pattern (a), where

the sampling variability in the area groups is at its lowest, and at their highest for wi -

pattern (c), where the sampling variability in the area groups is at its highest.

The second result of interest concerns the behaviour of the estimators of the target. As

expected, the AEMSE and the AMSE of the EBLUP are noticeably larger than the AEMSE

of the SEBLUP when spatial correlation between areas is high, but these indexes are very

similar in value when r is not relevant (r ¼ ^0:25).

With regard to the average MSEi estimators of the SEBLUP, we note that the Amse2 is

almost always inferior in value to that of the AEMSE; the only exceptions to this result

occur in wi -patterns (b) and (c) and when r ¼ 0:75.

Both the Amse1 and Amse2 estimators are obtained from approximations (Expressions

(3.3) and (A.1.6)), which behave well for very large m and might not hold for the m-value

in our simulations; remember that here m ¼ 42. From the results reported in Table 2,
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we note an appreciable difference between the values of Amse2 and Amse1. In fact, mse2i is

a subtraction, from Expression (3.3), of the term g5i ŝ
2
u ; r̂

� �
which in our experiments has

always been positive, thereby resulting in a final estimate of the MSE very often inferior,

rather than being similar, to that of the AEMSE.

In Table 3 the estimators are compared in terms of ARB and ARRMSE. The average bias

and mean squared errors of the EBLUP and SEBLUP estimators, for varying values of the

spatial correlation coefficient, are not notably different. It seems that the estimation of the

variance component s 2
u and/or the spatial correlation r by REML procedure has a

confounding effect on the performance of the estimators. However, the positive and

negative values of spatial correlation have an effect on relative bias and MSE, reducing

them especially when r ¼ 20:75 or r ¼ 0:75. As in Table 1, the variation between the

three wi -patterns is very small. For the same value of r the relative bias and MSEs are still

larger for the EBLUP estimator, with the differences between the two estimators

increasing together with increases in the positive values of r.

5. A Case Study

The data are from the Farm Structure Survey (FSS – ISTAT 2003). The survey is carried

out once every two years. The sample is selected by means of a stratified one-stage design

with self-representation of larger farms (agricultural holdings). The sample size is 55,030

farms for Italy and 2,504 for Tuscany. The survey is carried out in order to produce

accurate estimates of agricultural production at national and regional levels (Ballin and

Salvi 2004). In this case study, the target parameter is the farm production of olives in

quintals at a subregional level in Tuscany.

Tuscany is divided into 53 Agricultural Zones (AZs). They are defined on a

geographical basis and are very useful small areas in economic studies on sectors of

economic activity. They are determined following the administrative boundaries of the

287 Municipalities of Tuscany. All the AZs are represented in the regional FSS sample.

The average sample size per AZ results in �n ¼ 45:2 ðs:d: 37:3Þ. The area level sampling

variances, ŵi, have been obtained by estimating the sampling variances of the small area

direct estimators (Ballin and Salvi 2004). The values of estimated sampling variances

range from 0.48 to 3,100.

5.1. Exploratory Analysis

The exploratory analysis firstly tested the presence of the spatial dependence in the data.

Essential to this are the definitions of the spatial location of the AZs and the spatial

interaction matrix (W). The centroid of each AZ is considered to be the spatial reference

for all the units (farms for AZs) residing in the same small area and it is defined to be the

location of the small area. The Atlas of Coverage of the Tuscany Region maintained by the

Geographical Information System of the Regione Toscana provided all the information on

coordinates, extensions and positions of the small areas of interest (UTM system). The

Population Census and Agricultural Census databases provided all the auxiliary

information related to the average farm production of olives (quintals per farm) and their

covariates at small area level.
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The spatial interaction matrix (W) for each location specifies which other locations in

the system affect the value of the farm production of olives at that location. The elements

of W are nonstochastic and exogenous to the SAE model. In our definition the elements of

W take nonzero values (they are equal to 1) only for those pairs of AZs, which are

contiguous to each other (first-order contiguity).

Spatial autocorrelation in the target variables and in the auxiliary variables has been

checked by the two best-known test statistics for spatial autocorrelation: Moran’s I and

Geary’s C (Moran 1950; Cliff and Ord 1981). The best explanatory variable for the target

variable is the agricultural surface utilized for the production of olives (measured in

hectares).

The results in Table 4 show spatial dependence in the covariate and in the target

variable. For the covariate, the Moran’s I statistics are significant at the 1% level,

indicating that similar values are more spatially clustered than what might be caused

purely by chance. This is consistent with the estimated values for Geary’s C. Spatial

dependence in the target variable is weaker, but still statistically significant.

5.2. Small Area Estimation Results

The per farm production of olives was modelled by the Spatial Fay–Herriot model and by

the more traditional Fay–Herriot model. For the spatial model the value of the estimated

spatial autoregressive coefficient r̂ was 0.686 (s:e: ¼ 0:319) and the value of the estimated

variance component ŝ 2
u was 0.792 (s:e: ¼ 0:604) when we used the REML procedure.

Table 5 summarizes the results. Columns (a) and (b) report the average and the median of

the small area estimates. The accuracy of the estimates is measured by the coefficients of

variation. They are computed as follows:

CV1 ¼
i

X ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mse1i=m

p0
@

1
A ~q

21
£ 100;CV2 ¼

i

X ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mse2i=m

p0
@

1
A ~q

21
£ 100

where ~q indicates the mean or the median of the small area estimates.

The mean of the point estimates suggests a production of olives of about six quintals per

farm with a slightly lower median value obtained in both the SEBLUP and EBLUP

procedures. This is not a surprise as the distribution of the target variable in the population

is skewed and concentrated on small production units. The average accuracy of the

estimates is not appreciable: the CV is about 30% of the estimates. This can be mainly due

to the high dispersion of the sample size in the areas and to the skewness of the distribution

Table 4. Spatial dependence in the covariates and in the target variables (Standard Errors in parentheses)

Covariate Moran’s I Geary’s C

Surface area for production
of olives (ha)

0.528 (0.002) 0.439 (0.002)

Target variable per farm average
production of olives (q)

0.263 (0.040) 0.634 (0.008)
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of the target variable. EBLUP on average is slightly more variable, even though its

performance is in line with that of SEBLUP.

The performances of EBLUP and SEBLUP are similar even though the spatial

relationship appears to be of medium strength and significant. These results seem to be

consistent with those of Table 3. Indeed, the low and nonsignificant value of the estimated

variance component and the wide range of sampling variances could have produced the

not relevant differences between the EBLUP and SEBLUP estimates and their accuracy.

5.3. Model-based Simulation on Real Data

The differences in the behaviour of the mse1i and mse2i estimators have been explored by a

simulation experiment based on the case study data. Given the estimated sampling

variances ŵi, the spatial interaction matrix (W) and the estimated b̂ and ŝ 2
u , the sampling

distribution of SEBLUP has been simulated for different spatial correlation values

r ¼ ^0:25;^0:5;^0:75 under the assumption of normality of u and e. Also here, as in

Section 4, empirical mean squared error is considered as the “target” MSEi.

For each sample drawn the MSEi has been estimated also by Equation (3.2), given ŝ 2
u

and r. The mean of t ¼ 1; : : : ;T , simulations is called second-order (so) MSEi:

soMSEi ¼
1

T

XT
t¼1

MSEt
~q
S

i ŝ 2
u ; r̂

� �h i

Our expectation is that the behaviour of the empirical MSEi and the soMSEi be the same

under the different simulation settings.

The ratio between each estimator and the empirical MSEi is computed for each AZ and

summarized in Table 6, where the averaging is over the 53 AZs. The values for the 53 AZs

are reported only for r ¼ ^0:75 in Figures 2 and 3.

The differences in the performances of the mse1i and mse2i estimators observed in the

simulations of Section 4 are confirmed here, i.e., when moving from low to relevant spatial

correlation in the data, mse1i overestimates the true MSEi and produces conservative

confidence intervals, whereas mse2i shows a slight underestimation for low and medium

values of jrj. The summary of Table 6 masks the variability of the results at area level.

This can instead be seen in Figures 2 and 3, where we note that the behaviour of the

estimators when spatial correlation is positive (Figure 2, r ¼ 0:75) is replicated in the

presence of negative spatial correlation (Figure 3, r ¼ 20:75).

Table 5. Case study: Spatial Fay–Herriot and

traditional Fay–Herriot estimates

Estimate ~q (quintals) Q2(quintals)

SEBLUP 6.04 5.56
CV1% (33.22) (20.34)
CV2% (32.27) (19.02)

EBLUP 6.13 5.39
CV% (34.22) (19.69)
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Regarding the properties of the second-order approximation of the true parameter, the

results are in line with our expectations. We note that the approximation follows the

empirical MSEi and this is true for all the wi-patterns. The ratio suggests overestimation of

MSEi for positive r-values and underestimation of MSEi for negative r-values. This

“wave-like” behaviour is probably due to the heuristic nature of the solution proposed for

the g3i s
2
u ; r

� �
term.

6. Final Remarks

In this article we have discussed to which extent the spatial effects in data used

for SAE compromise the performance of the BLUP obtained under the area level

Fig. 2. Ratio of soMSEi, mse1i and mse2 i on Empirical MSEi (EMSEi) of SEBLUP for m ¼ 53, ŝ2
u, r ¼ 0:75

and ŵi

Table 6. Simulation study on real data: the average of

the ratio of each MSEi estimator (soMSEi, mse1i, mse2i ) on

the empirical Mean Squared Error of SEBLUP estimator

for m ¼ 53, ŝ2
u, r ¼ ^0:25;^0:5;^0:75

Average Ratio

Spatial Correlation soMSE mse1 mse2

0.75 1.041 1.131 1.013
0.5 1.055 1.169 0.982
0.25 1.057 1.197 0.977
20.25 1.057 1.187 0.961
20.5 1.046 1.178 0.983
20.75 1.016 1.155 1.014
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Fay–Herriot model. The performance of the BLUP was compared with that of the SBLUP

via a simulation study in which the population was generated according to a spatial

Fay–Herriot model and a wide range of values, ranging from 20.75 to 0.75, for the spatial

correlation were used. In our definition spatial interaction is represented by a spatial

interaction matrix W whose elements take on nonzero values only for those pairs of

small areas, which are contiguous to each other (first-order contiguity). This scheme is

common to many real-life situations in applications in the fields of geology, agriculture,

and environmental science as well as in certain areas of health studies and epidemiology.

Our main finding is that the SBLUP outperforms the BLUP in terms of efficiency and

relative bias in cases of both positive and negative spatial correlation, and this result does

not depend on the entity of the sampling variances in different area groups. In other words,

the SBLUP is appropriate when spatial dependency is present in the data used for SAE.

Obviously, in real-life situations the parameters of a spatial Fay–Herriot model are not

known and must be estimated from survey data. In such a case, attention is devoted to

Spatial Empirical BLUP (SEBLUP) and its MSE. We basically considered the

performance of mse1i and mse2i estimators from Equations (3.3), (3.4) and (A.1.6) of

Singh et al. (2005) and referred to the second-order approximation to the MSE due to

Prasad and Rao (1990).

To summarize, our main findings are:

. in terms of the empirical MSEi, the SEBLUP is more efficient than the EBLUP when

spatial correlation is high ( rj j . 0:5);

. the second-order approximation of the MSEi due to Prasad and Rao (1990) seems to

behave well in the estimation of the empirical MSEi, i.e., for both the EBLUP and the

SEBLUP. This is also obtained when the sampling variability is large;

Fig. 3. Ratio of soMSEi, mse1i and mse2i on Empirical MSEi (EMSEi) of SEBLUP for m ¼ 53, ŝ2
u, r ¼ 20:75

and ŵi
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. optimistic or conservative confidence intervals are respectively obtained by choosing

the estimators mse2i or mse1i. These confidence intervals are influenced by the

strength of the spatial correlation and by the values of the sampling variances.

Finally, we should remember that the MSEi estimators used in this article are analytical

approximations which usually rely on strong model assumptions and need large numbers

of small areas to give good approximations to the true MSEi values. Resampling

techniques are attractive tools that can provide an alternative to the analytical solution

(Molina et al. 2008).

Appendix A

The MSE ~q
S

i s 2
u ; r

� �h i
, depending on two parameters s 2

u ; r
� �

, can be expressed as:

MSE ~q
S

i s 2
u ; r

� �h i
¼ g1i s

2
u ; r

� �
þ g2i s

2
u ; r

� �
ðA:1:1Þ

with

g1i s
2
u ; r

� �
¼ bTi G2GZTV21ZG

� �
bi ðA:1:2Þ

and

g2i s
2
u ; r

� �
¼ xi 2 bTi GZTV21X

� �
XTV21X
� �21

xi 2 bTi GZTV21X
� �T

ðA:1:3Þ

For the Spatial EBLUP, given the normality of random effects, the MSE ~q
S

i ðŝ
2
u ; r̂Þ

h i
is:

MSE ~q
S

i ŝ 2
u ; r̂

� �h i
< g1i s

2
u ; r

� �
þ g2i s

2
u ; r

� �
þ g3i s

2
u ; r

� �
ðA:1:4Þ

Following the results of Kackar and Harville (1984), Prasad and Rao (1990),

and Datta and Lahiri (2000) and considering C ¼ I2 rWT
� �

I2 rW
� �� �

and

A ¼ s 2
u 2C21 2rWTW2W2WT

� �
C21

� �
, the g3i s

2
u ; r

� �
expression is:

g3i s
2
u ; r

� �
¼ tr

bTi C21ZTV21 þ s 2
uC

21Z1 2V21ZC21ZTV21
� �� �

bTi AZTV21 þ s 2
uC

21ZT 2V21ZAZTV21
� �� �

2
4

3
5V

bTi C21ZTV21 þ s 2
uC

21ZT 2V21ZC21ZTV21
� �� �

bTi AZTV21 þ s 2
uC

21ZT 2V21ZAZTV21
� �� �

2
4

3
5 �V s 2

u ; r
� �

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ðA:1:5Þ

where �V s 2
u ; r

� �
is the asymptotic covariance matrix of the estimators ŝ 2

u and r̂

(Singh et al. 2005; Pratesi and Salvati 2008).

For practical applications an estimator of MSE ~q
S

i ŝ 2
u ; r̂

� �h i
is shown in Expression

(3.3), where ŝ 2
u ; r̂

� �
are REML estimators, and in Expression (3.4), if ŝ 2

u ; r̂
� �

are ML

estimators. Singh et al. (2005) derived the estimator of the MSE for large m neglecting all

terms of order O(m 21). Their estimator differs from (3.3) and (3.4) for the subtraction of a
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term g5i ŝ
2
u ; r̂

� �
. This component is in matrix form:

g5 ŝ 2
u ; r̂

� �
¼

1

2 m
tr I2^ RV21

� �� � ›2V

› s 2
u ; r

� �
› s 2

u ; r
� �T I21 s 2

u ; r
� �

^ V21R
� �� �( )

ðA:1:6Þ

where I2 is a 2 £ 2 identity matrix, ›2V=› s 2
u ; r

� �
› s 2

u ; r
� �T

is a partitioned matrix of

order 2m £ 2m, I s 2
u ; r

� �
is the information matrix and ^ represents Kronecker product.
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