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Some Statistical Problems
in Merging Data Files'

Joseph B. Kadane®

Suppose that two files are given with some overlapping variables and some variables
unique to each of the two files. Notationally, let X represent the common variables, Y,
the variables unique to the first file, and Z, the variables unique to the second file. Thus
the basic data consist of a sample of pairs (X, Y) and a sample of pairs (X, Z).

Merging of such microdata files may occur in two contexts. In the first, the files are
known to consist of the same objects or persons, although their identities may be obscured
by measurement errors in the common variables X. In the other case, the two files are
random samples from the same population, but only accidentally will the same object
or person be on both lists.

To want to merge data files in the first context is a very natural impulse. A merged file
permits statements about (Y, Z) cross-classifications that are unavailable without merging.
If the measurement errors in the variables X are low (for instance, if X includes accurate
social security numbers), the merging can be very accurate, and the meaning of an item in
a merged file is clear. It represents the (X, Y, Z) information on the object or person in
question.

Merging data files in the second context requires greater caution. Again, facts are sought
about (Y, Z) cross-classifications, but the items in the merged file have no natural mean-
ing. The information on the Z variables for persons in the first file and on the Y variables
for persons in the second file are missing. A mechanical method of merging can be seduc-
tive in this context because it will produce a file of records with X, Y, and Z entries inviting
treatment as if they refer to the same persons. Yet it is clear that information cannot be
created by the merging process where none existed before. Great care must be exercised
in the second context.

One important method, reported by Okner (1972a), sets up ‘‘equivalence classes’’ of
X’s and makes a random assignment of an (X, Y) with an (X, Z) among ‘‘equivalent’’
(X, Z)’s that achieve a minimum closeness score. Sims (1972a, 1972b) stresses the
need for a theory of matching and criticizes the Okner procedure for making the implicit
assumption that ¥ and Z, given X, are independent. Peck (1972) defends the assumption,
while Okner (1972b) discusses the validity of the assumption in various cases. Budd
(1972) compares Okner’s procedure to one then being used in the Commerce Department.

A second round of discussion — Okner (1974), Ruggles and Ruggles (1974), and Alter
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(1974) — shows some improvements in method but a continuing concentration on
equivalence classes. Sims (1974) again stresses his belief that the methods proposed
will not perform well in sparse X-regions.

The first section of this report considers the case in which the lists are known to consist
of the same objects or persons, and the second section takes up the case in which the lists
are unrelated random samples from the same population. Although the final section,
““Why Match?”’, is obviously speculative, that term really describes all of the work in
this article.

Files Consist of the Same Objects or Persons

A statistical model

We assume that originally there were true triples (X;, Y;, Z;) that had a normal distribution
with means (uy, py, z) and some covariance matrix. These were broken into two
samples, (X;, Y;) and (X;, Z;), and then independent normal measurement error (e}, e,»z )
was added. Let

X! =X+
and
X=X +€

where (e;, 5,2-) has a normal distribution with zero mean. Suppose, also, e,l- has covariance
matrix Q;; and ef has covariance matrix {2,,, and that e} and e,-2 have covariance matrix
Q,. Then we observe a permutation of the paired observations (X ,-1, Y;) and (X ,-2, Z).

There are two ways in which the assumed joint normality of X, Y, and Z is restrictive.
First, some of our data is binary or integer-valued. Second, this implies that all the regres-
sions are linear, which is not likely to be the case, as pointed out by Sims (1972a, 1972b,
1974). One way around that problem might be to assume joint normality region-by-region
in the X space. This thought is not pursued further here.

Let T, = (X,-l, Y;) and U; = (Xiz, Z;) be vectors of length k and [ respectively, where
without loss of generality we take k = [. Also without loss of generality, take uy = 0,
wy =0, pz = 0. The covariance matrix of 7 and U can be written as

Lyx Lyy Eyx Lyz i I
3 S O
Lyx + Qi Exy Exx + Q2 Exz s Xy
Lzx Yzy Yx Lz
Let
Cy : Cp
2*1 S
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so that, in particular, we have
—1 -1 —1
Cop=C —ZpEp Ly Ipky

Note that all these covariances can be estimated easily except Xy, and Eyx + Q;,. Treat-
ment of them is deferred.

Now suppose that v, ..., v, is the random permutation of T, ..., T, which is observed,
and wy,...,w, is the random permutation of Uj,...,U, which is observed. Let
¢ = [¢(1),...,0(n)] be a permutation of the integers 1,...,n.

According to DeGroot and Goel (1976), the likelihood function of ¢ is

1 &
L(¢) = exp{ ~5 ; 2;Cp W¢<i>}
Thus the maximum likelihood ¢ minimizes
C(o) = Z v Clawg)
i=1
Let
Pij = v C, Wi
Then minimizing C(¢) is equivalent to minimizing
C=Lp;a;
subject to the conditions
Eiaij = 1
):ja,-j = 1
and
ajj=0or1

which is a linear assignment problem (Degroot and Goel 1976).

There may be cases in which o; and w; occur several times in the files and consequently
are recorded together. In general, suppose that ; occurs g; times (i = 1,...,n) and w;
occurs y; times (j = 1,...,m), where we assume

n m
=3
i=1 j=1
Then a simple transformation of C(¢) yields the minimization of
n m

> D Py

i=1 j=1
subject to the conditions

E,-a,-j =yj f0rj= 1,...,m

Ejaiqui fori = 1,...,”
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and

a;; = nonnegative integers.

ij
This minimization is in the form of a transportation problem. The matrix C,, appears to be
a natural choice of a distance function in this context.

Information about Xy,

One of the difficulties of this method is that it requires knowledge of Xy,. There are
several possible sources of such information. First, from a coarse but perfectly matched
sample, certain elements of Xy, may be known. If so, surely this information should be
used. Second, the assumption may be made, as is customary in the literature on matching,
that ¥ and Z are conditionally independent given the X’s. That is,

f,zZIx xH =fx XL XHfZ X', X%
The covariance matrix of (Y, Z | X', Xz) is (Anderson 1958, pp.28-29)

(EYY EYZ>_{EYX1 EYXZKEXIX. EX1X2>1{EX.Y EX]Z]
Lzy Yzz Lzxt Lgzxe Lyaxt Lyoxe Lyy LIyoz

Conditional independence occurs iff the upper-right partitioned submatrix is zero, i.e., iff
EXIXI EXIXZ -1 EX]Z
Ly, —(E r =0
vz = (! YXz)(EXzXI Loy Ty,

Thus this assumption gives a condition that uniquely defines Xy, in terms of the other
Y’s. Some simplification of this answer is possible. Using

EYXI ZEYXZ ZEYX and EZXI ZEZXZ ZEZX
we have
Tyixt Zyix2\ '/ Lxz
Yy =& r
vz = (Eyx YX)<EX2X1 Eyoy: Ty

Suppose, without loss of generality, that

(EXIXI lexz)—1_<R S
Tyigt Iy \ST WV

Then

Lyz =&yx Lyx)| _,
S v Yxz

, Lxz
Z(nyR+EYXs EYXS-I-EYXV)
XZ

=LyxRExz +ZyxS'Exz + LyxSExz + Zyx VExz
=LZyx(R+S"+S+V)Ex,
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A well-known fact about inverses of partitioned matrices (Rao 1965, p.29) is

b o) -
B D|

where

A"+ FE'F —FE™!
—E'F’ E~!

E=D—-BA'Band F=A"'B
Then
R+S +S+V=A"'"+FE'F' —FE'—E'F' +E™!
A"+ (U -FE'U-F)
=A'"+(U—-A"'"BE'U-B'ATY
=A"A+A-BMD-BA'B'A-B')A!
Thus, in our case,
Lyz = ZyxExixi Cxixt + Eyixr — Exix2)Exxs — Exoxi Eyiy Byxiy2) ™
“(xix _Exzx‘)z);‘lXIEXZ

Thus Xy is given by this equation as a function of Xyx, Xx7, Ex1x1, Zx2x2,and Xy y1.
All of these can be estimated directly except the last, Ey2y1 = Xxx + Q5

Estimation of Exy2x1 = Xxx + Qpp

There are really two topics in this section. First I consider the elicitation of the measure-
ment error process variance-covariance matrix 2. Then I consider how to use that with
other information to obtain Xy2y1.

In the elicitation of Q, I must first emphasize what it is not. It does not refer to the levels
of the common variables X. That is, we are dealing only with the spread in measured X’s
caused by the measurement process. Second, it does not refer to any systematic bias there
may be in the measurement error process, but refers only to variability around what would
be expected, taking into account both the level of the X variable and the measurement bias,
if any.

Begin, then, with the diagonal elements of 2, which are variances. Each variance refers
to a specific measurement error variable, that is, to a specific X-variable and the associated
source (one of the two). Choose any value for the true underlying X variable, for instance
x. Write down what you think the measurement bias b is. (This must be independent of the
value you gave for the X-variable, x. While this is not exactly the case, take for b a typical
value). Not everyone with this true value x will have a measured value x 4 b. Write down
the number y such that only 33.3 percent of such people will lie below y and 66.7 percent,
above. Write down the number w such that 66.7 percent will lie below w and 33.3 percent,
above. These numbers should line up so that y < x + b < w. There are now two measures
for the standard deviation: 2.17 (w — x — b) and 2.17 (x + b — y). These values should be
close. The variance is then the square of the standard deviation. This variance should not,
according to the model, depend on x, so try it for a number of x’s and hope that the results



428 Journal of Official Statistics

are close. If they are, take the median as the best value. If they are not, the model is not a
good representation of reality.

Now we turn to the off-diagonal elements of 2, which have to do with the relationship
between two variables. Suppose that those variables are A and B. Then the work above
defines for us the following: x4, by, 04, w4, and y,, and similarly, xp, by, 05, wg and
yg. We now are trying to capture the extent to which A and B affect one another. The char-
acteristic we focus on is the proportion p of times a measurement error on A is smaller than
w, and, simultaneously, a measurement error on B is smaller than wg. If A and B have
nothing to do with one another, this proportion would be 2/3 X 2/3 = 4/9 = .44, slightly
under 50 percent. However, if A and B are related to one another, this proportion p may
vary from .44. Write down the number you think is correct, and then convert it into a
correlation between A and B using Table 1.

This yields a p4 g for each pair of variables A and B. The proper element for  is then the
covariance of A and B, which is 64 05045.

Not every matrix formed in this way is positive definite, as a covariance matrix must be.
Hence, additional checks must be made to ensure that the covariance matrix is positive
definite. One convenient way to achieve this is to augment 2 one row and column at a
time, making use of the following simple fact:

If A is positive definite, then

(v o)

is positive definite, iff ¢ — b'A™'b> 0. The proof is simple (see Kadane et al. 1977.)

In this way, every element of Q can be elicited. Now the sample also has some informa-
tion about Q, which can be used as a check on the process. The variance-covariance matrix
of X'is Eyix1 = Xxx + @, and of X2, Yy2x2 = Zxx + Q5. This gives two independent
estimates for Xyy, namely Xy2y2 — Q5 and Xy 11 — Q. These should be very close. I
suggest rechecking the work if they are not. If they are, then an estimate for Xyy is at
hand. Finally we obtain Ly2y1 = Exyx + @5, for we now have estimates of both of the
latter.

Some Concluding Remarks About This Case

The case in which the files are known to consist of the same objects or persons is not well
understood. Recently DeGroot and Goel (1975) obtained the astonishing result that such
matched samples contain information about Xy ,. Their results suggest that there may not
be a lot of information, and we do not know whether the amount of information in some
relevant sense increases or decreases (or stays constant) with n. In particular, we do not
know if a consistent estimate of Xy, can be found in this case, although this writer’s intui-
tion is that it cannot.

Another case, one in which the lists may or may not contain the same individuals, is

Table 1. Relation between p and p

P .33 .35 37 40 42 44 46 48 50 5459
o -9 -7 -5 -3 —.1 .0 A 3 ] 7 9
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called record linkage. A few important papers in record linkage have been written by
DuBois (1969), Fellegi and Sunter (1969), Newcombe and Kennedy (1962), and Tepping
(1968).

Matching When the Files Are Random Samples from the Same Population

We assume here that there were true triples (X, Y;, Z;) that had a normal distribution with
means (uy, uy, pz) and some covariance matrix. Suppose that in some of these triples the
Z coordinates were lost, yielding a sample (X i Y),(j=1,...,m), and that for others the
Y coordinates were lost, yielding a sample (X;, Z;), (i =1,...,n). The parameters
Uy, Bys Hz, Bxxs xy, Bxz> Nyy, and X, can all be estimated consistently, and so we
will take them as known. However, the covariance matrix of Y and Z, Xy, cannot be
consistently estimated from such data.
In fact, in the domain in which Xy, is such that the matrix

( Lyy Lyz )

Lzy Lzz

is positive semidefinite, nothing is learned from the data about Xy,. In Bayesian terms,
whatever our prior on Ly, was, the posterior distribution will be the same (see Kadane,
1975 for other examples of this).

Hence we cannot hope to make realistic progress on this problem without a prior
probability distribution on Xy,. Our intention is to trace through the analysis using a
particular value for Xy, for the purpose of obtaining results that would ultimately yield
the expected value of some quantity — for instance, the expected amount of taxes a parti-
cular kind of tax schedule would raise. The taxes raised would then be a random variable,
where the uncertainty would arise from the uncertainty about X'y,. Hence we may assume
that the distribution of X'y, is known, and we may take values of Xy, from the distribution,
weighting the final results with the probability of that particular value of £y ,. We proceed,
then, with a value for ¥y, sampled in this way.

A natural first thing to do is to estimate the missing values, and the obvious way to do
that is by the conditional expectation:

Exx EXY>1<Xj_.“'X>
EZ |X;,Y) = + X >
(,| Jj )=pz+ Ezx ZY)(EYX T,y Yj—,uy
Let

Z:RS~T = ERS - ERTET_TI'ETS

for any matrices R, S, and T.
Then

EJBILY _E)?;(EXYE;II’-X X; —px
E(Z;1X;,Y) = pz+Ezx EZY)( . . -1
—LyyZyxExx.y Lyy.x Yj —py

=pz+ EZX-YE§)1(~Y(XJ' —px)+ EZY-XE;)I’~X(Yj — Wy)
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Similarly, we may predict missing Y; with its conditional expectation

E(Yi|X;, Z) = py + Zyx.zZxx. 2Xi — x) + Eyz.xZ72.x(Zi — pz)

Then the joint distribution of (X;, Y, Z ;) is normal with mean vector (ux, py, pz) and
covariance matrix

Zxx Zxy Ti
Si=|Zyx Zyy T,
n T, T

where
Ty = Zzx.vExx.vExx + Zzv xZyy.xEyx
T =Zzx.yExx.vExr + Zzv xZry.x vy
and
Ty = Zzx.y Exx-y Txx Zxx. v Exzoy + Zzv xZvy x By Zvy x Brzox
+ Z2x. v Zxx. v Exr EvvoxEvzx + Zzv x Iy x Syx Sxx.y Exz v

This is a singular distribution, of course, since 4 ; is a linear function of X ;and Y;.
Similarly, the joint distribution of (X;, ¥;, Z;) is normal with mean vector (uy, py, pz)
and covariance matrix

EXX Té{ EX’Z
S2 == T4 T6 TS/
Z:ZX TS z:ZZ

where
Ty =Zyx.2Exx.25xx + Zyz.xE72.x Ezx
Ts = Lyx.xExx.zExz + Zyz.xE22.x L2z
and
T = Iyx.2Exx. 2 Sxx Zxx 2Zxr 2 + SrzxT22.x 5225722 x Sz x
+Eyx 2 Exx.2Ex2E72.xEzv x + Evz.x 2722 x Ezx Exx. 2 Exy 2

which again is a singular distribution. Now a natural impulse is to pool these two
samples w; = (x;,¥;,2;), (j=1,...,m) and v; = (x;, 9;,z;), (i=1,...,n). However
the covariance matrices S; and S, are not the same, and all such data would lie on two
hyperplanes in (X, Y, Z) space. Another impulse is to match the data. Suppose now that
m = n, so that simple matching has some hope of making sense.

Observe that w; — v; has a normal distribution with mean of zero and covariance matrix
S|+ S,, which is nonsingular.

Hence, using the Mahalanobis distance, we may define the distance from w; to v; to be

d;;, where

ij»

dij=w;—v) (S + S2)71(Wj — ;)
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Thus a match would minimize
!
C = E,-yjd,»jaij

over choices of a;; subject to the conditions

El‘a[‘j = 1
Ejaij = 1
and

aij=00r1

which again is a linear assignment problem. In the case in which the observations have
weights, we relax the condition » = m and suppose v; has weight ¢; (i = 1,...,n) and
w; has weight y; (j=1,...,m). The condition n=m is replaced by the condition
Lq; = Ly;. Then the natural generalization is to minimize

L jdijaij

over choices of a;; subject to the conditions

Liaj; =y

Lja;;=gq;
and

a;;=0

which is a transportation problem.
An interesting alternative to the matrix S| + S, to use in the Mahalanobis distance is the
matrix

Zyy 0 0
0 00
0 00

This alternative avoids ‘‘bias’’ that might be introduced by paired Y; and Z;, at the cost
of not using some of the available information. I regard the relative benefits of these two
methods as an open question.

Once the merging is complete, suppose — with slight abuse of notation — that w; and
v; have been matched. Then it might be natural to take (x;, y;, z;) and (x;, y;,y;) as
simulations of the underlying distributions.

Now the expected taxes can be computed. Again I stress that this is conditional on a
value of Xy,. Many such matchings and averagings should be done, to explore the
sensitivity of the results to Xy .

Another aspect of this problem that is not well understood is the relation of matching to
the prior reduction of the files (Turner and Gilliam 1975). Perhaps the two processes can
be combined into one, or mutually rationalized.
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Why Match?

At first, matching seems to be a peculiar way to treat data. If ¥y, were known in either
framework, the complete joint distribution of the data would be consistently estimated,
and any devised probabilities or expectations could in principle be calculated from that
estimated jointly normal distribution or, if necessary, simulated on a computer. This
approach is less than satisfactory because the variables are in truth not normally distribu-
ted. Hence we use the matched sample as if it were a sample from the true distribution and
estimate, for instance, the expected value of some tax variable as if by simulation. The
normality assumption is used to derive the matching methodology but need not be relied
on for the rest of the estimation.

The soundness of this approach is very difficult to assess, and that question will not
be settled in this article. It is clear that a matched sample cannot be treated uncritically
as if it were a joint sample that had never been split nor had missing values. Thus the
question is not the quality of the match itself, but rather the correct use and interpreta-
tion of statistics derived from the matched sample. Our understanding of this question
is in its infancy.
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