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Some Markov-Chain Models for Nonresponse
in Estimating Gross Labor Force Flows

Elizabeth A. Stasny'

Abstract: The longitudinal data bases avail-
able from panel surveys may be useful for esti-
mating period-to-period gross flows among
survey classifications. One problem in gross
flow estimation is how to handle the non-
response in the data. Typically, we do not
believe that such nonresponse occurs at ran-
dom with respect to the variable of interest. In
this paper, I consider a model-based approach
to the problem of handling nonresponse in
data from a panel survey. I use a Markov-

1. Introduction

Many large-scale sample surveys, such as the

U.S. Current Population Survey and National

Crime Survey, use rotating panel designs
under which individuals are interviewed sev-
eral times before rotating out of the sample.
Typically, these large-scale surveys are used
to produce point-in-time estimates. The rotat-
ing panel structure of the survey is a result of
the need to reduce costs by keeping the same
interviewers and subjects for more than a sin-
gle interview. Recently, however, there has
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chain model for the underlying gross flow
process and propose some Markov-chain
models for the process that generates the
possibly nonrandom nonresponse. The in-
teracting Markov-chain models are fit using
maximum likelihood estimation to data from
the Canadian Labour Force Survey.
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been increasing interest in using the longitudi-
nal data bases available from such surveys to
estimate gross change over time.

In this paper, I consider the problem of esti-
mating period-to-period gross change over
time using categorical data from a panel sur-
vey where, as one expects in a sample survey,
there is nonresponse in the data so that some
of the surveyed individuals are completely
cross-classified while others are partially cross-
classified or completely missing. I use a model-

_ based approach to adjust for possibly nonran-

dom nonresponse (see, for example, Fay
(1986) or Little (1982)). The use of a model-
based approach rather than an ad hoc proce-
dure, such as hot deck or raking, allows us to
use standard statistical estimation techniques
and standard results on the properties of esti-
mators. In particular, I consider some Markov-
chain models for the gross flow process along
with Markov-chain models for the process
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generating the nonresponse. The models pre-
sented here are an improvement over previous
models considered for estimating gross flows
in the presence of nonrandom nonresponse
(see for example Stasny (1983, 1986, and
1988) and Stasny and Fienberg (1985)) because
they allow a sampled individual to be missing
at one or both of two interview periods.
Section 2 of this paper presents a general
two-stage model for panel data with non-
response. Section 3 describes the Markov-
chain models for nonresponse. In Section 4, I
fit the models to employment data from the
Canadian Labour Force Survey. Section 5
suggests possible extentions of the models.

2. A Two-Stage Model for Panel Data

One possible approach to the problem of esti-
mating gross change over time using panel
data is to use only the information from indivi-
duals who are respondents in both of two con-
secutive interview periods. In order to use this
approach, we must assume that individuals
who do not respond in one or both periods are
a random sample of all individuals (Rubin
(1976)). However, in most cases, we do not
believe that nonresponse occurs at random.
For example, using data from the Canadian
Labour Force Survey, Paul and Lawes (1982)
and Fienberg and Stasny (1983) give evidence
that nonresponse is related to labor force
classification. Since there is evidence that
nonresponse does not typically occur at ran-
dom, we would like to consider some models
for estimating gross flows that allow us to treat
nonresponse as related to the survey classifi-
cations.

Suppose that the result of each interview is
the classification of the respondent into one of
K non-overlapping categories. Consider esti-
mating gross flows among these categories
using records of surveyed individuals matched
over two consecutive interview periods. It is
impossible to obtain matches for individuals
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who were nonrespondents in one or both of
the interview periods or who rotated into or
out of the survey during the time being con-
sidered. Thus, as a result of the matching, we
will have a group of individuals for whom we
have survey classifications at both interview
periods, a group of individuals for whom we
have classifications in one but not both periods,
and a group of individuals who did not re-
spond to the survey in either period.

The survey classification data for individ-
uals who responded at two consecutive inter-
view times, say #-1 and ¢, can be summarized
in a KxK matrix. The available information
for individuals who were nonrespondents for
the time #-1 interview but who responded to
the time ¢ interview may be summarized in a
column supplement. The available informa-
tion for individuals who were nonrespondents
for the time ¢ interview but who responded to
the time #-1 interview may be summarized in a
row supplement. Individuals who were nonre-
spondents at both times #-1 and ¢ are counted
in a single “missing” cell. Therefore, the
observed time ¢-1 to time ¢ gross flow data can
be displayed as in Table 1.

Extending the ideas of Chen and Fienberg
(1974) for maximum likelihood estimation in
contingency tables with partially cross-
classified data, I take the observed gross
flow data to be the end result of a two-stage
process where, in the unobserved first stage,
individuals are allocated to the cells of a KxK
matrix according to probabilities from a
Markov chain. Let

m; = initial probability that an individual
is in state i at time -1, where Zt; = 1,
and

p;; = transition probability from state i to
state j, where Z;p; = 1 for all i.

At the second stage of the process each indi-
vidual in the (i,j) cell of the gross flow matrix
may either a) be a nonrespondent at time #-1
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Table 1. Observed gross flow data
Time ¢-1 Time ¢
1 2 K Row Supplement
1 X1 X12 X1k R,
2 Xa1 X2 Xox R,
K XK1 XK2 XKK Rg
Column Supplement (o C, Cg M

Note: Where x; = number of sampled individuals with classification i at time ¢-1 and j at time ¢,
R; = number of individuals who were nonrespondents at time ¢ and had classification i at

time ¢-1,

C; = number of individuals who were nonrespondents at time -1 and had classification j at

time ¢, and

M = number of individuals who were nonrespondents at both times #-1 and z.

and, hence, lose the row classification, b) be
a nonrespondent at time ¢ and lose the column
classification, or c) be a nonrespondent at
both times and lose both the row and the
column classifications. Let

E(i,j) = initial probability that an individ-
ual in the (i,j) cell of the matrix
responds at time #-1,

orr(i,j) = transition probability from re-
spondent at time #-1 to respon-
dent at time ¢, and

omm(i,j) = transition probability from non-
respondent at time ¢-1 to nonre-
spondent at time ¢.

The data are observed after this second
stage. From the observed data, we want to
make inferences about both the probabilities
of the Markov chain generating the gross flow
data and the probabilities of the Markov chain
generating nonresponse. In the context of this
two-stage model, the underlying probabilities
for the observed gross flow matrix are as given
in Table 2.

Table 2. Probabilities for observed gross flow data

Time -1 Time ¢
1 2 .. K Row Supplement
1
2 LS .. .o . o
. {E(.err(Lj)mp;i} {ZEEN-0rrEN]ip, }
K

Column Supplement {Z{1-EEN1-0pm(i ) eps; } 2Z[1-EG)]emm()mp;
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3. Markov-Chain Models for Nonresponse
3.1. The models

The likelihood function for the observed data
under the two-stage model described in Sec-
tion 2 is proportional to:

{ Hinj[g(i’].)QRR(i’j)nipii]Xi/}
X {Hi[zjg(irj)[I'QRR(i:j)]nPij]Ri}
x | Hj[zi[l'g(i»j)][I'QMM(irj)]nipij]C/}
x | [Eizj[1‘§(i7f)]QMM(iyf)anij]M ¥

where i and j take on the values from 1 to K.
We wish to use maximum likelihood estima-
tion to obtain estimates of the parameters in
this model. There are, however, 4K*+K
parameters with K+1 constraints on the
parameters in the above likelihood function
and only (K+1)? cells of observed counts with
the single constraint that the observed counts
sum to the total sample size. Thus, we must re-
duce the number of parameters to be esti-
mated. We will do this by considering four
models for the § and o parameters, the param-
eters pertaining to nonresponse. The models
are as follows:

Model A. E(,j)=E, 0gr(i,))=0rr>
Omm(G1)=0mm-

Model B. &(i,j)=E(i), 0rr(i,/)=0rr>
omm(L))=0mm-

Model C. E(i,))=E, orr(i,/)=0rr(i),
omm(i))=0mm(i)-

Model D. E(l)])=g’ QRR(irj)=QRR(i),
omm(i))=0mm()-

Models A and B have 2K-2 and K-1 associated
degrees of freedom respectively while there
are no remaining degrees of freedom asso-
ciated with Models C and D. The m and p
probabilities for the gross flow process remain
as defined in Section 2.

Under Model A, the initial probability that
an individual responds at time ¢-1 is the same
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for all survey classifications. The transition
probabilities from respondent to respondent
or from nonrespondent to nonrespondent also
do not depend on the survey classification.
Under Model B, the initial probability that an
individual responds at time ¢-1 depends on the
individual’s classification at time #-1 while the
transition probabilities from respondent to re-
spondent or from nonrespondent to nonre-
spondent do not depend on classification.
Under Models C and D, the initial probability
that an individual responds at time ¢-1 is the
same for all survey classifications. The transi-
tion probabilities from respondent to respon-
dent or from nonrespondent to nonrespon-
dent under Model C depend on the survey
classification at time ¢-1 while under Model D
they depend on the classification at time .
Note that Model A is a special case of each of
the other three models. The methods used to
fit each of these models are described below.

3.2.  Parameter estimates

The likelihood function for the observed data
under Model A can be written as the product

. of two factors: one involving only the & and p

parameters, the other involving the £ and o
parameters. Thus, estimates of the m and p
parameters can be found separately from the
estimates of the £ and o parameters. In addi-
tion, this means that, under Model A, the
Markov chains for the gross flow process and
for nonresponse are two separate, indepen-
dent Markov chains.

Under Model B, there is a single Markov
chain for the gross flow process and there are
three Markov chains for nonresponse. The
Markov chains for nonresponse are tied to the
Markov chain for the gross flow process
through the dependence of E, the initial prob-
ability of being a respondent, on the survey
classification at time ¢-1. The likelihood func-
tion for the observed data under Model B can
be written as the product of two factors: one
involving only the =, p, and £ parameters, the
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other involving only the o parameters. Thus,
estimates of the &, p, and & parameters can be
found separately from the estimates of the o
parameters. )

Under Model C, there is a single Markov
chain for the gross flow process and there are
three Markov chains for nonresponse. The
Markov chains for nonresponse are tied to the
Markov chain for the gross flow process
through the dependence of the o parameters,
the transition probabilities associated with the
nonresponse process, on the survey classifica-
tion at time #-1. The likelihood function for the
observed data under Model C can be written
as the product of two factors: one involving
only the &, p, and ), parameters, the other
involving the & and Qg parameters. Thus,
estimates of the &, p, and gy, parameters can
be found separately from the estimates of the
€ and gy parameters.

Under Model D, there is a single Markov
chain for the gross flow process and there are
three Markov chains for nonresponse. The
Markov chains for nonresponse are tied to the
Markov chain for the gross flow process
through the dependence of the g parameters,
the transition probabilities associated with the
nonresponse process, on the survey classifica-
tion at time ¢. The likelihood function for the
observed data under Model D can be written
as the product of two factors: one involving
only the &, p, and g parameters, the other in-
volving only the € parameter. Thus, estimates
of the m, p, and @ parameters can be found
separately from the estimate of the § param-
eter.

The parts of the likelihood functions under
Models A, B, C, and D involving the &t and p
parameters are maximized using Lagrange
multipliers to impose the constraints that
Zm;=1 and Zp;=1 for all i. In general, an
iterative procedure must be used to provide
estimates of some of the parameters under
each model. The iterative steps for obtaining
the parameter estimates under Models A, B,
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C, and D are given in Appendix I. In addition,
at least one parameter under each model has a
closed-form solution. These are also provided
in Appendix I.

3.3. Fitting the models

For each of the models, the steps of the itera-
tive procedures given in Appendix I are re-
peated for v = 0, 1, 2, ... until the parameter
estimates converge to the desired degree of
accuracy. The formulas given for m ), p,©,
ED©, orr(®)?”, and ouu(i)” are merely
suggested initial estimates. Any values be-
tween 0 and 1 satisfying Zgm;=1 and Zp;=1
for all i may be used. In the data analysis re-
ported in Section 4, a number of different
starting values were used. In each case, the
final estimates were the same.

After any one of the above models has been
fit to the data, the cell probabilities under-
lying the observed data may be estimated fol-
lowing the formulas given in Table 2. These
estimated probabilities are then multiplied by
the total sample size to obtain the expected
cell counts. Either the Pearson X? or the likeli-
hood ratio statistic, G, can be compared to a
y? distribution with the appropriate degrees of
freedom to help assess the fit of the model.

4. Example From the Canadian Labour
Force Survey

4.1.

The Canadian Labour Force Survey (LFS) is
based on monthly interviews with respondents
in approximately 56 000 households. Sampled
households are retained in the sample for six
months before being rotated out of the sample.
Under this LFS scheme, the month-to-month
overlap of sampled housing locations is 83 %.
A detailed description of the LFS can be
found in Methodology of the Canadian Labour
Force Survey 1976, Statistics Canada (1977).
Month-to-month gross flows in labor force
participation show how persons with each

The Labour Force Survey
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labor force classification in one month are
classified in the following month providing,
for example, estimates of the numbers of per-
sons who were employed in one month and
unemployed in the next, unemployed in one
month and employed in the next, employed in
both months, and so forth.

A single panel of micro-data from the LFS
was available for my use. The data set contains
responses for a subset of the survey questions
for all individuals from the panel that rotated
into the sample in August 1979 and remained
in the sample through January 1980. Informa-
tion is available for each individual in that
panel who responded at least once during the
six month period. Since the data is from a
single LFS panel, there is no nonresponse due
to rotation into or out of the sample included
in this data set. Unweighted cell counts for a
gross flow matrix can be obtained from this
micro-data. The models described in this
paper are suitable for unweighted data from a
simple random sample. The LFS uses a multi-
stage cluster sample. Thus, the models pro-
posed in this paper are not ideally suited to
describe the data. We will, however, fit the
models to the data for illustrative purposes
and as a first attempt at modeling the nonre-
sponse in the data.

Persons interviewed for the LFS in a given
month are classified as employed, unem-
ployed, not in the labor force, or outside the
population of interest. Naturally, persons out-
side the population of interest are not inten-
tionally included in the LFS sample. The rela-
tively few persons classified as outside the
population of interest who do appear in the
sample are included by accident rather than by
design. Thus, the out-of-population cells
based on the available panel of data are mostly
empty and I do not include them in the analy-
sis given here. In addition, I removed from the
data nonrespondents who were classified as
being outside the population of interest in a
month when they did respond to the survey.
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The vast majority of such cases were children
who were too young to be included in the sur-
vey and who should not, therefore, be count-
ed as nonrespondents. I will consider estimat-
ing gross flows among the three labor force
classifications using records of individuals
matched over two consecutive months.

The observed gross flow data is given in
Appendix II.

4.2.  The fits of the models

All four models described in Section 3 were fit
to the five possible month-to-month gross
flow matrices constructed from the available
panel of data. Since there are K=3 possible
survey classifications, Model A has 4 associ-
ated degrees of freedom and Model B has 2
degrees of freedom. Models C and D, which
have no associated degrees of freedom, will
both fit the data exactly (within rounding
error) although they need not produce the
same parameter estimates.

The criterion for stopping the iterative pro-
cedures necessary for obtaining some of the
parameter estimates was that the maximum
difference between estimates at two consecu-
tive steps was less than 0.0005. The iterative
procedure for fitting Model A converged
quickly, requiring only two steps to converge
for each of the five observed gross flow ma-
trices. The iterative procedure for fitting
Model B converged relatively slowly requiring
between 24 and 58 iterations. The iterative
procedures for fitting Models C and D con-
verged in between 16 and 25 iterations, and
between 9 and 13 iterations respectively. The
parameter estimates for all models and the X?
and G? values for Models A and B are given in
Appendix III.

The fits of Models A and B to the August to
September data are similar. For the remaining
four gross flow matrices, Model B provides a
better fit to the data. (Note that, given the
large cell counts in the observed gross flow
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matrices, we find the fits of Model B reason-
able even though the X2 and G? values are lar-
ger than the value of ¥?4(2)=9.21.) Recall
that under Model A the probabilities of non-
response are the same for individuals in all
employment classifications while under Mod-
el B the initial probability of being a nonre-
spondent in month #-1 depends on the employ-
ment classification in that month. Thus, since
Model B provides a better fit than Model A,
we have some evidence that nonresponse does
depend on employment status.

In part B of Appendix III, we see that the
estimated initial probabilities of falling in each
labor force classification are similar under
Models A, C, D, and, in August to Septem-
ber, under Model B. Under Model B in all
other months, however, the estimated initial
probability that a person is unemployed is
higher than under other models. For example,
in October to November, the percentage of
persons initially unemployed is estimated to
be about 3.8% under Models A, C, and D
while it is about 5.0% under Model B.

Part C of Appendix III shows that the esti-
mated transition probabilities among the
various employment classifications do not
vary greatly from model to model. Note,
however, that the estimated transition proba-
bilities do appear to change over time. These
changes may be due to actual changes in the
labor force over time, particularly the changes
between the August to September and Sep-
tember to October estimates, but they may
also be due in part to the effects of rotation
group bias (see, for example, Bailar (1975 and
1979)).

Parts D, E, F, and G of Appendix III give
the estimates of the §, ogg, and Q,,, parameters
under Models A, B, C, and D respectively. As
is shown in Appendix I, the estimate of €, the
initial probability of being a respondent for
any individual regardless of labor force status,
are identical under Models A, C, and D. Un-
der Model B, however, the initial proba-
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bility of being a respondent depends on the
labor force classification. Note that in all
months, these initial probabilities of being a
respondent are quite similar for persons who
are employed or not in the labor force. In the
matrices other than the August to September
matrix, the initial probability of being a re-
spondent is estimated to be about (.8 for per-
sons who are classified as employed or not in
the labor force. The corresponding estimated
values of & for unemployed persons are much
lower, ranging from about 0.5 to 0.6. For the
August to September data this difference in
estimates of & (0.75 for persons classified as
employed and not in the labor force compared
to 0.71 for unemployeds) is not very large.
This is expected since the fits of Models A and
B are similar for the August to September
data. This comparison of the estimates of ini-
tial probabilities of being a nonrespondent
illustrates that response rates do appear to
differ by labor force classification.

The estimates of ogrr and @y, the proba-
bilities of transitions from respondent to re-
spondent and nonrespondent to nonrespondent
respectively, are identical under Models A
and B and do not depend on labor force clas-
sification. They do depend on the classifica-
tion under Models C and D. Note that the esti-
mates of the ogr(E), 0rr(N), oum(E), and
oumm (N) do not differ much from Model C to
Model D although, except for 0zr(N) in Sep-
tember to October, the Oggr(E) and Ozg(N) are
larger under Model D than under Model C
and the estimates of the 0,,(E) and gy (N)
are always smaller under Model D than under
Model C. The difference in these estimates
range from about 0.001 to about 0.007 be-
tween probabilities that are estimated to be
from about 0.71 to about 0.97. The differences
between estimates of the gzz(U) and oy (U)
under Models C and D are somewhat larger,
ranging from about 0.01 to about 0.1 on esti-
mates that range from about 0.55 to about
0.95. The estimated probabilities of an unem-
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ployed person remaining a respondent,
8rr(U), are always larger under Model C than
under Model D while the estimated probabili-
ties of an unemployed person remaining a
nonrespondent, O,(U), are always smaller
under Model C thant under Model D.

Thus we see that while both Models C and
D provide exact fits to the data, they donot re-
sult in the same parameter estimates and,
hence, they do not give the same estimated
expected cell counts for the 3x3 gross flow
matrices. This can be seen in Part A of Appen-
dix III. Note, however, that the estimated ex-
pected cell counts after the first stage do not
differ much under any of the Models A, C,
and D in any of the matrices. The Model B
estimates are somewhat different from the
estimates under Models A, C, and D exceptin
August to September. In particular, note that
the expected cell counts in the row for persons
classified as unemployed in month 1 are
larger under Model B.

From this analysis, it is not completely clear
which model we would prefer for modeling
nonresponse in this labor force data. Because
Models C and D fit the data exactly, we cannot
choose between those two models based on
the fits for the models. Additional informa-
tion is needed in order to determine which
model is more appropriate. Certainly, how-
ever, we prefer Model B to Model A exceptin
August to September. Since nonresponse is
related to labor force classification under
Model B, we have evidence that nonresponse
does not occur at random. In addition, the
parameter estimates under Models B, C, and
D provide evidence that unemployed persons
are more likely to be nonrespondents than are
persons who are employed or not in the labor
force. Since response rates appear to be fairly
similar for persons who are employed or not in
the labor force, it may be worthwhile to con-
sider variations of the models fit above where
the probabilities associated with those classifi-
cations are the same. In general, the results
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described above suggest that procedures to
adjust for nonresponse which do not allow for
differential nonresponse rates may not be
appropriate.

5. Extensions of the Models

An advantage of the Markov-chain models for
nonresponse proposed here is that there is a
natural way to think about extending the
models to allow us to use more than two periods
of data in estimating gross flows. This is not
the case for the discrete-time models de-
scribed by Stasny and Fienberg (1985) and by
Stasny (1983, 1986, and 1988). Therefore, an
important generalization of this work will be
to extend the models to handle gross flows
over more than two periods.

The generalization to more than two periods
is not trivial, however, because we are not
willing to make many simplifying assump-
tions. We do not believe that the employment
process is stationary over time. In addition,
we do not believe that nonresponse probabili-
ties are unchanging over the life of a panel.
Without any simplifying assumptions, the
model for more than two periods quickly be-
comes difficult to manage. A possible solution
may be to consider the higher-order Markov-
chain models of Raftery (1985) which add only
a single parameter to model each extra period.
Work on this problem is still in progress.

A somewhat simpler extension of the model
would be to allow for different types of nonre-
sponse. For example, nonresponse due to
panel rotation is designed nonresponse and
we may be willing to assume that it occurs at
random. Although the nature of the available
LFS data for this example did not allow us to
consider different types of nonresponse, in
general this would be an issue for panel sur-
veys.

Another extension of the model would be to
allow the Markov-chain model for the gross
flow process to be a continuous-time Markov
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chain. After the ;t;and p;;have been estimated Markov chain for the gross flow process.
under one of the above models using one of Descriptions of estimating continuous-time
the procedures described in the previous sec- Markov chains from data collected at discrete
tions, the estimates may then be used to esti- intervals are given by Singer and Spilerman
mate the intensity matrix for a continuous-time  (1976) and Stasny (1983).

Appendix I

Equations for Parameter Estimation

The following may be used as initial estimates when needed for the iterative procedures
given in this appendix. The dot notation in a subscript indicates summation over that sub-
script. Note that these initial estimates correspond to the closed-form estimates of the para-
meters appropriate under some of the models.

0 = x,./x..
pij(o) = x;/x;.
ENO=[x..+R]/[x.. +R. + C. + M]
orr()@ = x../[x.. + R]
omm()©@ = M/[C. + M]
Model A
Closed-form estimators:
E=[x.. +R]/[x.. + R. + C. + M]
Orr = x../[x.. + R.]

Iterative procedure:
O = {x;. + R + Z[CnOp, M Z Op M) X {x.. + R. + C.}7
PV = {x; + [CuOpy ) £, O™}y X {xi. + Z[CoeOp, M Zm My O
Model B
Closed-form estimators:
Orr = x../[x.. + R.]
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Iterative procedure:
O = {x;. + R+ Z[C-EO) V] Vpy ™ Zi[1-E(k) V] py ]
+ [M[1-E@) VM2 [1-E(K) V] ]} X {x.. + R. + C. + M}

Pij(v+l) = {xij + [Cj[1_§(i)(V)]ui(V)pij(v)/ z:k[1—§(k)(v)]nk(v)ij(v)]}

X {x;. + Zj[Ci[I_E(i)(V)]ni(V)Pij(v)/ Zk[1_§(k)(V)]nk(v)pkj(v)]}_l

EO™Y = {x: + R} X {xi. + R +Z[G[1-E() V] Vpy ) 2, [1-E(k) V], V]

+ M50 [1-5(0) O]}

Model C
Closed-form estimators:

E=[x.+R])/[x.. + R. + C. + M]
0rr() = x;./(x;. + Ry)
Iterative procedure:
D = {x. + R + Z[C[1-0um() V7 iy Z [ 1-0am(k) V10 Vpiy ]

+ MoV /Z L omm ()Pt ]} X {x.. + R. + C. + M}

pij(VH) = {xij + [Cj[1_QMM(i)(V)]ni(V)pij(v)/ zk[I‘QMM(k)(V)]nk(V)ij(v)]}

X {x;. + Z[Cil1-0am ()M p ™ 2y [1-0aam(k) Vot Vp O

o)) = {Z[C1-0pm(D) Mty O i [1-0pma(k) It Mpi ™)
+ Moy (D)t Z [oam (k) VO] X {Moum(§) Ve Z [ 0pina(k) V1)
Model D

Closed-form estimators:

E=[x.+R])/[x..+R. +C. + M]
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Iterative procedure:
Y = {x;. +R;: + Z[Crp V12 Vp, )

+ Zi[MQMM(i)(V)ni(V)Pij(V)/ = Znlemn () VI p M} x{x.. + R+ C. + M}

pij(VH) = {x; + [Ri[l_QRR(i)(V)lpij/ Zi[1-0rr(K)M]pu] + [Cjﬂi(V)sz(v)/ zknk(v)pkj(v)]
+ [Mosm() V7 p, M 2 Z [oam(B) V] )

+ [MZ0mm( )(V)ni(V)pij(v)/ Zkzh[QMM(h)(V)]nk(v)pkh(v_)] 3!

orr(DM D = x X {xg+ = [R{1-0rr ()™ pij(v)/ S 1-0rr(K)Mpua 1}
Q)Y = 1= {CEZpopm(h) V1, Vp I ME, 70V, )

Appendix II
Observed LFS Data

Sept. 1979
Aug. 1979 E U N Row Supplement
E 9222 128 662 473
U 221 322 151 59
N 256 164 5941 292
Column
Supplement 996 69 676 4353

Oct. 1979
Sept. 1979 E U N Row Supplement
E 9 697 169 355 474
U 177 317 143 46
N 326 159 6 522 423
Column
Supplement 554 59 339 4225

Nov. 1979
Oct. 1979 E U N Row Supplement
E 9 778 178 392 406
U 159 362 130 53
N 212 145 6 728 274
Column

Supplement 419 54 269 4 426
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Dec. 1979
Nov. 1979 E U N ‘ Row Supplement
E 9 683 202 304 379
U 129 405 157 48
N 204 155 6 928 232
Column
Supplement 291 60 218 4590
Jan. 1980
Dec. 1979 E U N Row Supplement
E 9411 191 366 339
U 162 450 168 42
N 187 180 7 004 236
Column
Supplement 252 50 186 : 4761
Appendix III

Parameter Estimates
A. Estimates of the expected cell counts after the first stage

Model A Model B Model C Model D
E U N E U N E U N E U N

Aug.-Sept. 1979

E 12955 181 928 12955 179 -930 12947 180 929 12937 194 926
U 321 472 219 339 492 231 321 469 220 310 488 211
N 359 232 8317 357 228 8274 359 230 8330 359 248 8312

Sept.—Oct. 1979
E 12955 233 471 12927 225 473 12939 226 474 12924 235 480

U 242 449 194 315 565 253 242 434 196 236 441 194

N 441 223 8776 430 210 8587 441 215 8819 434 221 8820
Oct.—Nov. 1979

E 12 956 244 517 12900 235 517 12952 236 519 12937 253 518

U 219 516 178 295 673 241 219 499 179 210 515 172

N 281 199 8875 273 187 8 664 281 192 8907 280 206 8 894

Nov.-Dec. 1979

E 12767 279 401 12497 261 392 12795 267 402 12784 281 399
U 175 576 213 276 871 336 176 552 214 170 565 206
N 268 213 9093 262 199 8889 268 204 9107 269 216 9 094

Dec. 1979-Jan. 1980

E 12 444 261 483 12249 249 476 12457 253 484 12450 261 483
U 218 627 226 321 89%6 333 219 607 227 214 616 222
N 247 246 9234 240 231 8989 247 238 9253 247 246 9245
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B. Estimates of the initial probabilities of being in each employment classification

Model A Model B Model C Model D

Aug.-Sept. 1979

g 5864 .5864 .5860 .5860

Ry 0422 .0443 0421 0421

fin 3714 13693 3719 3719
Sept.—Oct. 1979

g 5695 5681 ) .5686 .5686

iy 0369 .0473 .0363 .0363

fiy 3936 3847 3950 13950
Oct.—Nov. 1979

g 5719 .5692 5715 5715

Ty .0381 .0504 .0374 0374

Ty .3900 .3804 3911 3911
Nov.-Dec. 1979

g .5607 .5483 .5613 .5614

fy .0402 0619 .0393 .0393

fty 13991 .3898 .3994 3994
Dec. 1979-Jan. 1980

e .5499 .5409 .5501 5501

Ry .0446 .0646 .0439 .0439

Ry 4055 .3944 4060 .4060

C. Estimates of the transition probabilities, p;;

Model A Model B Model C Model D
E U N E U N E U N E U N

Aug.-Sept. 1979

E 9211 .0129 .0660 .9211 .0128 .0661 .9211 .0128 .0661 .9203 .0138 .0659
U 3175 .4660 2164 .3188 .4634 .2178 .3184 .4641 .2175 .3073 .4833 .2094
N .0403 .0260 .9337 .0402 .0257 .9340 .0402 .0258 .9340 .0403 .0278 .9319

Sept.—Oct. 1979

E 9484 0171 .0345 .9488 .0165 .0347 .9487 .0165 .0347 .9476 .0172 .0352
U 2735 5069 2196 2779 .4985 .2236 .2778 .4978 .2244 2710 .5067 .2222
N .0468 .0236 .9296 .0466 .0227 .9307 .0465 .0227 .9308 .0459 .0233 .9308

Oct.—Nov. 1979 )

E 9445 0178 .0377 .9449 .0172 .0379 .9449 .0172 .0379 .9438 .0184 .0378
U 2397 .5652 .1951 .2439 .5569 .1992 .2442 .5562 .1996 .2345 .5739 .1916
N 0300 .0212 .9487 .0299 .0205 .9496 .0299 .0205 .9496 .0299 .0220 .9481

Nov.-Dec. 1979

E 19494 0207 .0298 .9503 .0198 .0298 .9503 .0198 .0298 .9495 .0209 .0296
U 1815 5975 2210 .1863 .5872 .2266 .1866 .5862 .2272 .1810 .6000 .2190
N .0280 .0222 .9498 .0280 .0213 .9507 .0280 .0213 .9507 .0281 .0225 .9494

Dec. 1979-Jan. 1980

E 9435 .0198 .0367 .9441 .0192 .0367 .9441 .0192 .0367 .9436 .0198 .0366
U 2037 .5853 2110 .2073 .5779 .2148 .2077 .5770 .2153 .2038 .5853 .2109
N 0254 .0252 .9494 0254 .0244 .9502 .0254 .0244 .9502 .0254 .0253 .9493
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D. E, Qrg, and Quy parameter estimates under Model A
A

A
E ORR 6MM X G?
Aug.-Sept. 1979 7459 19539 7143 19 16
Sept.—Oct. 1979 7842 .9499 .8161 39 36
Oct.-Nov. 1979 7845 9610 .8564 49 40
Nov.-Dec. 1979 .7849 .9650 .8897 74 58
Dec. 1979-Jan. 1980 7812 9671 .9070 43 34

Note: %% o(4) = 13.28.

E. E, Qrg, and Quyu parameter estimates under Model B

A A A A A

E(E) &) E(N) QRrRR Qmm X G?
Aug.—Sept. 1979 .7455 .7090 7510 19539 .7143 19 16
Sept.—Oct. 1979 .7850 .6027 .8053 .9499 .8161 20 19
Oct.—Nov. 1979 7877 .5827 .8065 19610 .8564 26 21
Nov.-Dec. 1979 .8036 .4979 .8041 .9650 .8897 24 20
Dec. 1979-Jan. 1980 7944 .5302 .8041 9671 .9070 9 9

Note: x%9(2) = 9.21.

F. E, Org, and oy parameter estimates under Model C

A A / A A A A

13 orr(E) éRR(U) Qrr(N) Omm(E) eum(U)  omum(N)
Aug.—Sept. 1979 .7459 .9549 .9216 9561 7131 .6697 7212
Sept.—Oct. 1979 7842 .9557 9327 19431 .8155 .5462 .8418
Oct.-Nov. 1979 .7845 .9622 .9247 19628 .8591 .6137 .8758
Nov.-Dec. 1979 .7849 19641 .9350 19691 .9021 .5790 .9029
Dec. 1979-Jan. 1980 7812 9671 .9489 .9690 9145 .6915 .9202

G. E, Ogrr» and oy parameter estimates under Model D

A . A

13 Orr(E) Orr(U) Orr(N) Qum(E) éMM(l]) Sum(N)
Aug.-Sept. 1979 .7459 .9557 .8852 .9582 7119 7077 7184
Sept.—Oct. 1979 .7842 .9568 9165 .9430 8112 .6952 .8346
Oct.-Nov. 1979 .7845 9634 .8965 .9643 .8552 .7425 .8697
Nov.-Dec. 1979 .7849 .9650 9138 .9706 .8977 7372 .8955

Dec. 1979-Jan. 1980 7812 9676 .9356 .9699 .9108 7965 .9146
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