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Standard Error and Confidence Interval
Estimation for the Median

Philip J. McCarthy’

Abstract: This paper discusses and compares
a wide variety of procedures (most of which
are based on resampling) that may be used
to obtain standard error estimates for the
median of a sample drawn without replace-
ment from a finite population. Confidence
intervals are also considered. These proce-
dures are evaluated by drawing repeated

1. Introduction

This study is concerned with methods for
estimating standard errors and confidence
intervals for the median when simple random
samples are drawn without replacement from
finite populations.

The median has long been used as a
robust estimate of location. Furthermore,
the asymptotic variance of the sample
median is known to be 1/4nf (), where
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samples from a number of artificial popula-
tions, as well as drawing clustered samples
from a population derived from U.S. Cur-
rent Population Survey results for the month
of September 1989.
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n is the sample size, f is the density of the
population from which the sample was
drawn and 65 is the population median
(see Wilks 1962, p. 273). Since this result
depends upon having a “large” sample of
n i.i.d. observations for a variable with a
density which is known at the population
median, it is of little or no value for the
situation that is the primary concern of
this paper — possibly small finite popula-
tions with samples drawn without replace-
ment. Thus there is no density, the sample
sizes are small, and the observations are
not independent.

During the 1930s and 1940s nonpara-
metric methods were developed for obtaining
confidence intervals for the median and other
quantiles, intervals that do not depend upon
knowing the density of the variable or upon
having large samples. But they do depend
upon having independent observations from
a continuous c.d.f. F(y). Wilks (1962, p.
333) did develop an exact nonparametric con-
fidence interval procedure for the median
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based on simple random samples drawn with-
out replacement from a finite population, but
it requires that the population elements have
different values of the variable, a circum-
stance that will not ordinarily hold.

Recognizing these problems, Woodruff
(1952) devised a method for obtaining
confidence intervals for a quantile when
samples are drawn without replacement
from a finite population. The only require-
ment is that the probability of each item in
the population coming into the sample be
known. Furthermore, Kovar, Rao and Wu
(1988) suggested a procedure for obtaining
an estimate of the standard error of the
median from these confidence intervals.

In the 1960s and 1970s, there was a great
deal of attention devoted to the use of the
delete-1 jackknife for variance estimation.
However, Miller (1974) showed that this
estimator is not consistent for nonsmooth
quantities such as the sample quantiles. In
order to obtain consistency of the variance
estimate for sample quantiles, Shao and
Wu (1986) demonstrate that the delete-d
jackknife does provide this property. In
addition, Shao (1989) argues that one can
sample the (j) recomputations of a point
estimate required for the delete-d jackknife
and still obtain consistency.

In 1979 Efron introduced the bootstrap, a
procedure where repeated samples of size n
are drawn with replacement from the ori-
ginal sample of n i.i.d. observations. This
was modified in a variety of ways by Gross
(1980), Bickel and Freedman (1981),
McCarthy and Snowden (1985), Rao and
Wu (1988), and Sitter (1990) to cover the
case where samples are drawn without
replacement from a finite population.
Many highly theoretical papers have also
appeared (e.g., Falk and Kaufmann 1991
and their cited references), but these are of
no direct concern here since this paper is
of a more applied nature.
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Our goal in this paper is to consider some
of the methods that have just been men-
tioned. Through simulation we will evaluate
their behavior in producing standard error
estimates and confidence intervals for the
median when small to moderate sized
samples are drawn without replacement
from a variety of small, artificial popula-
tions. This paper is in the spirit of McKean
and Schrader (1984), but the restriction to
samples drawn without replacement from
finite populations changes the emphasis.

2. Methods

2.1. Direct standard error estimation

The first two methods considered depend on
McCarthy and Snowden’s (1985) modifi-
cation of the bootstrap, based upon the
behavior of the sample mean. Briefly, this is:

1. If samples of n are drawn from a finite
population of N, then
> (i =)
- &

n n—1

V) =
2. If bootstrap samples of n* are drawn
from a sample with replacement, then

V(7*|original sample) =
n

1 Z (yi - y)z

1 ia

n* n
3. If we equate V(y) and V(7*| original
sample), then

« _n—=1

=17
where f = n/N, the sampling fraction. The
quantity n* as obtained from (2.1) is not
usually an integer. In the present study, we
chose n and the population size so that n*
is an integer, and have not investigated the
situation where »n* would have to be
approximated by an integer.

(2.1)
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Suppose we are given an original sample
of n (odd integer) — ordered observations
Y1), Y(2)» - - - »Y(n) With median 6— and then
draw from this sample a bootstrap sample
of size n* as given by (2.1) with median 6*.
Then it follows from an adaptation of
Efron’s argument (1982, Sec. 10.3) that the
probability that §* = V&) is given by

m' -1 *|

n
"0 = 2 T =

Jj=0

(k— 1)1‘< k — 1)"‘-1'
X 1-—
n n

m'—1 *

‘ n""_]
X (1 - —)
n

where m* = (n* + 1)/2. This result, with
n* = n, has also been given by Maritz and
Jarrett (1978) and used by McKean and
Schrader (1984). A bootstrap estimate of
the standard error of the median is there-
fore given by

(2.2)

n 12
Oums = (Z Py — 9]2) . (23)
=1

Another estimate for the standard error
of the median was developed on a more or
less ad hoc basis. It appeared interesting to
see if one could make use of the average of
absolute deviations about the sample
median, that is

n
> pwlyw — 0
k=1

Some preliminary investigations on small
populations suggested that this would
provide an underestimate of the standard
error of the median and that the normal
distribution correction, w/2, might

675

improve the situation. Hence we have used
n
Gmp = V7/2 Ep(k)b’(k) - 0|
k=1

as an estimate of the standard error.

Note that it is not necessary to draw boot-
strap samples since the preceding theory
makes it possible to compute 6,7y and Gp
directly. The required probabilities, p),
were obtained by using an APL program
on an Apple Macintosh Plus.

Rao and Wu (1988) have developed a dif-
ferent approach to the bootstrap estimation
of the standard error of the mean of a popu-
lation. Given a sample drawn without
replacement from a finite population, con-
sider drawing bootstrap samples of size m
(arbitrary) with replacement from the
original sample. This will result in the boot-
strap observations yi, )5,...,Vm. Next,
obtain the transformed values

=D (5 - )

(2.4)

yi=y+ (2.5)
In the linear case, the bootstrap variance
estimator based on the y; reduces to the
customary variance estimator V(3) =
n (1= f)(n— 1) i1 (v — )*. This has
the advantage over the McCarthy-Snowden
approach that their n* may not be an
integer. In the present study, we took
m=n and then worked with medians
based on the ;. Thus if § is the original
sample median and 6,, (52,...,53 are the
medians of B bootstrap samples, we have

B 5 _ a2\ Y2
. 0,0
”RW=<Z(—BT1)—> :

i=1

(2.6)

A corrected version of (2.5) for medians has
been proposed (J.N.K. Rao, personal
communication, 1991), but we learned of
this too late to include it in the present
simulations. ‘
Shao (1989) discusses the general delete-d



676

jackknife variance estimator. Ordinarily one
would like to enumerate all () possibilities,
but the number of these rapidly becomes
extremely large. Shao suggests that one
sample m cases without replacement from
the total number, with m approximated by
n*2. Thus, given a sample of n drawn with-
out replacement from N and associated
median é, m delete-d samples are drawn
from the n with associated medians él, ceey
6,. An estimate gy of the standard
error of @ is then given by

ssuao = ((1- 1)t
m_ R 1/2
xZ(ei—o)z> :

i=1

Sitter (1990) proposed a- bootstrap
method which he called the mirror-match
method. The procedure is:

2.7)

1. Choose 1 <n' < n and draw without
replacement a sample of n' from the
original sample of n to get y* = ()7,
y§7 o ay;’)'

2. Repeat step 1, k=[n(l1-f")]/
[#'(1— f)] times independently, replac-
ing the resamples of size n' each time
to get yi,)5,...,y Where f=n/N,
f*=n'/nand n* =kn'. Let §* be the
median of the n* observations. (If k is
a non-integer a randomization between
bracketing integers is used.)

3. Repeat steps 1 and 2 a large number of
times, B, to get 67, 03,...,0%. An esti-
mate &g;rrgg of the standard error of 6
is then given by

B R 1/2
Y (67 -6y

GsiTTER = %‘_—1)—— (2.8)

Note that if n' =1, the mirror-match
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method is the same as the McCarthy-
Snowden method described earlier.

2.2. Confidence intervals

Woodruff (1952) proposed a method of
determining confidence intervals for the
population median based upon the empirical
CDF (cumulative distribution function).
Given a sample of n observations, the empi-
rical CDF is defined to be

B =13 10<2) 9)
i=1

where I(y; < z) = 1 if y; is < z and 0 other-
wise. If we then look at the fraction of obser-
vations in the sample that will be less than the
population median, and obtain 95% (or any
other number) normal probability limits for

this fraction, the limits will be

N=n 5(3)

S+1.96 =1 n

These limits are now inverted with respect
to F,(z) leading to confidence limits for
the population median

[F'(S—l% N'"ﬂ)]
n . . _] n )

=

1 N—n .5(.5)
[F; (.5+1.96 Y1 n .
(2.10)
The median is estimated as
6=F;'(.5)
=inf (z: F,(z) > .5). (2.11)

Since F,(z) is a step function, in perfor-
ming the inversion indicated by (2.10), we
used a linear approximation to F,(z). That
is,fork=0,1,2,...,(n—1)and 0 < a <
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1/n we took

1k
F,' (; + a) =yw + Vi1 — Y
(2.12)

where y(o) = LL, an appropriately selected
Lower Limit for the population under con-
sideration. Another procedure for obtain-
ing confidence intervals for the median is
Efron’s bootstrap percentile method (1982,
Sec. 10.5). This is based on the order statis-
tics of the sample and the probabilities, p(x),
given in (2.2). Thus the interval

[V Yin—k+1) (2.13)

should provide a confidence interval for the
population median with confidence coeffi-
cient (1 — @) where, given a value of k,

k-1
a/2=Y_py+-5pw-

i=1

(2.14)

These intervals are similar in spirit to the
ordinary nonparametric confidence inter-
vals for the median based upon the order
statistics of »n independent and identically
distributed observations from a continuous
distribution. The justification for using
.5p k) is given by Efron (1982, Sec. 10.5).

Symmetric confidence intervals can
always be produced by using the normal
assumptions, namely

[é — 2428, 6+ 2026] (2.15)

where & can be any of &y, Gups GTrw>
GsHAO> O OSITTER-

It is possible to obtain bootstrap-¢ inter-
vals by using a two stage bootstrap proce-
dure as described by Rao and Wu (1988).
The steps are as follows:

1. Draw a sample from the population
and obtain an estimate §. Using a
bootstrap procedure also estimate the
standard error & of by any one of

6 u71> GMD> OF GRrw, GsHAO> OF GSITTER-
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2. From the sample drawn in (1), draw a
bootstrap sample. Let its median be 6;.
Now draw bootstrap samples from
this sample and obtain , by any one
of the 6°s as given in (1). Compute a
t value as f; = (6, — 6)/8,. Repeat
this process, leading to f1,%,1%,...
and an empirical distribution of the
’s. Compute the values t owgr and
typper such that, for example, 2.5 per-
cent of the #’s are less than or equal to
trower and 97.5 percent are less than
or equal to typpgg-

3. Confidence intervals are computed as

6 — tLowErS, 0 + tuppErd)- (2.16)

2.3.

Standard error estimates based on
confidence intervals

A number of authors have suggested that
standard error estimates can be obtained
through the use of confidence intervals,
e.g, McKean and Schrader (1984) and
Kovar, Rao, and Wu (1988). In this work,
we have considered two such estimates of
the standard error:

1. Based upon the Woodruff confidence
interval. Take (UCL — LCL)/2z,2,
where the confidence coefficient is
1 — a. Kovar, Rao, and Wu present
some empirical evidence showing that
.05 is a reasonable choice for a. Thus
we have

(UCL — LCL)

2.17
2z 25 ( )

Gwoop =
2. Based upon the order statistics of the
sample. Take

60RDER = [Yin-k+1) = Y(#)|/22a2
(2.18)
where /2 is given by (2.14) and k was

chosen so as to make a/2 as close to
.025 as possible.
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3. Simulation Study Based on Artificial
Populations

3.1. Populations and sample sizes

Two different population sizes were employed
in this simulation study: N = 25 and N = 81.
These population sizes were chosen for the
following reasons: (1) They are relatively
small so that the simulations are not unduly
time consuming and (2) they make possible
a range of sample sizes so that n* (as given
by expression (2.1)) is an integer. For
N =25 the sample sizes were n =5 with
n* =35 (as given by 2.1) and n= 15 with
n* =35. For N=281 we used n=9 with
n*=9, n=27 with n* =39 and n=45
with n* = 99. For each sample size four dif-
ferent populations were used:

e Integers 1-25 and 1-81,

e Normal Scores for 25 observations and
for 81 observations,

e 25 observations and 81 observations
drawn independently from a x? distri-
bution with 10 degrees of freedom,

e 25 observations and 81 observations
drawn independently from a x? distri-
bution with 2 degrees of freedom.

Thus, we have two symmetric populations
with differing shapes, one population
slightly skewed to the right and one popu-
lation heavily skewed to the right.

3.2. Standard error estimates

For each population and sample size, 1000
samples were drawn without replacement
from the population. For each sample and
each estimator, an estimate of the standard
error of the median was obtained and these
estimates were averaged over the 1000
samples. The averages were then compared
with the true standard error (determined
by selecting 5000 samples from the popu-
lation). The results are given in Table 1.
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The following observations are in order
concerning the manner in which these
results were obtained:

1. APL programs were written to perform
the operations, although some were
done on an Apple Macintosh Plus
while others were done on an IBM
PC/AT. A new random seed was intro-
duced for each run.

2. 6y and ,.p were computed on the
same set of 1000 samples, but a dif-
ferent set was used for each combi-
nation of population and sample size.

3. For each combination of population
and sample size, an independent set
of 1000 samples was used for each of
Grw, Owoop> OsHaos Osirrer, and
GORDER-

4. If a result seemed out of line, e.g., for
6woop (Normal Scores 25, n = 25),
another set of 1000 samples was run.
The two agreed in every instance.

5. It should be noted that for n =5 and
n =9 67 and 6y should be compar-
able. The only difference is that (2.2)
was used for &, instead of drawing
bootstrap samples while bootstrap
samples were actually selected for
6 gw- One hundred bootstrap samples
were used to compute Gz It will be
noted from Table 1 that the two esti-
mators provide almost identical
results for these cases, and for many
others as well.

6. For the Shao delete-d jackknife, the
following sample sizes were used: N =
25, n=35,d=2, m=10@all); N = 25,
n=15,d=8 m=58, N=81,n=9,
d=4, m=27;, N=81, n=27, d=
14, m=140; and N= 81, n=45,
d=22, m=302.

7. For the Sitter mirror-match, method,
the following sample sizes were used:
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Table 1. Comparison of standard error estimates (Entries are (estimated standard error)/|

(true standard error))

Method of estimation

Population and MJ MD RW SHAO SITTER  Wood Order
sample size

Integers 1—25

n=>5 1.11 .94 1.13 97 1.01 1.09
n=15 1.08 .98 1.08 .96 1.09 1.02 1.08
Integers 1-81

n=9 1.12 .99 1.10 .99 1.02 .99
n=27 1.06 .99 1.08 1.00 1.07 1.01 1.02
n =45 1.03 .98 1.05 .98 1.06 .99 1.02
Normal scores 25

n=>5 1.27 1.05 1.28 .98 1.72 1.31
n=15 1.12 1.00 1.11 .98 1.11 1.04 1.10
Normal scores 81

n=9 1.17 1.02 1.14 1.05 1.18 1.11
n=27 1.11 1.03 1.10 1.03 1.10 1.03 1.05
n=45 1.08 1.02 1.09 1.01 1.07 1.03 1.05
Chi-square 10df.25

n=>5 1.22 .98 1.23 95 1.58 1.24
n=15 1.28 1.05 1.27 1.12 1.27 1.23 1.23
Chi-square 10df.81

n=9 1.34 1.07 1.35 1.12 1.20 1.35
n=27 1.20 1.03 1.37 1.18 1.19 1.11 1.13
n=45 1.18 1.01 1.93 1.17 1.18 1.06 1.12
Chi-square 2df.25

n=>5 1.19 97 1.18 97 .94 1.13
n=15 1.14 .96 1.21 .99 1.13 .98 1.09
Chi-square 2df.81

n=9 1.26 1.00 1.23 1.07 1.03 1.17
n=27 1.20 1.03 1.34 1.14 1.19 1.03 1.09
n=45 1.15 1.01 1.87 1.09 1.14 95 1.01
Average 1.17 1.01 1.26 1.04 1.13 1.11 1.12

N=25,n=15,n =5k=>5; N=28l,
n=21,n=9, k=3; and N= 8I,
n=45, n=9, k=9. Note that
N=25,n=5and N=81,n=9 are
not included. In both cases it would
be desirable to have n' =1 and the
results would be the same as for ;.

The interpretation of the contents of
Table 1 seem fairly clear — G,,p provides

the standard error estimate with smallest
bias while G40 is close behind. The aver-
age ratios at the bottom of the table pro-
vide a rough ordering of the other methods.

3.3.  Relative stability of the standard error
estimates

The simulations described in Sec. 3.2 in
connection with Table 1 also provided
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Table 2.  Relative stabilities of the standard error estimates (Entries are (standard error of
the standard error estimates)/(true standard error))

Method of estimation

Population and - MJ MD RW SHAO  SITTER  Wood Order
sample size

Integers 1-25

n=>5 .369 344 .381 493 .196 237
n=15 287 269 252 213 316 234 213
Integers 181
n=9 .347 .345 387 436 233 222
n=217 291 .301 .284 251 293 224 242
n=45 234 .240 211 175 252 .186 222
Normal scores 25
n=>5 452 417 488 518 270 406
n=15 .309 .288 .280 234 .330 .243 230
Normal scores 81
n=9 .384 371 402 467 329 .330
n=27 302 311 284 255 327 229 275
n=45 244 244 230 .194 244 211 231
Chi-square 10df.25
n=>,5 439 .393 457 .503 241 450
n=15 402 406 373 281 424 .331 .298
Chi-square 10df.81
n=9 .609 .559 .652 .674 .466 .545
n=27 421 .396 .506 447 .469 420 412
n=45 408 .393 532 327 434 .304 .364
Chi-square 2df.25
n=>5 452 423 461 .555 .286 337
n=15 293 .296 317 .249 334 267 319
Chi-square 2df.81
n=9 .604 532 .606 .639 425 .502
n=27 .483 436 460 435 465 420 481
n=45 335 335 455 291 .326 271 316
Average .383 .365 401 382 351 .290 332
(.279)* (.279)*

* These averages were computed by ignoring the n = 5 and » = 9 entries.

measures of the relative stability of the apparent from the table, ypop has the
standard error estimates. These were Dbest stability of the seven estimators. In

computed as: terms of overall performance, the Shao
Standard error of the standard error estimate  d¢lete-d Jackkmfe dO.CS not c.lo particularly
True standard error well. However, it is interesting to observe

that this performance is heavily influenced
by the n=95 and n =9 cases where the
and the results are given in Table 2. As is medians are based on 3 and 5 observa-

(3.1)
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Table 3. Confidence interval coverage (Entries are the two-tailed error rates; an asterisk
indicates that the entry differs by more than two standard errors from the nominal rate.)

Method of estimation

Population, sample size MIJ MD RW SHAO SITTER Wood

and nominal rate

Integers 1-25

n=>5 5% 7.0* 12.6* 5.2 16.0* 4.0
10% 9.5 17.6* 8.4 19.3* 10.5

n=15 5% 4.7 7.4% 1.8 6.1 5.3 8.7*
10% 9.4 13.9* 4.1* 11.9 9.3 94

Integers 1-81

n=9 5% 6.7* 11.6* 6.2 11.1* 4.6
10% 11.6 16.9* 8.5 17.4* 9.6

n=27 5% 5.7 8.9* 3.7 6.7* 5.8 4.7
10% 10.6 13.6* 5.9* 12.2* 9.2 9.3

n=45 5% 5.3 6.7 1.9* 5.8 53 5.6
10% 10.5 13.1* 5.4* 9.9 9.7 8.7

Normal scores 25

n=>5 5% 3.2* 7.5* 49 15.2* 4.6
10% 6.1* 12.0* 7.2* 19.5* 11.9

n=15 5% 2.8* 5.9 3.3* 6.6* 4.5 7.6*
10% 7.1* 11.0 7.1* 12.7* 10.0 8.4

Normal scores 81

n=9 5% 44 9.3* 4.8 8.3 4.7
10% 8.6 14.9* 9.1 14.2* 10.9

n=27 5% 5.0 7.7* 4.6 6.7 5.0 5.8
10% 9.2 11.7 7.2* 10.2 9.9 9.7

n=45 5% 5.2 7.0* 3.6 5.6 3.8 6.7*
10% 10.9 12.6* 6.8* 11.5 7.6* 10.3

Chi-square 10df. 25

n=>5 5% 5.3 11.2* 3.5* 17.5* 5.9
10% 8.2 18.2* 6.6* 23.5* 9.9

n=15 5% 3.4* 7.8* T* 4.7 1.3* 9.8*
10% 5.9* 11.8 2.0 5.2% 3.2% 10.5

Chi-square 10df. 81

n=9 5% 2.0* 39 1.9* 5.8 4.1
10% 3.5* 7.7* 3.0* 9.9 11.0

n=27 5% 3.3 6.7* 1.7* 3.3 2.4* 4.5
10% 7.0* 11.5 5.4* 7.0* 5.2* 8.7

n=45 5% 3.7 5.3 42 49 2.1* 6.0
10% 7.1* 8.8 5.6* 7.5* 4.7* 9.2*

Chi-square 2df. 25

n=>5 5% 4.5 9.7* 3.3 13.8* 3.4*
10% 8.7 15.4* 6.3* 17.6* 114

(contd)
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Table 3. (Contd)

Journal of Official Statistics

Method of estimation

Population, sample size MJ MD RW SHAO SITTER Wood

and nominal rate

n=15 5% 3.2* 12.2* 3.2% 3.7 5.2 8.6*
10% 6.9* 17.4* 7.2* 8.9 11.1 9.8

Chi-square 2df. 81

n=9 5% 3.5* 7.7* 3.5* 8.5* 39
10% 6.7* 11.8 5.6* 12.8* 9.8

n=27 5% 3.9 7.9* 1.9* 4.1 3.6 5.8
10% 7.6* 13.5* 4.5 9.2 6.9* 10.2

n=45 5% 4.7 8.1* 3.0 7.2* 3.1* 6.2
10% 9.3 11.8 6.2* 14.0* 5.8* 8.5

tions, respectively. If the n=5 and n=9
cases are removed from the comparison,
then woop and Ggy40 have almost iden-
tical performances with regard to stability.

3.4. Confidence intervals

Confidence intervals were obtained using
the methods given in Section 2.2, together
with the samples described in Section 3.2.
Intervals based on the Woodruff pro-
cedure, (2.10), were produced with separate
sets of 1000 samples drawn from the popu-
lation. The two tailed error rates for &,
6MD’ &RW’ &SHAos &SITTER3 and Woodruff
are given in Table 3 with nominal rates of
5% and 10%. Confidence intervals based
on the bootstrap-t procedure are not
included because they are so computer
intensive that they would not ordinarily be
considered in practical applications. The
one tailed error rates were also computed,
but these were unequal for the two tails
for many cases and are not given here.
These values are summarized in one possi-
ble way in Table 4. It appears that confi-
dence intervals based on the Woodruff
procedure are superior to any of the others.

As explained in Section 2.3, confidence

intervals can also be obtained from the
order statistics of the sample. Thus the
closed interval [y, Y(n—k+1)] should have
a confidence coefficient of 1 — o where a/2
is given by (2.14). The results of the simula-
tions are given in Table 5, where the entries
are the two-tailed percent of intervals that
fail to cover. All entries are based on 1000,
or more, samples drawn from the popula-
tions. It is apparent that the results are not
particularly impressive, the overwhelming
tendency being that the observed values
are smaller than the theoretical values.

4. Simulations Based on Current
Population Survey Earnings Data

It seemed desirable that at least some of the
simulations described in Section 3 be
repeated on real data. Accordingly, Cathryn
Dippo of the Bureau of Labor Statistics
made arrangements to obtain CPS data
from the U.S. Bureau of the Census. These
data were for September 1988. After “clean-
ing,” the usable file of records consisted of
monthly earnings data from:

10,841 individuals
in 6,936 households
in 2,826 segments.



McCarthy: Standard Error and Confidence Interval Estimation for the Median

Table 4. Number of error rates out of 20,
which differed significantly from the nominal
rates of 5% and 10%

Basis of intervals - 5% 10%
MJ 9 9
MD 17 13
RW 12 17
SHAO 12 13
SITTER* 4 6
Wood 6 0

*Out of 12

The basic sampling plan was to select a
simple random sample without replace-
ment of n = 50 segments. Each sampled seg-
ment was enumerated completely. Because of
varying segment sizes, different samples pro-
vided differing numbers of households and
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individuals. It was not possible to incor-
porate stratification into the sampling plan
because of the lack of data.

The following notation will be used to
describe the population and samples:

Segment i will contain M; households.

The population will contain Z M;=
M households. i=1

Household (i, j) will contain Kj; indivi-
duals.

Segment l will contain K; individuals

where E K.

N M,
The populatlon will contain 3 3 K =
N i=1j=1
3" K; = K individuals.

i=1

Table 5. Confidence intervals based on order statistics ( Entries are two-tailed percentages of

intervals that fail to cover)

Sample size
and intervals

Integers

Normal scores

Chi-square
10 df

Chi-square
2df

n=35n"=35
ay ye)
Theory
n=15n* =35
sy Yan) 5 8
Theory
[J’(s)d’(m)]
Theory
n=9n"=9
Z40)
Theory
ey, ymn)
Theory
n=27n"=39
[.V(m) J’(ls)]
Theory
[}’(11) y(17)]
Theory
n=45n"=99
[)’(19),J/(27)]
Theory
[V(zo) J’(zs)]
Theory

3.2 2.5

5.7 5.2

2.7 3.3

16.1 14.9

43 4.1

15.3 13.0

5.5 6.0

14.2 15.5

3.9 33

58

1.6 1.6

2.2

12.8 12.7

13.5

33 2.8

3.2

15.0 14.7

17.5

5.6 7.0

6.4

16.5 14.2

16.9

7.1 7.4

8.1

17.5 16.8

19.2
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We see that y;;; is the value of the
variable (monthly earnings) for the k-th
individual in the j-th household in the
i-th segment, and that
K...
Vij = i Vi is the value of the variable
k=1

(monthly earnings) for the j-th house-
hold in the i-th segment;

0; is the median monthly earnings for all
individuals in the population;

0 is the median monthly earnings for all
households in the population;

6, is the median earnings for individuals
in a sample of 50 segments which is
used to estimate 6;

and

0y is the median earnings for households
in a sample of 50 segments which is
used to estimate 0.

The goal of this investigation is to determine
the performance of several different methods
that can be used to estimate, from a sample,
the Root Mean Squared Errors of §; and 6y
as estimators of 6; and 0y and to determine
confidence intervals for these parameters.

Preparatory to the simulation study the
values of 6; and 65 were computed directly.
The values of RMSE(;I and RSME;, were
approximated by drawing 25,000 simple
random samples of 50 segments each and
computing

25,000

2 Ora- 8;)°

a=1

25,000

1/2
RMSE; =

and

25,000 5\ 172
Z (oH,a - eH )
RMSE; = \ == :

25,000

For simplicity these will be denoted as.oy,
and oy,_.
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A number of different approaches were
used to estimate the values of %, and 04,
from a sample, and to estimate confidence
intervals for 6; and 6. These were varia-
tions on some of the methods described in
Section 2. The approaches used were as
follows:

1. The McCarthy-Snowden method for
determining the bootstrap sample size as
given by expression (2.1). In the present
instance this means that a simple random
sample of n = 50 segments is drawn with-
out replacement from the population of seg-
ments, with medians é, and éH. From this
sample, a random sample (the bootstrap
sample) of n* = 50 segments is drawn with
replacement. The medians are denoted by
é},l and é;“. This process is repeated 200
times and the standard errors are estimated
as

20 A% H*\2
Z (01, a ™ 01)
a=1

" 12
o= 199
and
200 .
2 (O*H, a 0;1)2
By = (—a=l )‘/2. @.1)
199

Confidence intervals for 6; and 8y are esti-
mated as

. " A .
01 — 20207, 01+ 24/261
and

O — Za/zé';], O+ Za/zé';[. (4.2)
It was then determined whether or not 6;
and 6y fell within these intervals.

A total of 1000 independent samples were
drawn from the population of segments and
the results were summarized as

a. The average values of the boot-
strap standard error estimates, &}
and 63.
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b. The standard errors of the boot-
strap standard error estimates, s.e.
(67) and s.e. (6%).

c. The fraction of times that §; was less
than 6; — 2,267 and the fraction of
times that 6; was greater than
51+za/2&;. Similar fractions were
obtained for 6.

2. The Rao-Wu transformation approach
as defined by expression (2.5). It had been
planned to use this expression with 7 = 50
segments, m = 50 and j replaced by either

s n K K n
Y, = (ZZZJ’U">/2K"
i=1j=1k=1 i=1
or
%

n M; n
H=( ' J’g‘)/ZMr

i=1j= i=1

Unfortunately, the squared root factor in
(2.5) becomes approximately equal to one
with this choice of n and m so that the
Rao-Wu approach reduces to the
McCarthy-Snowden approach.

3. The Woodruff method. This procedure,
with simple random sampling, for determin-
ing confidence intervals for a population
median is defined by expressions (2.9),
(2.10), and (2.11). In the present instance,
which is based on cluster sampling of indivi-
duals and households, it is necessary to
replace the squared root expression in
(2.10) by one that is appropriate for this
type of sampling. Briefly, the argument is
as follows:

a. A simple random sample of n = 50 seg-
ments is drawn without replacement from
the population of segments. The median
for individuals is ;.

b. Let a; be the number of individuals in
segment i that have values of the variable
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less than or equal to 6;. Then the squared
root expression in (2.10) is replaced by

n -2
[(1 —fn! (ZKi/n> (n—-1)"!
i=1
n 1/2
x<2(a,,.—.51<,.)2)} . (43)

i=1

The rationale for using this expression is
explained in Cochran (1977, p. 66).

c. Exactly the same steps are followed for
households with 0y, ag;, and M;.

The preceding steps lead to confidence
intervals for 6; and 0y, the error rates for
these confidence intervals, and by (2.17) to
standard error estimates. These estimates
were averaged over 1000 samples of n = 50
drawn independently from the population
of segments.

4. Balanced Repeated Replications. Strictly
speaking, the method of repeated replica-
tions, McCarthy (1966), is defined when one
is using a stratified simple random sample
with two units chosen from each stratum. A
half sample is determined by selecting one
of the two units from each stratum. This
method was not used in Section 3 with the
artificial populations. It is used here because
of its wide applicability when complex
sample designs are necessary. In the present
instance, where stratified sampling is not
used, we have approximated this situa-
tion by randomly pairing the 50 seg-
ments into 25 pairs. A set of 28 orthogonal
half samples was then obtained by
using the last 25 columns in the 28 x 28
Hadamard matrix given by Wolter (1985,
p. 324).

If §;; is the median earnings for indivi-
duals in the i-th half sample and é,,-,c
is the median for the complementary
i-th half sample, then the four esti-
mates of the standard error of 6, are
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given by

® 1/2
GBRR-H = (Z(oli - 6%/ 28)
\izd
rr-c = Y _(Bric — 0%/ 28)
i=1

arr—rul = ((GhrR-H
+83rr-c)/2)"?

O BRR—Difference —

v 1/2
(Zwﬂm%u@.

i=1

(4.4)

Similar expressions can be defined for
household earnings. Confidence intervals
are obtained by the ordinary normal
assumptions as exemplified by (2.15).

A total of 1000 samples were drawn inde-
pendently from the population of segments,
each containing 50 segments drawn without
replacement. The results were summarized as:

a. The average values of the four BRR
standard error estimates.

b. The standard errors of the BRR stan-
dard error estimates.
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c. The fraction of times that the confi-
dence intervals failed to cover the popula-
tion medians.

These results were obtained for both indi-
viduals and households.

The data from the simulations that have
just been described for the Bootstrap,
Woodruff and BRR procedures are sum-
marized in Tables 6, 7 and 8. Table 6 gives
a comparison of the standard error esti-
mates; Table 7 provides a comparison of
the stabilities of these standard error esti-
mates; and Table 8 contains the confidence
interval summaries. As is apparent from
Table 6, there are no great differences
among the biases of the standard error
estimates for the median earnings for
individuals and households from the
Bootstrap, Woodruff and BRR methods.
From Table 7 we see that the standard
error estimates are somewhat less stable
for the BRR methods, except for the Differ-
ence procedure. Table 8 contains the cover-
age errors of the confidence intervals for the
population median. Most of these are larger
than the nominal rates with none excessively
out of line. The most consistent over cov-
erages are for the BRR methods, the .05
level and for households.

Table 6. Comparison of standard error estimates for current population survey earnings data
(Entries are (estimated standard error)/(the true standard error))

Method of estimation Individuals Households
Bootstrap

(McCarthy-Snowden) 1.02 1.02
Woodruff

a=.01 99 1.02
a=.05 99 1.00
a=.10 .99 .99
BRR

Half 1.03 1.02
Complement 1.03 1.01
Full 1.03 1.02
Difference .97 96’
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Table 7. Relative stabilities of standard error estimates for current population survey earnings
data (Entries are (standard error of standard error estimates)|(true standard error))

Method of estimation Individuals Households
Bootstrap :

(McCarthy-Snowden 231 236
Woodruff

a=.01 205 204
a=.05 224 219
a=.10 235 237
BRR

Half 243 259
Complement 252 254
Full 241 249
Difference 233 236

5. Summary

This paper has collected together a wide
variety of procedures that can be used to
produce standard error estimates and
confidence intervals for the median of a
finite population when simple random
samples are drawn without replacement.
All these procedures are evaluated by
drawing repeated samples from a number
of small artificial finite populations. In
addition, a number of the procedures are
evaluated by drawing repeated samples
from a relatively large clustered population
derived from a Current Population Survey
sample.

For each population, sample size, and
estimation procedure, we determined an
estimate of the standard error of the
median, the stability of the standard error
estimate and confidence intervals for several
different confidence coefficients. Through
an oversight, the standardized length of the
intervals was not determined. For the artifi-
cial populations, the principal results are

1. The standard error estimate, defined in
expression (2.4) and based on absolute
deviations, has the smallest bias.

2. The standard error estimate based on
the Woodruff confidence intervals
has the best stability.

Table 8. Confidence interval coverage for current population survey earnings data ( Entries
are the two-tailed error rates; an asterisk indicates the entry differs by more than two standard

errors from the nominal rate.)

Nominal Rate Individuals Households
Method of estimation 01 .05 .10 .01 .05 .10
Bootstrap

(McCarthy-Snowden) .058  .092 .067* .112
Woodruff 011 .039 .077 .018* 059 .124*
BRR

Half 062 .101 .081* 114
Complement .063  .100 .077* 119
Full 062 .097 .073* 116
Difference .073* 113 .085* .131*
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3. The confidence intervals produced by
the Woodruff procedure generally
seem to be closest to the numerical
values.

A summary for the simulations based on
the population derived from a Current
Population Survey is given at the end of
Section 4.

It should be observed that many of the
procedures discussed in this paper can be
adapted to more complex survey procedures.
Some of these adaptations are described by
Kovar, Rao, and Wu (1988) and Francisco
and Fuller (1991).
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