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Sources of Uncertainty in Modeling Social
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Abstract: We describe the major sources of
uncertainty in modeling social statistics. A
more comprehensive definition of a statistical
model is developed for this setting. The
components of the modeling process enu-
merated here alert both the analyst and the
consumer to sources of uncertainty that
might not be measured well by conventional
measures of precision (standard errors)

1. Scope and Objectives

Our main goal is to enumerate the sources
of uncertainty that affect conclusions
reached from statistical models applied to
social data (or social statistics). A secondary
goal is to examine implications for the
modeling enterprise. Although measuring
uncertainty has always been an integral part
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or goodness-of-fit summaries. We also
try to assess how well some of our super-
models convey the true uncertainty in our
conclusions.
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survey; complex samples; computer revol-
ution; sampling frame.

of statistical science, we do not think it is
necessary to say very much about the
history of statistical modeling, even though
aspects of that history have direct bearing
on our topic. Stigler (1986) provides a
definitive history of statistical modeling
prior to the 20th century that can be con-
sulted for those details. This source is
important for many reasons. For example,
Stigler demonstrates how basic tools such as
regression, least squares, and correlation or
association measures were developed, to a
considerable extent at least, in the context of
social statistics and empirical social science
throughout the 19th century. Duncan (1984)
provides a history of models used to pro-
duce social measurements that is also
relevant for background. Duncan’s work
directs attention to models used to combine
multiple measurements which rely on latent
variable concepts. The problem of com-
bining multiple measurements (‘“‘multiple
indicators”) is a major issue in mo§t résearch
settings involving social statistics. In addition



to these two fine books, some insights on the
history of modeling can be inferred from
contemporary textbooks in econometrics,
psychometrics, and sociological methodology,
to name just a few areas where models for
social statistics are emphasized. In short,
adequate histories of the modeling enter-
prise are available or are at least implicit in
standard sources, so we can leap across the
historical landscape and take the history of
statistical ideas for granted.

Another major reason for downplaying
the importance of the historical details is
that the modeling enterprise has changed
radically since the 1960s. The computer
revolution is the main factor responsible for
this dramatic change. Computer technology
has fundamentally altered the ways in which
we collect, organize, and distribute data.
Inexpensive, versatile, and efficient comput-
ing tools have allowed the development of
the main statistical models used in modern
social research, most of which involve
iterative estimation of models for highly
multivariate data. For example, the tools of
modern factor analysis (or covariance struc-
ture analysis) could not have developed as
they have without cheap computing. The
same can be said for most of the econo-
metric techniques that have been so influ-
ential in recent years. Models for large con-
tingency tables and models for complex
event histories would be little more than
abstract theory without the availability of
modern computer technology, which now
includes powerful desktop hardware equipped
with flexible software. To be practical, it
seems necessary to limit the subject by con-
centrating on t** modeling enterprise as it
Nnow exists.

The topics we address are as follows. A
general definition of a statistical model
which is suited for the social-statistics
setting is presented first and contrasted with
a conventional definition. The parts of the
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modeling process that are laid out in Section
3 are appropriate for the applications we
have in mind. These parts of a statistical
model call attention to sources of uncer-
tainty that are bound to have a major effect
on inferences. The point is that we cannot
afford to ignore sources of uncertainty
brought about by a variety of statistical
decisions that precede the phase of the pro-
cess where some regression-type equations
are estimated. Finally, we briefly consider
how some of the supermodels so popular in
the analysis of social statistics attempt to
deal with the problem of measuring uncer-
tainty beyond that attributed to “sampling
error.”

2. A Statistical Model Defined

Perhaps the most natural way to define a
statistical model is to borrow from the
terminology of generalized linear models
(McCullagh and Nelder 1989). This is the
approach that serves as a standard in
mathematical statistics, particularly in those
areas devoted to solving problems that have
bearing on various applied areas.

A generalized linear model begins with
two sets of measurements, both assumed to
be available for a set of N units. (Unit “;”
is the typical case.) One set is usually
called covariates (x,, . . . , x;) and typically
regarded as fixed, ‘“‘predictors,” “explanatory
variables,” “‘exogenous variables,”” or even
“independent variables” are synonymous
with covariates, in spite of the fact that
each ostensibly synonymous term involves
different philosophies of modeling objec-
tives. The other set is usually called the
response (Y), with expectation E(Y) = p.
“Endogenous variable” and ‘“dependent
variable” are the two most common alterna-
tive names for this variable. Measurements
are taken on a sample of N units, and it is
almost always assumed that the measure-
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ments are independent across sample units.
(A more exact statement would be that the
N measurements on Y are independent, or
at least uncorrelated, given the X values
observed.)

The goal is usually to summarize the
data consisting of N measurements on x’s
and Y = y so that Y can be predicted or
explained. It is typically assumed that the set
of covariates has already been selected
(usually by someone else), although given a
relatively small set of x’s (k less than 15 or
s0), the modeling task might often be posed
as a problem in selecting a still smaller set of
covariates from a set that has already been
trimmed down to a considerable extent. A
univariate Y is taken for granted. This setup
is still general enough to allow for different
Y’s predicted with different sets of x’s, as
with a simultaneous equation model. (The
simultaneous equation model is a set of
individual “‘model equations,” each linking
a specified response to a subset of the x’s or
to other response variables taken as x’s.)

We next formulate an appropriate link
function g so that m;, = g(n,) = Z;B;x,;,
with i denoting the unit of observation and
J denoting the particular covariate (x;).
Here, B is the parameter vector of interest. It

summarizes the relationship between the

covariates and the response, determines the
degree to which the response can be predicted
from the x’s, and, in some cases at least,
permits the attribution of casual effects. We
are ordinarily interested in the size of B, the
precision of an estimator of B (such as
standard errors or functions of them), and
various summaries of model adequacy like
goodness-of-fit (which is a function of the
size¢ of B and its precision). The linear
predictor represents the systematic (or
expectation) part of the model; departures
from expectation are conceived as random
and constitute the “error” component.
Various assumptions for the error are poss-

ible, and these assumptions influence how
the size of B or its precision are determined.

All the ingredients of a statistical model
are present in the above formulation: a
response variable or a transformation
thereof, covariates (possibly including
experimentally defined factors), systematic
and random inputs assumed to determine
the response, and linearity in the parameters,
made possible by judicious choice of the link
function. A rich body of theory and a battery
of computational tools for applying the
model to data (N measurements on Y and
the x’s) are available. These include a host
of possible estimation methods (e.g., maxi-
mum likelihood, generalized least squares,
robust methods, quasi-likelihood, etc.).
(See McCullagh and Nelder (1989) for details
and references; see Thisted (1988) for com-
putational algorithms.) They also include
formal and informal (e.g., graphical) tools
for assessing goodness-of-fit, and both
formal and informal methods for detecting
bias created by excluding (or including)
certain variables when they should have
been included (or excluded). With the advent
of inexpensive computing since the early
1980s, computer-intensive tools involving
resampling ideas have been added to the
toolbox. Bootstrap, jackknife, multiple-
imputation, and cross-validation techniques
belong in this category, and they give us
greater flexibility in assessing precision and
goodness-of-fit.

For a great many settings where statistical
methodology is currently used, the general-
ized linear model provides a convenient
summary of the modeling process. It also
fairly represents the kind of statistical think-
ing that is inherent in that process. After the
modeling problem has been framed in this
fashion, the measurement of uncertainty
proceeds by selecting a link function, pick-
ing the x’s to be included, choosing trans-
formations of x’s, estimating B, and evaluat-
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ing precision and goodness-of-fit. Even
though the definition is limited to a uni-
variate response, fixed predictors, and a
linear decomposition of effects (through use
of the link function g), there is no doubt that
it covers a wide range of applications and
has been used to organize a substantial body
of statistical theory. We hasten to add that
this definition of a statistical model and the
framework that has developed along with it
have led to some of the great success stories
in modern statistics.

We think that a more general definition of
a statistical model is required to appreciate
the unique features of modeling efforts
geared toward the analysis of social data,
survey data in particular. In the definition
put forth next, the apparatus above will be
recognized as only a part of the overall stat-
istical model. That is, we define the statisti-
cal model as something quite different from
the prediction equation to be estimated.

3. A Statistical Model Defined for the
Social-Statistics Setting

It is tempting to think of a statistical model
as the equation that links outputs to both
fixed and random inputs. If we narrow the
notion of a model this far, then the defini-
tion in the previous section is as good a
starting place as any. But the main purpose
in constructing a statistical model is to make
explicit the sources of uncertainty so that
the degree of uncertainty in our conclusions
can be quantified. Our main point is that the
conventional definition in Section 2 is not
sufficient for doing this whenever survey
data or other social statistics are analyzed.
A much broader definition of the modeling
process is necessary for social statistics.
What follows is a list of parts of a statistical
model with deliberate (and sometimes
artificial) distinctions drawn among them.
We distinguish six parts.
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1. We first define a universe U* to which
inferences should pertain ideally. We try
next to collect a sample S* that would give
unbiased estimators (or unbiased inferen-
ces) for the multivariate relationships in U*.

~This means that we try to define first what a

“representative sample” should look like.
We can call $* the “target sample”; see
Kish (1987). This process can be called the
universe-sample problem.

2. We define a set of measurements to be
taken on S*. This will normally consist of
multiple measurements of specified response
variables, say {Y,,..., Y,}, where p is
the number of such variables. And it will
consist of multiple measurements of specified
predictor variables (covariates), say {X, . . .,
X, }. Judging from the complexity and size
of most surveys that are widely used, both p
and k can be quite large, which reflects
vague prior knowledge concerning what
should be measured or what can be measured
well. It is not uncommon to have scores of
X’sand Y’s. An additional distinction is that
both the Y’s and the X’s are random. Even
in cases where social experiments produce
assignments of fixed x values (for one or a
few x’s), the nature of such assignments is
usually different for human subjects com-
pared to nonhuman subjects, so it is best to
allow for some randomness in even the
predictors that might have resulted from
assignment of “‘treatments” (see Heckman
and Hotz 1989). Specifying the X’s and Y’s
and working out an operational strategy
(e.g., types of questions and question wording)
can be called the measurement problem.
We realize that many social researchers
would reserve this term for what is done
after the X’s and Y’s are available, but we
shall use a different term for that operation
below.

3. We next collect the sample (or samples)
of interest. Problems of nonresponse=as
well as incomplete lists used to develop
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the sampling frame often imply that the
sample observed or observable is quite
different from the target sample S*. Call the
sample actually obtained S; call the actual
“universe” to which S refers U. Because of
nonresponse, missing data on some or many
of the variables, attrition or mortality in
panel studies, etc., S differs from S*. Of
course, samples are collected under budget
constraints and other exigencies, but even
without these burdens we usually find that
we cannot obtain the true target sample
(S*) for a multitude of reasons relating to
the fact that we are “surveying” human
subjects. The target sample might have
size N (judged optimal a priori) whereas
the sample observed has size n, different
from (and usually smaller than) N. Most
important, the characteristics of those
that wind up in S can be very different
from the characteristics of those imagined
for S*. A statistic T calculated from S might
differ substantially in expected value from a
statistic 7* that might have been calculated
from S*. It follows that inferences based on
T might be very different from inferences
that would have been based on T*. To com-
plicate matters further, the ideal of a simple
random sample or even a judiciously strati-
fied sample can seldom be met, due to cost
or efficiency considerations. The norm is
truly complex sampling involving clustering
as well as stratification, and even quota
sampling (more often than we would like
to admit). Clustering destroys the inde-
pendence among sampled units, with per-
verse consequences that are seldom studied
carefully by researchers outside the sur-
vey houses where the data is collected.
This general problem we shall call the
sampling problem. Good references include
Cochran (1977), Kish (1987), and Groves
(1989).

4. We next organize the data and augment
it so that it can be analyzed in the right way.

Modern tools for data base management are
very important for organizing data so that
multiple levels (individual, household, local-
area) can be addressed simultaneously, or so
that temporal features of the data collection
(panel format, true event history) can be
utilized in analysis. Weights might be
assigned to “cases” in order to adjust for
stratification features of the design, attrition
in panel studies, or prior notions about the
differences between S (the actual sample)
and S* (the target sample). Finally, special
subsamples, involving selection of particular
cases from S, might be created (and usually
are created) for the analyses contemplated.
This problem is truly complex, and perhaps
it would be better to think of organization
of data (database management tools), data
augmentation (addition of weights, impu-
tation of missing values, etc.), and subsample
selection (including adjustments for the
selection) as distinct problems. We shali
refer to this general issue in an inclusive
way, as the data organization, augmentation,
and selection problem, just to keep our list as
small as possible.

5. Now the data are available and the more
usual aspects of statistical modeling come to
play. Before we can apply standard “statistical
models,” however, we have to consider ways
of combining or weighting multiple measure-
ments of both ¥’s and X’s (y’s and x’s in
the sample). Indexes of various kinds are
commonplace in most substantive research
areas, but they are ubiquitous in the analysis
of social statistics. Measurements might be
combined or weighted by some type of
factor analysis or latent structure analysis.
Of course, in some of our most advanced
technology, we think we can combine or
“average” our measurements (indicators)
and estimate the structural model of interest
at the same time. The LISREL framework
(Bollen 1989) is an example of thi¥; also see
Fuller (1987). How multiple measurements
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of the “true” variable Y* are actually
obtained from the multiple measures (i.e.,
from {Y,, ..., Y,}) shall not concern us.
Even decisions to discard some Y’s (or some
X’s) are decisions that reflect the weighting
of the multiple measurements (some Y’s or
X’s receive zero weight in the composite
index). So-called summated scales calculated
from 0-1 items or Likert ‘“‘scales” reflect
equal weighting. Principal components
reflect different weighting systems. Whether
to reduce the several measurements to just
one measure is a related concern that
goes under the heading of ‘““dimensionality
of constructs,” which can have many dif-
ferent meanings. The point is that there is
uncertainty produced by all of the steps in
the process that lead to combining multiple
measurements. The wrong Y’s or X”s might
have been discarded or they may have been
combined using techniques based on faulty
assumptions. But we have to combine
measurements somehow because it is just
too unwieldy to work with all of the available
measurements simultaneously. We refer to
this issue as the problem of combining
multiple measurements. Usually social
researchers think of latent variables (Y*,
say) in doing these operations, but the idea
of a latent variable is not necessary to
appreciate the problem, however important
it might be to develop a rationale for the
operations.

6. At this point we are ready to become
“data analysts” or “modelers” in the usual
senses of these terms. We now construct a
model in the formal sense (equation linking
systematic and random inputs to outputs),
for the subsamples selected, on the set of
measurements or derived indexes picked.
We suppose that this model applies to the
universe U* (or is it U?) for which the
original sampling frame (i.e., S*, but is it
really only suited for S?) was devised. This
model-as-equation might take the form of a
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generalized linear model, and usually belongs
to this class in fact. At this stage of the
modeling process, we usually employ likeli-
hood methods of some kind to pick covari-
ates (a subset of them anyway), assess
goodness-of-fit, estimate the B, test hypo-
theses (e.g., about subsets of B), and calcu-
late interval estimates. These methods are
often sensitive to the data actually provided
as an input to the estimation. We cannot
have data spread too thinly across the grid
of variable values possible or colinearity
problems that are too severe. The apparatus
summarized in the previous section comes
to play at this stage; indeed, most researchers
think of statistical modeling as the activity
involved with this component of the analysis.
We hesitate to call this set of operations
“statistical modeling” because there are so
many other important statistical decisions,
and so many other sources of uncertainty,
that have preceded this stage. For want of a
better term, we call this the estimation
problem. The point is that at this stage we
are mainly seeking “good” estimates as
well as the means to say how good those
estimates are.

The seasoned social researcher obviously
has many more things in mind than whether
the “final” equation estimated represents
state-of-the-art econometrics. Social research-
ers usually will not worry so much whether
the particular estimation procedure is 99%
optimal according to the criteria provided
by mathematical statistics, which more
often than not ignore all sources of uncer-
tainty created by the first five phases of the
modeling process. Unfortunately, optimality
is usually defined in terms of “pure sampling
error” for the model equation that is esti-
mated, which takes the N measurements of
x’s and y’s at face value. The methodology
of modeling summarized in Section 2 deals
with this sort of uncertainty very well. ©ur
main point is that we must seriously con-
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sider the uncertainty in inferences created
along the way by the data collection pro-
cesses so common in social research. We
next examine illustrations, examples, and
implications of this broader definition of a
statistical model.

4. [Illustrations and Implications

Our research ultimately produces estimates
from one or more equations which are
summarized with estimates of B and standard

errors. Our claim is that s(B) does not’

represent the uncertainty in our estimate of
B in a proper way. Next we try to see why
this is the case with illustrations drawn from
an ongoing project in which we are involved
(Clogg, Hogan, and Lichter 1989). The
primary goal in this project is to link labor
force behavior and poverty status in the
careers of young adults, using information
from the former to predict and explain
variation in the latter. The main source of
data is the National Longitudinal Study of
Labor Market Experiences, Youth Survey
(NLSY; see Center for Human Resources
Research 1987). This sample is presumably
a nationally representative sample of men
and women aged 14-21 in 1979. Approxi-
mately 12000 young people have been
followed for a decade, giving both annual
measurements and information on tran-
sitions among states of various kinds.

1. The universe-sample problem most
definitely makes inferences more uncertain
than they first appear. Perhaps both U* and
S* have been incorrectly defined, and
perhaps it is impossible to specify either in a
valid way. For example, to study the devel-
opment of careers in the initial stages of the
life course, the universe might be thought of
in terms of post-school activities of youth
(all youth out of school) or it might be
thought of as a combination of in-school
and post-school activities, recognizing flow
to and from these two states in the early

career. The target sample would differ
between the two cases.

Hllustration. While the universe in our
study of NLSY data is ostensibly the U.S.
population aged 14-21 in 1979, have the
military experiences of those youth been
accounted for adequately? Should the uni-
verse have contained those who already
dropped out of school? How can we assess
the ‘‘representativeness” of the sample
obtained? One standard method of answer-
ing the latter question is to compare sample
results to census tabulations (for the 1980
decennial census). But the census under-
counts nonwhite youths, youths in general,
and poor youths, and the sample frames
were derived without the benefit of the 1980
census anyway (see Clogg, Massagli, and
Eliason 1989). What makes certain groups
hard to count in a census also makes them
hard to catch in a survey; most sample
surveys are in fact samples of the census-
enumerable population.

2. The measurement problem is always
with us. Much of the effort in questionnaire
construction (Schuman and Presser 1981)
and validation of items (see Suchman and
Jordan 1990) is directed to this general issue.
Perhaps the wrong measurements have been
taken or they have been defined in the
wrong way. Perhaps self-reports are invalid,
but proxy reports are also questionable.
Most of the econometric techniques pur-
porting to resolve problems of left-out
variables and specification error apply to
this problem in some sense, but of course the
techniques associated with these topics are
attempts to deal with the problem of having
the wrong measurements.

Hllustration. The types of variables of
possible interest in a study of labor force
careers and poverty or earnings are legion.
There are nearly 1,000 variables in NLSY,
most of which pertain to theSe ‘things.
How often were they measured or how
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often should they have been measured? To
measure poverty, several indexes have
been proposed; which should be used? To
measure labor force behavior, nearly one
hundred existing variables might be used.
Measures that are faithful to the panel
format can be constructed, but most of these
would not be consistent with official labor
force measures calculated for cross-sectional
surveys. Does that present a problem? There
is no random assignment of fixed “treatment”
levels at all; all variables are responses in
some sense. How should the variables be
treated across the nine waves of the survey?
Should change measures, time-specific
period measures, event-history measures, or
other formats be used? How should earnings
be adjusted for hours or weeks worked at
possibly different jobs?

3. The sampling problem also has to
be reckoned with. Often such issues are
relegated to the footnotes of social research,
but they are probably just as important as
controlling sampling error at a later stage of
the analysis. How much does the sample
observed differ from the true target sample
(S compared with S*)? Have dependencies
among sampled units arisen that were not
taken into account? Assuming that the
sample is truly a complex one (involving
clustering), will it be possible to utilize the
information in the sample to adjust for these
facts? How well has nonresponse been
managed? Were the survey instruments
properly understood by the respondent?

Hllustration. NLSY oversamples economi-
cally disadvantaged groups. (There are 946
Hispanic males, 978 Hispanic females, 1,451
black males, 1,472 black females, 945 poor
white males, and 1,099 poor white females
in the sample.) Do the weights in the file
adequately reflect the oversampling? What
is the universe to which the weights apply?
Most variables have complicated missing
data patterns. ““Skip patterns’ that all users
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of panel data have to worry about guarantee
that most variables will be available only for
selected subsamples for some of the periods.
There is the usual level of nonresponse for
many key indicators (i.e., between 10% and
20% missing values). Attrition from the
sample is a major problem, and the weights
are supposed to adjust for this to some
extent. The response rate at the initial wave
was 87% (what were the characteristics of
the 13% who did not respond?), which is
normally thought of as a very good rate. A
full 91% of the initial sample was still in the
panel by 1986, but this means that less than
80% (.91 x .87) of the original “target”
sample is still present. Effects of interest are
likely to be small ones, and nonresponse
compounded by attrition could be a major
source of bias. (We hasten to add that
NLSY is usually regarded as a superior data
set in terms of nonresponse and the like.)
Finally, NLSY is definitely not a simple
random sample or even a simple stratified
random sample.

4. The data organization, augmentation,
and selection problem is, after all, three
separate problems. Errors creep in when
primary sampling units are reorganized for
analysis, particularly in panel studies where
“skip patterns” make it difficult to use
rectangular data files that might be made so
that existing software can be used. Weights
defined appropriately for cases might not be
appropriate once the data is reorganized;
perhaps an augmented system of weights
should be used. Imputed values for missing
data are randomly assigned to some extent.
How do we take account of this kind of
uncertainty? Sample selection is another
source of uncertainty. Should we select
white males in central cities, or nonblack
males in metropolitan areas between ages
25 and 44 who have completed high school?

Hllustration. NLSY data can be organized
in different ways; a rectangular file is avail-
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able. Can we assume that the rectangular file
is accurate or that a reorganization based on
it to emphasize event histories would be
accurate? Should we do “weighted analyses”
available with standard software packages
(what do these packages actually do?), or
should we enter the weights as covariates?
Should we reweight once we select sub-
samples of most interest? In the interests of
simplicity, should we just focus on the cases
not lost to followup? (We have found that
all cases lost to followup have been given
zero weights.) To examine earnings func-
tions, we have to make an allowance for the
fact that only those who work get earnings.
Do we want to do this through selecting
special subsamples, by using missing data
adjustments (Little and Rubin 1987), or
by using formal selection adjustments of
the econometric variety (Heckman 1976)?
Should Hispanics and blacks be kept
separate?

5. We must come to grips with the problem
of combining multiple measurements. This
creates special problems because we will
usually have discarded lots of variables that
have in fact been measured. We usually rely
on some combination of prior experience,
past research on the same topic that tells us
to pick certain X’s and Y’s and not others,
and even preliminary or exploratory analysis
of sets of indicators available. Assuming
that this narrows the range considerably,
how do we then combine the measurements
that we have? This might be done by using
some type of factor analysis, principal
components analysis, or latent structure
technique (see Bollen 1989; Joreskog and
S6rbom 1979; Lazarsfeld and Henry 1968;
Langeheine and Rost 1988). “Scales” and
“indexes” abound in social research, many
of which have no meaning apart from the
specific indicators chosen. Summing the
responses on a set of dichotomous items is
often thought to be the simplest thing, but

this procedure is more subtle than it first
appears as the large literature on scaling test
items indicates (see Clogg 1987). Producing
“factor scores” or “latent class assign-
ments” and reducing dimensionality through
clustering or components analysis are
standard tools in social research. Choosing
the variables to combine is one problem;
choosing the method to combine them
is another. Assumptions used with such
methods, such as “local independence,”
“random measurement error,” and “simple
structure” call for urgent examination (see
Becker and Clogg 1988). Most methods for
combining multiple measurements assume
random measurement error, which in a
linear model with continuous measurements
means that the size of the measurement
error is independent of the size of the true
score that we could not measure directly.
How realistic are these assumptions?
Hllustration. In the analysis of NLSY data,
we have boiled this down to four separate
questions. First, should the three main
poverty measures be used separately or in
combination? If used jointly, how should
the essentially categorical measures be
combined? Latent class methods of some
kind seem natural, but there are alternatives
that are easier to implement. Second,
the categories of labor force behavior,
measured over a decade of experience,
could run into the hundreds. Which “types”
should be selected? Can an index or two
be constructed? Association models (Good-
man 1984) might be useful, but principal
components methods, clustering methods,
and even some kinds of factor analysis
ought to be tried. Third, the covariates
related to the response (poverty status) and
“correlated” with the main predictor of
interest (labor force behavior) must some-
how be controlled. But there are scores of
these, including both categorical-and con-
tinuous measurements. Picking just a few of



16

these would be consistent with prior
research but we ought to find out how much
information is lost if information from
many other measures is discarded. FOI{rth,
because of the panel format (nine waves
will be utilized), all of the measurements
change over time, which creates even more
complexity in combining the multiple
measurements.

6. Finally we arrive at the problem of
summarizing uncertainty, conventionally at
least, in the estimation phase of the model-
ing process. We have to make inferences
from the equations to be estimated, the
so-called structural or behavior model.
Proper selection of covariates, simultaneous
inference problems, colinearities, the validity
of assumptions (only some of which can be
tested empirically), and goodness-of-fit are
Jjust some of the issues involved. The validity
of sampling error properties of the esti-
mators is another key component of uncer-
tainty. Almost all of our statistical thinking
leads to arguments based on sampling from
infinite populations under iid (independent
and identically distributed) assumptions. At
the same time, almost all of our surveys are
justified by randomization inferences (see
Cochran 1977; Little and Rubin 1987, ch. 4)
which rely on finite populations and known
probabilities of selecting cases from that
population for the sample. Usually esti-
mators of P are assumed to follow Gaussian
distributions, which implies that the log-

likelihood for the model has a quadratic

(parabolic) shape at the maximum. What is
the true shape of the log-likelihood? Is the
B + 2[s(B)] formula for interval estimates
valid? Of course, modifications of likelihood
methods such as conditional, partial, or
quasi-likelihood can be used where necessary,
but the primary justification for these late-
comers is that they have almost the same
logic (and almost the same large-sample
rationale) as maximum likelihood. By the
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time we start estimating ‘“‘the model” and
picking from the available software (or
preparing new software), this problem looks
easy in comparison to all of the other
problems that have preceded it.
Illustration. For categorical responses
(e.g., poverty status), models of the log-
linear or logit variety seem appropriate. For
continuous responses (e.g., earnings), linear
models are natural. We could analyze the
data in terms of event history (or hazards)
formulations (but the event histories are
really fairly discrete), or we could take the
“history” available from several waves as a
covariate vector that helps predict poverty
or earnings in the final waves, when sample
members are in their late 20s. In fact, the
response variables are mixtures of categorical
and continuous (or almost continuous)
variables: do we “scale” the categorical

variables or group the continuous ones?

After these issues are solved, we still have to
think about the proper way to use weights,
what subsamples to use for estimation, and
rules of thumb for adjusting the variance-
covariance matrix for complex sampling.
Will the sample sizes permit use of con-
ventional large-sample approximations?

Our goal in belaboring these points is to
give a richer appreciation of the statistical
decision making associated with the entire
process of modeling social statistics. Uncer-
tainty crops up all along the way. All six
sources of uncertainty given above must
play a role in the inferences, predictions,
or hypothesis tests that are ostensibly based
on the operations applied to the model
equations estimated at the last stage. We
should ask whether the estimates of B and
s(B), which almost all studies (ours included)
produce as an end product, measure the
relationships of interest or describe the
uncertainty about those relationships in a
manner that reflects the modeling process
involved.
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Although there is bound to be disagree-
ment over what factors in our list should be
emphasized the most, we are convinced that
social statisticians would be in essential
agreement with our claim that the modeling
process is at least this complex. The simple
fact is that uncertainty has to be understood
in a far broader sense when social data are
analyzed. And uncertainty attributable to
all these sources ought to be taken into
account when our conclusions from data
analysis are put forth. We next try to
give some reasons why this complexity
has been overlooked in building the
impressive modeling apparatus of modern
econometrics or statistics.

5. Modeling Contexts Compared

It seems apparent that there are three main
scientific contexts in which statistical model-
ing tools have developed. Each context
defines a standard frame of reference
through which sources of uncertainty can be
enumerated, and in each case the context
involved has had major effects of procedures
for measuring uncertainty and for partition-
ing uncertainty into sources.

The first context is the analysis of physical
or biological systems. Legendre and later
Gauss concerned themselves most with
physical measurements, such as astronomical
measurements, where measurement error
was the sole source of randomness in the
systems analyzed (Stigler 1986). In the
analysis of physical systems, it appears
fairly typical to have only a few measure-
ments, and some physical or biological
theory tells the analyst how the measure-
ments would be related if there were no
measurement error (often synonymous
with “experimental error’”). Good science
normally implies the necessity of just a few
sample units, and sciences in the physical or
biological areas are surely good ones.

Michelson’s experiments a century ago,
which gave conclusive evidence that light
did not travel through “ether,” were based
on just a few measurements in carefully con-
trived circumstances. (These experiments
had much to do with Einstein’s later formu-
lation of relativity theory; see Clark 1971,
ch. 3.) Variations of regression were thought
to produce the functional properties of the
system, or in modern terminology, functional
regression relationships. The modern atten-
tion to ‘‘structural representations” or
structural models comes from a different
context than this one.

The second context is that of experimental
sciences (not, of course, totally separate
from the context just considered), which led
to the elevation of experimental data as the
ideal basis for casual inference. Fisher and
many statisticians who followed him were
concerned mostly with experimental data
and rules for controlling bias and maximiz-
ing precision (reducing ‘“‘sampling error’” or
experimental error). In the classical experi-
mental model developed by Fisher and
Yates (see Fisher 1935), nonhuman subjects
or nonsocial (i.e., biological or psycho-
physical) aspects of human behavior were
the main focus of attention. The random
assignment of a few treatments to randomly
chosen subjects, using balanced designs
developed in the methodology of analysis-
of-variance, largely avoids the problem
of dealing with a multitude of variables
simultaneously. Randomization allows con-
sideration of only a few key predictors
(treatments) at a time but nevertheless
permits valid casual inferences even when
other variables that are obviously important
are unavailable. This context has led to the
empbhasis on analysis of variance and experi-
mental design, two of the mainstays in any
modern curriculum in statistics. Much of
present-day statistical methodology is built
on this model. This is indicated, for example,
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by the habit of calling Y’s response variables
and X’s factors.

The third context that we also think
provides another standard for evaluating
our methodology is the one created by
economic time series data. Units of obser-
vation are often obvious in this case; so is
the “universe” (even though it is an hypo-
thetical one) and the “sample” (which
modelers take for granted). The goal of time
series analysis, until recently anyway, was to
make predictions, not explanations of the
process, which narrows the objectives con-
siderably. This classical context for the
development of statistical reasoning is the
closest to that of social statistics, and it is
not an accident that modern econometrics,
which began with the analysis of economic
time series, provides the impetus for so
much that is now used in modeling social
statistics. Of course, in the analysis of
economic time series a great deal of attention
goes toward “whitening” the error structure
(removing correlations among units by con-
ditioning on x’s or past history).

Models for social statistics, including
survey data, are different from models for
physical, experimental, or time series data in
a great many respects. The most important
difference has to do with the data collection
process, but of course the theory behind
most efforts to collect social data is vague at
this point in time. The lack of precise theory
in social research stands in sharp contrast to
the situation in the other areas, with the
possible exception of economics. Cross-
sectional surveys, repeated cross-sectional
surveys, panel surveys, event-history surveys,
network or “interaction” surveys, and
censuses of various kinds (and samples from
them) provide the data base of modern
social statistics. Indeed, the term ‘social
statistics” is practically synonymous with
survey or census data of all kinds. The first
four components of a statistical model
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enumerated in the previous two sections all
refer to data collection or sampling, and
their status can be appreciated immediately,
and concretely, in terms of any given sample
survey. The fifth component - combining
multiple measurements — is a special problem
because surveys typically collect hundreds
of variables because it is not known exactly
which ones should be collected or which
ones could be measured well. This fact is the
main reason why statistical methods and
models for combining multiple measure-
ments, such as factor analysis, clustering
methods, and latent structure analysis, have
received so much attention in social statis-
tics. (It is important to add that these
methods have now become a part of modern
statistical methodology; see Bollen (1989) or
Dillon and Goldstein (1984).)

The data structures in social statistics are
also quite different from those in experi-
mental, physical, or time series settings. The
system under study, if it can be called by that
name, is not known in advance, and measure-
ment error cannot be regarded as the sole,
or even the primary, source of variability.
Regardiess of how much is measured, most
researchers now appreciate the fact that
there is still quite a lot of unexplained inter-
individual heterogeneity that it is hopeless
to model in terms of a hypothetically closed
system subject only to “‘experimental error.”
This stands in sharp contrast to the analysis
of physical measurements. Experimentation
of the classical variety is usually impossible,
inconceivable, or difficult to implement.
Experimentation is also costly. The term
observational studies (Cochran 1977; Kish
1987) has become a catch-all phrase for
survey or census data used in social statistics,
and this designation certainly reinforces the
view that surveys are not experiments. But it
also calls attention to the fact that relation-
ships out in the world rather than in the
laboratory are being analyzed. The goal in
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analyzing social statistics in most cases is to
explain how a system “actually out there”
works. Predicting future values of system
outputs is not the ultimate objective, at least
in most areas. (Some demographic model-
ing would, of course, take prediction or
projection or forecasting as the main goal,;
see Keyfitz 1985.) It would be fairly easy to
continue listing areas where the social
statistics setting does not overlap with that
of the classical settings. In fact, the only real
place where the several contexts overlap is
that they each lead to the production,
eventually, of a data set with N measure-
ments on some X’s and some Y’s. Where the
N cases and the X’s and Y’s come from and
what they actually signify are the crucial
‘contrasts. But everything else prior to this
differentiates the contexts from each other,
implying that the conclusions reached from
the equation estimates should be modified
somehow to reflect the differing contexts.

The main point is that the estimation
phase of the modeling effort should not
ignore the uncertainties that abound in all
phases of the modeling process. The uncer-
tainties associated with the first five phases
of the modeling process probably produce
at least as much uncertainty (unknown bias,
unknown precision) as ‘“‘sampling error” as
conceived under ideal conditions for the
equation(s) actually estimated. Perhaps with
physical data, experimental data, or time
series data it is adequate to concentrate
on the uncertainty associated with esti-
mation. (We believe, however, that even
with economic time series many of the same
problems are present.) The complexity in
the process by which social data (survey
data) are produced calls for going substan-
tially beyond this.

6. Supermodels

A distinction should be made between the
conventional statistical model (Section 2)

and the truly complex models so popular
currently in the analysis of social data. The
term supermodel shall be used for the latter.
A supermodel is a framework, including a
set of equations to be estimated, that tries to
deal with the complexity of social data in
an integrated fashion. A supermodel will
normally consist of a ““structural” or behav-
ioral model imbedded in an estimation
scheme that takes account of uncertainties
associated with one or more of the first five
phases of the modeling process. A super-
model tries to represent the complexity of
causal relations along with the likely conse-
quences of sample selection, left out vari-
ables, possible misspecification of functional
form, etc. A supermodel tries to overcome
deficiencies in sampling or measurement by
including special parameters that are often
regarded as covariates which ostensibly
adjust for other uncertainties besides sam-
pling error. We hasten to add that there
does not appear to be much concern with
some of the most important sources of
uncertainty in our list of Section 3. For
example, our most serious supermodels (or
the software for implementing them) do not
deal well with complex samples, with uncer-
tainties associated with a mismatch between
the observed sample and the target sample,
and so on.

There are many modeling frameworks
that qualify for designation as supermodels.
We illustrate with three examples.

The Contingency Table Model. Tradition-
ally, a contingency table has been thought
of as a cross-classification of categorical
variables where the distinction between
responses and factors plays no special role.
Statistical models for cell frequencies in con-
tingency- tables, usually but not always of
the log-linear variety, are prominent in
many areas of social statistics. Multinomial-
response models (e.g., logit models) arise
from this class of models by conditioning
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on the variables presumed to operate as
covariates or factors in the classical sense.

This methodological tradition has been’

developed to a great extent in the social-
statistics setting, by methodologists with
close ties to the social sciences (see Goodman
1978, 1984; Haberman 1978, 1979; Bishop,
Fienberg, and Holland 1975; Agresti 1990).
Contingency table models are attractive for
social data because of two factors: (a) most
variables collected through survey formats
are categorical in nature, and (b) effects of
variables or interactions are modeled non-
parametrically (i.e., no Gaussian assump-
tions are invoked).

Some of the uncertainties that arise
before the estimation phase can be taken
into account in contingency table models.
To take just one example, sample cases not
selected can be included as additional
categories in the table actually modeled, and
this strategy has been pursued by a number
of researchers. Procedures for adjusting
inferences for complex sampling have been
developed (Rao and Thomas 1988; also see
Clogg and Eliason 1987). The main obstacle
preventing more widespread use of such
models is the fact that they are difficult to
implement in highly multivariate situations,
say cases involving scores of variables where
the number of cells in the table would be
very large. We do not as yet have good
methods for coping with sparse data created
by creating large contingency tables. Likeli-
hood methods fail us here because MLE’s
may not even exist and goodness-of-fit tests
will often be invalid. Perhaps some Bayesian
strategies can be used to overcome these
limitations (Clogg et al. 1990), but even here
the computational burden can be excessive.
In addition, much more needs to be done to
adapt these models for the analysis of
change, for example, in panel studies. To
date, there are relatively few serious studies
in the social sciences where the contingency
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table model has been employed to study
change involving a realistic number of
covariates (see Clogg, Eliason, and Grego
1990). And it is difficult to simultaneously
estimate a realistic model combining mul-
tiple measurements of categorical variables
(latent structure or latent class ideas) and a
structural model depicting relations among
the latent variables.

The Covariance Structure Model. The
general covariance structure model pion-
eered by Karl Joreskog and his co-workers
(Joreskog and Sorbom 1979) definitely
belongs in the category of supermodels.
Bollen (1989) codifies this methodology
very well. The basic idea is that a measure-
ment model and a structural model are com-
bined into one supermodel. This framework
thus addresses the problem of combining
multiple measurements with the problem of
estimation all in one operation. Multiple
measurements of either covariates or
responses or both are combined implicitly
into indexes (‘“latent variables”); causal
relations are then represented in a set of
linear equations connecting the indexes
together. There can be no doubt that
advances in this area have been important.
Current software allows simultaneous
analysis of many variables. Multiple-group
methods add flexibility. Recent extensions
(see Bollen 1989) for categorical variables
allow at least some flexibility in dealing with
sample selection or truncation issues. The
general covariance structure model qualifies
as a supermodel, and that is why it has
received such sustained attention in social
statistics, as well as in other areas. It can be
noted that this methodology has now made
its way into mainstream statistics (see Dillon
and Goldstein 1984).

The chief difficulty with the covariance
structure model is that it deals with only the
first two moments (or cross-momentsy of
variables that comprise the data base. Tests
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of covariance structure models examine the
fit of model to variances and covariances
observed, not to the real observations or the
real “data”. How realistic is the assumption
that the data can be reduced to means,
variances, and covariances? Standard tech-
niques in this area rely strongly on para-
metric assumptions; typically, normality is
assumed for everything in the system, both
observables and unobservables. To combine
multiple measurements, an assumption of
random measurement error is often used.
How sensitive are inferences to this assump-
tion? Uncertainty in inferences should take
account of uncertainty about the validity of
this assumption, but seldom do we see this
done. The regression relationships ultimately
estimated should also be examined for
omitted variable bias (or its logical comple-
ment, included variable bias) or for other
types of misspecification. Uncertainty in
causal inferences due to misspecification is
seldom carried out beyond a ritualistic look
at model-modification indexes of various
kinds. This framework does not appear to
be generally appropriate for longitudinal
analyses, nor does it pretend to deal auto-
matically with other uncertainties besides
that associated with the last two parts of the
modeling process.

The Event-History Model. To study the
hazard rates governing the length of time
until a single nonrepeatable event occurs,
failure time models (parametric) and semi-
parametric hazards models (Cox 1972) have
proved extremely useful. In recent years,
this model has been utilized to a great extent
in the analysis of social and especially demo-
graphic data. The generalization of this
model for multiple events (e.g., types of
labor force states) that are repeatable leads
to consideration of the general event-history
model. A major statement of this super-
model appears in Tuma and Hannan (1984).
Probably the most complex and the most

general outgrowth of this modeling frame-
work is due to Heckman (e.g., Heckman
and Walker 1987). This supermodel allows
for elaborate sample selection (or left-
censoring) adjustments. Misspecification by
omitting key variables is dealt with with
both parametric and nonparametric adjust-
ments for unobserved heterogeneity, includ-
ing latent classes of the mixing distribution.
A variety of special forms of time depen-
dence in the hazard functions can be con-
sidered using a kind of Box-Cox trans-
formation. The list continues. Of all the
supermodels with which we are familiar, the
Heckman framework for event-history
analysis qualifies the best as a supermodel.
Of course, the approach constitutes a super-
model for only a certain class of problems,
namely, discrete variables regarded as
responses with time of the events recorded
continuously. One of the most important
aspects of these models is the manner in
which adjustments for right-censoring can
be made. For example, in analyzing the
duration of first marriages, it is not neces-
sary to follow a cohort of individuals until
all of them have experienced failure. But
these models assume random right censor-
ing, an assumption that is as difficult to test
as the assumption of random measurement
error, and probably just as suspect as a
factor adding uncertainty to our inferences.

We think the effort to build more realistic
supermodels has been worthwhile. But
there is a danger of becoming so enamored
with the complexity of the output that
we ignore the uncertainty in the inputs.
Our best supermodels tell us little about
the probable effects of statistical decisions
that have preceded the estimation phase of
the modeling effort. The ‘“automatic”
adjustments for measurement error, for
sample selection, or for other factors that
are built into these methodologies require
further examination. In many cases, we
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think it is difficult to test key assumptions or
even to know what assumptions really make
the model behave as it does. We need to
work much harder, with the benefit of the
computer, to understand how our results
are sensitive to assumptions buried in the
black box.

7. Concluding Remarks

The idea of statistics is not to maximize
functions but rather to measure uncertainty.
A truly adequate statistical model should
organize the way that we summarize uncer-
tainty and give us a means to partition it
into sources and ultimately to quantify it. It
is not enough, at least when analyzing social
data, to “model” uncertainty using only the
last-stage inputs to our latest maximum
likelihood routine for the most complex
model equation that our machines and soft-
ware can estimate. Our purpose has been to
encourage a broader view of the inputs that
are oftentimes taken for granted and to note
that each particular input involves statistical
decision making and therefore ought to be
assessed statistically when the final outputs of
our prediction equations are assessed.

Part of the difficulty is that parts of the
modeling process enumerated here have
been separated from each other and have
thus been dealt with by specialists having a
division of labor that prevents a holistic
view of the process. Survey houses (private
and governmental) are primarily responsible
for assessing uncertainties in the universe-
sample problem. Questionnaire construc-
tion (“instrumentation”) is a separate special-
ity. Sampling experts are called in to
recommend efficient collection designs and
to then build in case weights and other
information necessarv to exploit the data
appropriately. The survey industry has
made great progress in assessing ‘‘total
survey error” (Groves 1989), but this does
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not seem to be reflected very much in the
model outputs that we consume. Data base
management, imputation, and related
problems are also taken up separately.
Latent structure analysis as well as related
techniques used for combining multiple
measurements constitute a major industry
in itself. Finally, the consideration of formal
model equations and estimation procedures
for them is the domain of statistics, bio-
statistics, psychometrics and econometrics,
as well as parts of other areas. All of these
separate activities are commendable. Indeed,
progress in each area has been substantial
and will likely continue. At the same time,
we cannot ignore or downplay the import-
ance of all of the other sources of uncer-
tainty that give us the set of measurements
we estimate at the last stage. Perhaps the
same comments apply to the modeling
enterprise in other areas such as in the
analysis of clinical trials in biomedical areas,
but that is another story.

Although attempts to build more compre-
hensive supermodels will no doubt continue,
it is possible that other strategies ought to
be pursued in place of or in addition to
these efforts. Sensitivity analysis ought to
be taken seriously (Leamer 1978). We are
not aware of a single empirical paper on a
substantive topic where this has been done,
perhaps because journal editors and referees
alike want simple answers. Perhaps multiple-
imputation tools (Rubin 1987) or some
other sample reuse methods which use the
computer more and analytical derivations
less ought to be tried. We have not yet
realized the potential of modern computing
in our modeling efforts beyond the point of
having the capacity to maximize estimating
functions for even more complicated predic-
tion equations. It is possible that some
Bayesian strategy for the overall process

-

ought to be attempted. (Let U,, U,, . . ., U

-denote uncertainty associated with stage i in
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the modeling process; use empirical or other
distributions to model each U,; integrate
over all sources to arrive at an overall
measure for uncertainty of B; etc.) Whatever
the case, we hope that social statisticians
will accept the challenge to produce a more
realistic appraisal of uncertainty in con-
clusions reached from the analysis of social
data. '
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