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Some Difficulties Involving Nonparametric
Estimation of a Density Function'

Yadolah Dodge?

Abstract: The object of this study is do demon-
strate some of the difficulties involving the
nonparametric estimation of a density function.
Via an extensive simulation study it is shown
that a) the optimal asymptotic value of the
scale factor h in Parzen’s method of estimation
is in many cases significantly far from the
optimal simulated ones under five different
distributions, b) the optimal asymptotic value
of the scale factor holds for the normal distri-
bution, c) the value of the scale factor changes

1. Introduction and Summary

There are problems in estimating an f(x) when
one has a sequence of independent identically
distributed random variables X, X,,..., X,
with an unknown common probability density
function f(x ). Parzen (1962) gave an effective
method in which one selects a kernel function
K (x) = 0 such that:

fK(x)dx=1.

After selecting a K (x ), one can estimate the
density function by:
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substantially at different points of a distri-
bution, d) by increasing the sample size the
value of the scale factor decreases slowly,
e) there is no difference in using L1 or L2
norm in determining the optimal value of the
scale factor.
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}(x)=1/n§1/h1<[(x-xj)/h]. (1.1)

However, choosing the scale factor £ for a gi-
ven kernel is not at all easy. There are many
asymptotic results on how 4 should be selected
in order to obtain the best estimate of the den-
sity. As suggested by Parzen, 4 must be a func-
tion of n so that as n tends to infinity / tends to
0 and nk — o . But it is obvious that the opti-
mal A depends on f(x).

The purpose of this paper is to study the
goodness of the scale factor k& in practical
situations and, in particular, to find out:

a) how the optimal asymptotic value of A
varies as a function of x in different densi-
ties in comparison with practical situation,

b) on the basis of L1 and L2 norms, to find -
the optimal value of & for which the ex-
pected distance between f and f is mini-
mized, and
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c) the effect of sample size on the optimal
asymptotic value of & in contrast with
simulated ones ?

To answer these questions, an extensive
simulation study was carried out. Using five
distributions, namely : normal, gamma, two
mixed normal and Cauchy. For each distri-
bution at, say, point x; the values of L1 and L2
norms were calculated for various values of
and finally the results were plotted as (4, L1)
and (h, L2). For each x;, the experiment was
repeated 200 times and we obtained the mean
value of 4 at the point where minimum values
of L1 and L2 occurred. The effect of sample
size on the asymptotic and simulated # were
carried out only on the normal distribution.
For other distributions, a sample size of 100
was selected. A number of points x, was
chosen according to each distribution.

It is shown that the optimal asymptotic
value of & in most cases is significantly far from
the simulated ones, and this value changes
dramatically at different points of each
distribution. Moreover, both L1 and L2
norms show exactly the same h at their
minimums. We show this last result only for
the normal distribution.

2. Asymptotic Resuits

The estimation of a probability density
function dates back to Karl Pearson (1902 a,
b) who attempted to estimate the probability
density function by computing the sample
moments.

For the historical developments and a bibli-
ography on the topic see Wegman (1972),
Tapia and Thompson (1978), Wertz and
Schneider (1979), and Bean and Tsokos
(1980). Rosenblatt’s (1956) initial paper
seems to be a pioneering paper to extend the
concept of histogram as a method for density
estimation into modern nonparametric den-
sity estimation.
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A nonparametric density estimation is a
procedure which selects a function f, within
the set of real valued functions to estimate a
density function without imposing any re-
strictons regarding a parametrized subset.

Rosenblatt (1956) proposed an estimator
f (x) of the form:

fo(0) = (F, (x+h) - F, (x-h) ) I2h
where

F, (x) = (number of observations <x)/n.

Parzen (1962) considered the general
setting of Rosenblatt’s estimate. He intro-
duced a kernel estimate as given in (1.1)

assuming:

[ 1K@u)ldu<o,
—00

sup IK(u)l < oo,
—oY<<®
lim wK@)l=0,
lul—oo

and o
Kw)=0, f K(u)du=1.

Thus Rosenblatt’s estimate corresponds to
K (x) = 1/2h for IxI<h and 0 elsewhere. Given
f and using Taylor expansions Parzen found &

which minimizes the asymptotic mean square
error at point x as :

k= a(K) (F() /" () )5

Choosing
K(y)=15/16 (1-y»*, Iyl =1
we have o (K) = 2.0362 and

h = 2.0362 (f(x) /f" (X)) n 55 (1.2)
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In this paper we attempt to compare the
exact optimal value of A with the optimal
asymptotic one. It is well known (see for
instance Anderson (1969)) that the shape of
the kernel K is of secondary importance as far
as estimation is concerned.

3. The Monte Carlo Study

Five different parameter families are employed
in the simulation study to yield the distri-
butions : normal, gamma, Cauchy and two
mixed normal. Of these distributions, three
are symmetric and one asymmetric. The
Cauchy distribution is a long tailed distri-
bution which produces outliers and the
gamma distribution, on the other hand, is an
asymmetric distribution. The two mixed
normal distributions are bimodal, one is with
equal weight (symmetric) and the other with
unequal weight (asymmetric).

Random samples were generated from each
distribution by applying the probability
integral transformation

X, =F'(U;)

to independent uniform (0,1) variates U,. The
simulated random samples were generated on
VAX/VMS version 2.4 Neuchétel University
in Switzerland.

The sample size was fixed at 100 obser-
vations for each distribution at each con-
sidered point x, except for the normal
distribution in which we studied the effect of
the sample size on the scale factor . Each
experiment was repeated 200 times indepen-
dently at each point x. At each point we esti-
mated fby ffrom formula (1.1) and for a given
point we incremented the value of simulated /4
(denoted by k) from 0.05 to an appropriate
value so that the minimum of L 1 and L 2 oc-
curred in that range. The optimal asymptotic
value of h (denoted by h,) is obtained by (1.2)
(see Tapia and Thompson p. 59 formula 138).
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The measures of error were Mean Square
Error (MSE) and Mean Absolute Error
(MAE) known as pointwise L 2 and L 1 norms
respectively. In each experiment the value of f
is calculated, then the deviations are averaged
over the 200 replications, i.e.,

200 -
L1=1/2002 If-fI
and
200 a
L2=1/200 §1 (F~)*.

To measure the effect of the sample size on
the optimal A, we generated random samples
of the sizes 10, 20, 50, 100, 200, 400, 600, 800,
1 0600, and 2 000 at point x = 0 (mean) of the
normal distribution with variance 1, repeating
the experiment 200 times. For each ex-
periment we recorded the values of A, and 4,
along with the values of L1 and L2 on a given
point x.

We shall begin the discussion on our
findings with the normal distribution.

3.1. Normal Distribution With Mean 0 and
Variance 1

A total of 14 points were chosen for the
normal distribution. Table 3.1 gives the values
of x, the minimum values of L1 and L2 and the
corresponding values of 4, and h,. As can be
seen from this table, except for the inflexion
point (x=1) there is no significant difference
between the A, and h, at all other points.
Notice that because the normal distribution is
symmetric about 0, we only took points on the
right side of the mean. As we move from the
point 0 to 3.05 (over three standard
deviations) the minimum values of L1 and L2
decrease. The average values of 4, and #, are
1.38 respectively. It seems that 1 is a reason-
able value to be chosen for & given a normal
distribution and a sample size of 100.
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Table 3.1. Minimum values of L1 and L2, asymptotic and simulated values of h at different
points for normal (0,1) distribution

Point x L1 L2 simulated /2 asymptotic h
0.00 0.03567 0.00182 0.95 0.97
0.05 0.03425 0.00184 0.95 0.98
0.65 0.02708 0.00113 1.25 1.27
0.85 0.01980 0.00063 1.50 1.75
0.95 0.01589 0.00041 1.75 2.71
1.00 0.01567 0.00038 1.90 o
1.05 0.01212 0.00023 2.15 2.71
1.15 . 0.00889 0.00013 2.80 1.75
1.75 0.01834 0.00057 0.80 0.99
1.95 0.01740 0.00050 1.05 0.94
2.00 0.01663 0.00047 0.95 0.93
2.15 0.01500 0.00036 0.90 0.92
2.45 0.01106 0.00020 1.10 0.93
3.05 0.00481 0.00003 0.60 1.06

Total 18.65 17.91
Mean 1.33 1.38

Table 3.2. Minimum values of L1 and L2, asymptotic and simulated values h at the mean point
for normal (0,1) distribution with different sample sizes

Sample size L1 L2 g h,
10 0.06920 0.00717 1.75 1.54
30 0.05172 0.00382 1.30 1.24
50 0.04542 0.00296 1.30 1.12

100 0.03567 0.00182 0.95 0.97
200 0.02685 0.00118 0.85 0.85
400 0.02128 0.00073 0.80 0.74
600 0.01977 0.00060 0.70 0.68
800 0.01780 0.00047 0.70 0.64
1000 0.01639 0.00040 0.65 0.61
2000 0.01171 0.00021 0.50 0.54

The values of L1, L2 and simulated h were obtained averaging over 200 replications.
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To see the effect of the sample size on £, in-
dependent random samples of sizes 10, 30, 50,
100, 200, 400, 600, 800, 1000 and 2 000 were
generated from the normal distribution. As
before, each experiment was repeated 200
times. Table 3.2 gives the sample sizes, values
of L1 and L2, and k, and A, at point x = 0.

It can be seen that even when the sample
size is 10, there is no significant difference
between &, and k. The values of 4, range from
1.75 for sample size 10 to 0.50 for the sample
sizes which confirms the slow rate of decrease
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of 4 in (1.2). Another interesting result is that
the minimum values of L1 and L2 norms are
attained for the same value of 4 in the
simulation study. Figure 3.1 shows the range
of h; at point x = 0 for the sample size of 100.
Also note that the values of L1 and L2 agree
for aimost every value of /. (The dotted line is
the square root of L2 and the solid line is the
value of L1). We plotted this graph to demon-
strate how the optimal k; is attained at a given
point.

Fig. 3.1. Variation of L, and L}'? expected errors at the mode of the standard normal distribu-

tion as a function of h.
Sample size: 100.
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3.2.  Gamma distribution

For the gamma distribution we considered :
f)=xe*

In case 1 a total of 18 points were chosen on
the x axis. In this case, only for the first five
points, namely x = 0.05, 0.65, 0.95, 1.0, and
1.05 the optimal asymptotic and the simulated
h show similarities. As x increases above the
mean, kg also increases so that at point x = 4.0
the value of A, reaches 11.70.

The optimal asymptotic value of 4 as can be
seen from Table 3.3. first increases up to the
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point x = 2.0 and then starts to decrease, so
that at point 4.0 this value falls to 1.80. Note
that the gamma distribution is asymmetric and

' its tail produces some outliers. For this reason,

we have studied the variation of 4 on a wide
range of x’s. In this case the great variability of
h should be a warning in using the fixed h
when we have a long tailed distribution (h,
changes from 0.20 to 11.70 as x changes from
0.05 to 4.0). The mean value of A, is 2.63 and
for h, is 1.94, but such values may not be of
practical use due to great variations within the
range of x for both h; and ,.

Table 3.3. Minimum values of L2, asymptotic and simulated values of h at different points for

gamma (2,1) distribution

Point x L2 simulated asymptotic h
0.05 0.00148 0.20 0.34
0.65 0.00252 0.70 0.75
0.95 0.00214 0.90 0.95
1.00 0.00172 0.85 0.99
1.05 0.00193 1.05 1.03
1.15 0.00173 0.90 1.12
1.45 0.00103 1.20 1.48
1.65 0.00071 1.45 1.90
1.75 0.00058 1.65 2.24
1.95 0.00039 2.00 4.54
2.00 0.00036 2.05 ©
2.05 0.00031 2.35 4.67
2.15 0.00017 2.35 3.10
2.35 0.00012 2.55 2.34
2.45 0.00009 2.80 2.18
3.05 0.00001 5.25 1.83
3.45 0.00000 7.35 1.78
4.00 0.00000 11.70 1.80

Total 47.3 33.04
Mean 2.63 1.94
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3.3.  Cauchy Distribution

The Cauchy distribution is a long tailed distri-
bution with no mean or variance. It is
symmetric about 0 and for this reason we took
a total of 13 points on the right side of x= 0 (in-
cluding 0). As can be seen from Table 3.4, A,
increases as x increases, while 4, at first in-
creases and then decreases on the same range
of x. At point x = 2.05 where one expects
some outliers the value of 4, reaches 12.95, but
its corresponding A, is only 1.51. The mean
value of A, is 3.69 and for A, is 1.49. Such a
difference even in the mean value shows how
poor the asymptotic optimal value of / is when
we have a symmetric but flat tailed distribution.
The variation of &, on the range of x (0 to 2.05)
is from 0.80 to 12.95 and A, varies on the same
range of x from 0.77 to 1.51.
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3.4. Normal Mixed Distribution

Two cases were considered :
1) 0.25N(0,1) + 0.75N(4,1) and

2) 0.50N(0,1) + 0.50N(3,1).

In case 1 we have a bimodal asymmetric dis-
tribution and in case 2 we have a bimodal
symmetric distribution. For case 1 we took a
total of 10 points on the x axis ranging from 3.0
to 6.0 (with the exception of x = 0 at which we
showed the variation of L1 and L2 versus A;.)
In the situation with two modes, A and A,
agree in most cases, except for the inflexion
point and the first two points x = 3.0 and x =
3.05. Table 3.5 shows the values of x ,
minimum values of L1, L2, h; and h, respec-
tively. The average value of 4, is 1.7 and for A,
is 1.9. The difference is due to the first two
points.

Table 3.4. Minimum values of L2, asymptotic and simulated values of h at different points for

Cauchy distribution
Pointx L2 simulated asymptotich

0.00 0.00226 0.80 0.77
0.05 0.00223 0.90 0.78
0.51 0.00096 1.40 1.78
0.55 0.00086 1.30 2.61
0.61 0.00064 1.40 2.51
0.65 0.00060 1.65 1.86
0.71 0.00042 2.00 1.51
0.95 0.00013 2.80 1.19
1.05 0.00008 3.50 1.16
1.15 0.00006 4.25 1.16
1.45 0.00002 6.65 1.23
1.65 0.00001 8.40 1.31
2.05 0.00000 12.95 1.51

Total 48 19.38

Mean 3.69 1.49
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Table 3.5. Minimum values of L2, asymptotic and simulated values of h at different points for

0.25 N (0,1)+0.75N (4,1) distribution

Point x L2 simulated & asymptotich
0.0 0.00048 1.25 1.29
3.0 0.00025 2.35 3.82
3.05 0.00035 2.25 3.58
3.50 0.00108 1.20 1.19
4.00 0.00115 1.20 1.03
4.15 0.00126 1.10 1.04
4.80 0.00059 1.60 1.66
4.90 0.00052 1.80 2.17
5.0 0.00032 2.20 0
5.10 0.00021 2.45 2.17

Total 18.65 18.94
Mean 1.7 1.9

Table 3.6. Minimum values of L2, asymptotic and simulated values of h at different points for

0.5 N(0,1)+0.5N (3,1) distribution.

Pointx L2 simulated 2 asymptotic
0.0 0.00080 1.30 1.16
1.50 0.00074 1.35 1.12
1.65 0.00076 1.15 1.14
2.00 0.00002 4.55 1.51
2.05 0.00003 4.45 1.65
2.20 0.00008 3.50 2.94
2.25 0.00014 3.05 7.83
2.35 - 0.00030 2.40 2.15
2.75 0.00085 1.65 1.25
3.00 0.00088 1.45 1.16
3.90 0.00034 2.00 2.41
4.00 0.00023 2.75 8.41
4.05 0.00018 3.05 3.02
5.00 0.00019 0.95 1.07
6.00 0.00002 0.95 1.19

Total 34.65 38.01
Mean 2.31 2.5
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In case 2 the difference starts from point x =
2.0, where hgis 4.55 and h, is 1.51. At point x
= 2.25 the situation reverses so that h,
becomes 7.83 while A, remains at 3.05. This
matter will be repeated at point x = 4.0 where
h; becomes 2.75 and h, reaches 8.41. The
average value of h;is 2.31 and /,is 2.5, they do
not significantly differ from each other. These
variations are presented in Table 3.6.

4. Concluding Remarks

The poor performance of the optimal asymp-
totic value of # was demonstrated in an exten-
sive simulation study for Cauchy (long tailed
and symmetric) and gamma (long tailed but
asymmetric) distributions. The optimal
asymptotic s performed in accordance with
the simulated 4 under the normal distribution.
The oo values in the tables are artifacts of both
the truncation of Taylor series used to develop
equation 1.2 and that higher order (nonzero)
terms involving the fourth derivate of f could
have been included in the Taylor expansion.
Overall flat tails are the cause of not only poor
asymptotic approximation but also of strong
variation of the optimal value of 4 along the
support. It can be speculated that this is
related to the high variance of the estimator
because of the scarcity of points observed in
such tails. If the experimenter wishes to use
the fixed kernel as opposed to the variable
one, a larger value of /2 larger than the optimal
value at the mode may be required to reduce
the error over the support. It is evident from
the foregoing simulation study that there is a
need for a variable /4 that performs well for
any distribution and more specifically that &
should be increased in the tails, a result al-
ready observed by Breiman et al. (1977).
When the number of observations reaches
2 000 in the case of the normal distribution
with mean 0 and variance 1, the optimal value
of h reaches 0.54 which shows a slow con-
vergence of 4 as n goes towards infinity. The
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bias of the optimal 4 theory and the effects of
sample size are also depicted by Scott (1985).
It is also shown in this study that L1 and L 2
norms in fact lead to essentially the same opti-
mal values of A.
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