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Statistical Analysis of Masked Data

Roderick J.A. Little’

Abstract: A model-based likelihood theory
is presented for the analysis of data masked
for confidentiality purposes. The theory
builds on frameworks for missing data and
treatment assignment, and a theory for
coarsened data. It distinguishes a model
for the masking selection mechanism,
which determines which data values are
masked, and the masking treatment
mechanism, which specifies how the mask-
ing is carried out. The framework is applied

1. Introduction

1.1. The problem

Increased concern for protecting the confi-
dentiality of respondents of censuses and
surveys is evidenced by extensive recent
interest and research in masking methods.
In the future, users of public use files and
other products of statistical agencies will
be faced increasingly with files that have
been altered to protect the privacy of
respondents. The major focus of research
in this area has been on definitions and
measures of disclosure risk (e.g., Duncan
and Lambert 1986, 1989; Paass 198S;
Bethlehem, Keller and Pannekoek 1990),
the development and choice of masking
methods (e.g., Kim 1986; McGuckin and
Nguyen 1990; Sullivan and Fuller, 1989,
1990; Greenberg 1990), and the ability of
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methods to enhance confidentiality (e.g.,
Paass 1988). This paper discusses masking
from the point of view of statistical analysis
of the resulting data. A general likelihood-
based framework is developed for masking
and analysis of microdata files, and applied
in a variety of masking settings. Analysis
issues for specific masking procedures are
discussed, and areas of future research on
the analysis of masked data are identified.
Masking methods can be applied (a)
when the data are collected, using methods
such as randomized response, (b) when the
data are supplied to the user for analysis,
for example, by deleting or altering values
in a public use tape, or (c) when the results
of an analysis are presented, for example,
by deleting cell counts in a cross-
tabulation. In this article I shall be pri-
marily concerned with (a) and (b),
although some of my remarks have impli-
cations for (c¢). A number of mésking



408

methods will be discussed here, including
randomized response; release of sub-
samples of records; suppression of cells in
a crosstabulation; deletion of sensitive
values; deletion followed by imputation of
values; addition of random noise; round-
ing, grouping or truncation; transforma-
tion; slicing files into subsets of variables;
slicing and recombination to form syn-
thetic records; reduction to aggregate suf-
ficient statistics; simulation of artificial
records; and microaggregation. Before con-
sidering analysis issues, some general
thoughts on the nature of masking are
offered.

1.2. Aggregate analysis, individual
protection

Many have noted that masking is a double-
edged sword, in that increased protection
goes hand in hand with loss of information
for analysis. It seems useful to focus not
only on complementary properties of mask-
ing and analysis, but also on properties that
distinguish the two activities. The key dis-
tinction is that masking is primarily con-
cerned with identification of individual
records, whereas statistical analysis is con-
cerned with making inferences about aggre-
gates. (The conception of aggregate analysis
is broad here, including analytical methods
such as regression as well as descriptive
summaries such as means and totals.)
Methods that exploit this distinction can
achieve great gains in confidentiality at
little cost. As a trivial example, rounding
date of birth to year of birth may dram-
atically decrease the incidence of uniquely
identifiable records in a file, with minor
implications for many aggregate statistical
analyses. On the other hand, masking
becomes inherently difficult when the dis-
tinction between aggregate and individual
is not clear-cut, as when one large firm
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dominates a business file, or analysis is
required for small subdomains of the
population.

Consider the following basic scenario for
assessing masking methods. A data snooper
attempts to identify respondents in a public
use file to obtain additional information
about them. The file includes key vari-
ables, which are known for one or more
individuals by the snooper and can be
used to identify a record, that is, establish
a one-to-one correspondence between a
record and a specific individual. Obvious
key variables are name and address, but
variables such as household composition,
age, race, and occupation can also serve as
keys (Bethlehem et al. 1990). The file also
contains target variables that provide new
information on identified individuals; these
may be sensitive variables such as sexual
activity or HIV status in a survey on
AIDS. As Bethlehem et al. (1990) point
out, a variable such as income may be sen-
sitive in some cultures and hence con-
sidered a target, but less sensitive and
more widely known in other cultures,
where it may be classified as a key.

Methods that mask the key variables
impede identification of the respondent in
the file, and methods that mask the target
variables limit what is learned if a match is
made. Both approaches may be useful, and
in practice a precise classification of vari-
ables as keys or targets may be difficult.
However, masking of targets is more vulner-
able to the trade-off between protection
gain and information loss than masking of
keys; hence masking of keys seems
potentially more fruitful. For example,
rounding date of birth as a key variable
may serve to impede identification of indivi-
dual respondents, but rounding date of
birth as a target achieves little since the
loss of information is minor. )

Another illustration of asymmetry
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between protection and information loss is
that certain masking methods afford pro-
tection with no loss of information at all
for certain analyses. For example, a file con-
taining the mean and covariance matrix of a
set of variables allows analyses based on
these statistics (such as regression) to be
carried out with full efficiency. Direct pre-
sentation of aggregate statistics seems a
simple and powerful masking technique.
The trade-off is not between privacy and
information loss but between privacy and
Aflexibility of analysis, since the data pro-
ducer’s choice of variables greatly restricts
subsequent analysis. Methods that attempt
to extend flexibility while maintaining pro-
tection, such as microaggregation or noise
injection, seem worth pursuing. Method-
ology can help, but close communication
between the analyst and the data collector
seems essential to limit-the effect of mask-
ing methods on flexibility of analysis.

2. A Likelihood Theory for Masked Data
Files

2.1. Formal theory

Three key issues arise in masking data files
for confidentiality:

a. Selection: which values in the data set
should be masked?

b. Treatment: how should the values be
masked?

c. Analysis: how should the resulting
masked data be analyzed?

These three aspects can be formalized
concisely within a model-based (likeli-
hood) analysis perspective. The following
theory combines elements of Rubin’s
(1976, 1978a) theories for treatment assign-
ment and missing data, and Heitjan and
Rubin’s (1991) theory for coarsened data.

Let X ={x;} denote an (nxp) data
matrix of n observations on p variables
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prior to masking, and M = {m;;} denote
the masking indicator matrix, with m; = 1
if x; is masked and m; =0 otherwise. Let
Z = {z;;}, where z;; represents the masked
value of x;; it is convenient to define z;; for
data that are not masked as well as for
values that are masked. For deleted data
z; would be a missing-value code; other
examples are an imputed value or a recode
representing a grouped version of x;. We
model the joint distribution of X, Z and M
with density function
X, Z,M|6) = fx(X|0)fz(Z]X)fy(M|X, Z).
(1)
Here fy(X|0) is the density for the
unmasked data with unknown parameters
0, which would form the basis for analysis
in the absence of masking; fz(Z|X) is the
distribution of the masked data values,
which formalizes the masking treatment;
and fy;(M|X, Z) represents the distribution
of the masking selection mechanism, which
formalizes the selection of values that are
masked. If the analyst knows which values
are masked and the method of masking,
then both M and the distributions of Z
and M are known. If the analyst does not
know which values are masked and which
are not masked, then M is unknown. In
other settings it may be necessary to index
the distributions of Z and/or M by
unknown parameters; for example, the
data may be subjected to an unknown trans-
formation (McGuckin and Nguyen 1990),
or noise with unknown variance added. A
full likelihood analysis would then involve
both 6 and unknown masking parameters,
with possible problems of parameter
identification.

Now write X = (Xops, Xmis), Z = (Zobs»
Z.:s), where obs denotes observed com-
ponents and mis missing components of
each matrix. Analysis of the masked data
should be based on the likelihood for 6
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given the data M, X, and Z,, which is
obtained formally by integrating the joint
density of X, Z and M over the missing
values (X5 and Z ) :

LMM&w%w=/hKMMﬂm

XfM(M|X, Z)dxmisdzmis'

The distribution of M in this expression
may depend on X and possibly on Z,
but should not depend on Z;. Hence
JuMIX,Z) = fi(M|X, Zps), and integrat-
ing over Z ;s yields

mexmzm=/&mm5amm

XfM(M|X7 Zobs)dxmis (2)

WherefZ*(Zobslx) = ffZ(le)dZmis-
Applying the ideas of Rubin (1976,
1978a), if masking selection and treatment
satisfy certain ignorability conditions then
corresponding terms in the likelihood (2)
can be omitted. Specifically, the masking
selection mechanism is called ignorable if
its distribution depends only on observed
values in the masked data set, that is

fM(M|X7 Z) =fM(M|Xobs’ Zobs)
for all X s, Zimis- (3)

The masking treatment mechanism is called
ignorable if the distribution of masked
values depends only on observed values of
X, that is

fg(ZobSIX) :fZ*(ZObSIXObS) forall Xmis-
(4)
It is easy to show that if the masking
selection mechanism is ignorable, then the

density of M can be omitted from the likeli-
hood (2), yielding the simpler form

h@=/&mWﬁ@mWN&m (5)

Similarly if the masking treatment mechan-
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ism is ignorable, the density of Z, can be
omitted from (2), yielding the expression

uw{mmmmm%mmm
(6)

Finally if both the selection and treatment
mechanisms are ignorable, the likelihood is
simply

h@=/&@WM%m )

which is proportional to the marginal den-
sity of Xps-

The size and complexity of public use files
from large surveys are difficult enough to
analyze without the additional problems
associated with masking, and analysis
based on (2), (5), (6) or (7) may be consider-
ably more complex than analysis of the
original unmasked data, perhaps involving
iterative algorithms not available in stan-
dard software packages. Hence masking
methods that yield simple likelihoods are
attractive. One strategy that can be helpful
is to treat the unobserved values of X as
missing-data, and apply tools for missing-
data analysis. Two such tools, the EM algo-
rithm and multiple imputation, are
described in the Appendix ; other refer-
ences are Dempster, Laird and Rubin
(1977); Rubin (1987); and Little and Rubin
(1987, 1989).

Approximate analysis methods might
also be considered. A simple approach is
to treat the masked values as the truth,
that is, ignore the process of masking
entirely. If masked values are not
identified, this may be the only realistic
analysis option. In the current setting this
corresponds to basing inference on the
“pseudo-likelihood” function

L*(0) = fx(Y|6) (8)
where Y = {y;} is obtained by treating the
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masked values as truth:

yy=1 " :
Y 2, if my; =1

This approach is at best approximate, and
the substitution of masked for true values
needs to make sense; for example, it would
not be appropriate if z; was a categorical
recode representing a grouping of an under-
lying continuous x;;. An interesting property
of a masking method might be how closely
an analysis based on (8) approximates a
more precise analysis based on the correct
likelihood. Also the development of simple
approximate methods that improve on the
analysis based on (8), such as Sheppard’s
(1898) well-known corrections for grouped
data, appears worthwhile.

The next two sections apply this theory to
a variety of masking problems, Section 3
concentrating on masking selection and
Section 4 on the masking treatment.

3. [Examples of Masking Selection
Mechanisms

Masking is rarely applied to the entire data
matrix. In this section we discuss strategies
that selectively mask rows of the matrix,
columns of the matrix, and combinations
of the two.

Example 1. Random Subsampling of Rows

(Cases)

Suppose entire cases are either masked or
not masked. For case i, let x; and z; denote
the vectors of true and masked values, and
let m; = 1 if row i is masked, m; = 0 other-
wise. A simple approach is to release a ran-
dom sample of the cases, as is done for
certain census products; the inclusion of a
small fraction of the original data clearly
reduces the chance of identifying particular
respondents. Random subsampling is

411

clearly an ignorable masking selection
mechanism; formally fy,(m; = 1]x;,2;) is a
constant that does not depend on X or Z.
An advantage is that analysis of the sub-
sample is straightforward. The fraction of
retained cases needs to be small to provide
significant protection, so the deletion of
the masked cases involves a severe informa-
tion loss. Nevertheless, the method has uses
for censuses, administrative record systems
or very large surveys.

Example 2. Masking of Selected Cases

It is tempting to delete or mask cases that
have high risk of identification. In surveys
of businesses, these are often large com-
panies. To represent selection of this type,
let x;; be the value of a variable X; measur-
ing the size of a firm, and suppose

Su(m; = 1|x;,2;) = m(xy,) )
a monotonically increasing function of x;;.
A special case is right censoring, where
m(x1) =1 if x; > ¢, and zero otherwise,
but other forms of m may also be useful.
The mechanism (9) is nonignorable since it
depends on the value x; which is not
observed for masked cases. Analyses that
assume the mechanism as ignorable, for
example, by treating the unmasked data as
a random sample, are generally inappropri-
ate. If a selection mechanism of the form (9)
is contemplated and X is not itself a target,
then the values of X; might be retained for
both masked and unmasked cases, with sen-
sitive variables deleted for masked cases.
The variable X can be used as a covariate
to adjust for selection on size of firm.

Example 3. Masking of Selected Columns
(Variables)

Large gains of statistical efficiency are pos-
sible by restricting masking to particular
variables; hence the choice of which vari-



412

ables are masked needs careful attention. If
values of a particular variable are either all
masked or all unmasked, then the masking
mechanism does not depend on the data
and hence is ignorable.

As noted in Section 1, it may be possible
to distinguish between key variables, which
are used to identify respondents, and target
variables, which represent additional infor-
mation that is learned after identification.
It is then useful to distinguish between
approaches that mask key variables and
approaches that mask target variables. The
argument in Section 1.2 suggests that mask-
ing of keys may be preferable to the extent
that protection can be afforded with
relatively minor information loss (for
example, by rounding a variable to remove
uniquenesses). On the other hand, some-
times masking is confined to a particularly
sensitive target variable, as in the ran-
domized response technique discussed in
Section 4.2.1.

Example 4. Masking of Selected Rows and
Columns

Further efficiency gains are possible by
restrictively masking a subset of variables
for a subset of cases. If the masking method
is deletion of a set of variables, the masked
data then have the structure of a double
sample, with unmasked variables measured
for the whole sample, and masked vari-
ables available for a subsample of cases.
The selection mechanism is ignorable if
selection depends on the values of
unmasked variables but not on the values
of masked variables; the unmasked vari-
ables can be used as design variables for
the selection of cases subject to masking.
The masking selection design might be con-
sidered explicitly as an aspect of the survey
design in surveys where confidentiality
issues are important.
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4. Masking Methods

4.1. Introduction

The following masking methods are preva-
lent in the literature:

a. Deletion, or more precisely, replacing
the observed value by a missing-value
code.

b. Coarsening, that is mapping particular
values to a set of values. Continuous vari-
ables might be mapped into an interval,
categorical variables recoded into a smal-
ler set of variables.

c. Imputation, that is replacement of the
true value by a substitute. A number of
variants are discussed below.

d. Aggregation, that is presentation of
data in aggregate form.

Generally speaking, deletion and coarsen-
ing place the added analysis burden of
masking on the user. Imputation creates a
rectangular file that is more amenable to
analysis, but modifications to the com-
plete-data analysis may be required to
allow for imputation error. Aggregation
limits the flexibility of the analysis. I now
discuss these methods in more detail.

4.2. Masking by deletion, with or without
imputation

4.2.1. Randomized response

Most masking procedures are applied after
the data are collected. In contrast, random-
ized response (Warner 1965) masks the true
response to a sensitive question at the time
the question is asked. An obvious advan-
tage is that the respondent actively partici-
pates in the masking, rather than having
to rely on later actions by the data collec-
tor. Disadvantages include the loss of
information entailed by randomizing the
response, the added complexity of the inter-
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viewing process, and the fact that the true
data are not available to the data collec-
tor, where they might be made available to
the analyst in a variety of masked forms
depending on the nature of the file.

Randomized response data can be
regarded as masked data with a deleted
binary key variable @ which indicates
whether the sensitive or control question
was answered. One approach to analysis is
to treat the values of Q as missing data
and apply missing-data techniques such as
the EM algorithm and multiple imputa-
tion. A detailed discussion for the many var-
iants of randomized response is not
attempted here; instead ideas are sketched
for one form of the method, involving an
unrelated question with known outcome
probability.

Example 5. Randomized Response with an
Unrelated Question.

Suppose the respondent is directed to
answer one of the following two questions,
depending on the outcome (known only to
the respondent) of a randomizing pro-
cedure such as throwing a fair die;
1. The sensitive question of interest; for
example, “Have you tested positive for the
HIV virus?”’; or
0. An unrelated question with known con-
stant outcome probability u; for example,
“Were you born in May or November?”
which might be regarded as having prob-
ability u = 1/6 to an acceptable degree of
approximation.

Let Q =j if question j was answered
(j = 1,0), and suppose

pQ=1)=1-p@=0)=nr

the known probability of receiving the sensi-
tive question. Let Z denote the outcome of
the randomized question, and suppose that
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p(Z=1|0=0)=p;

p(Z=1]g=1)=A()

where A(v) is the unknown probability
associated with the sensitive question (for
example, the probability of reporting HIV
positive), which depends on a vector v of
directly observed characteristics of the
respondent (age, education, etc.). If Q is
observed for every respondent, inferences
about A(v) can be obtained directly by
regressing the binary outcome Z on V using
only cases with Q = 1. For example, one
might apply logistic regression based on
the model

log[\(v;0)/{1 — \(v;0)}] = 6"v  (10)

where 0 is a vector of unknown regression
coefficients. The problem is then to imitate
this analysis when the value of Q is unob-
served for all respondents.

The loglikelihood of @ given a simple ran-
dom sample Y ={z,v;: i=1,..,n} has
the form
161Y) = 3 log{mA(v;: ) + (1 — mu}

iiz;=1

+ ) log{l — mA(v;6) — (1 — m)p}

iiz;=1
(11)

which can be maximized directly using a
scoring algorithm. Alternatively, we can
apply the EM algorithm, treating the
values of Q as missing covariates. Ibrahim
(1990) shows that for a broad class of
models with incomplete categorical regres-
sors, EM reduces to the following itera-
tively reweighted algorithm: given current
parameters 0(’), the E-step computes the
weight

Wz('t) = E(Qilzi, vis 90))

= p{Qz = 1|Zi’ Vi, o(t)}
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for each case i; the M-step computes ¢

by standard complete-data ML, with case i
weighted by w'”; for the model (11) this
corresponds to weighted logistic regres-
sion. Successive iterates {6} converge
to the ML estimate for the likelihood (11).
A simple application of Bayes’ Theorem
yields

(t) _ WA(VI', o(t))

w; =
(1= mu -+ mA(v, 09)

(12)

if z; =1, and

O {1 - A(v,,6)}
C T m (- ) + {1 - A, 00))
(13)
if z; = 0. These weights measure both the
loss of information and the gain of privacy
from masking; small weights indicate poor
ability to predict which question was
answered, but also imply low analytical
efficiency; and vice versa. Bourke and
Moran (1988) give another application of
EM to randomized response data.

An alternative analysis approach is to
multiply-impute the question indicator Q,
using draws from its predictive distribu-
tion. A valid asymptotic analysis proceeds
as follows: for the mth set of imputations,
a value 6y, of 8 is drawn from a multivari-
ate normal distribution centered at the ML
estimate @ with covariance matrix given by
the information matrix. Alternatively, 6y,
can be computed as the ML estimate of 6
for a bootstrap sample of cases, as in
Heitjan and Little (1991). Then for each
observation i, (a) the probability w;, is com-
puted from equations (12) or (13), with 6,
substituted for 8; and (b) Q,, is computed
as a Bernoulli draw with probability w,,.

4.2.2. Slicing

Suppose the data set includes two blocks of
variables X; and X, such that knowledge of
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the values of X; and X, may identify indivi-
duals in the file that cannot be identified
from values X; or X, alone. One approach
to masking is to provide separate files con-
taining data on X; and data on X, but to
omit information that allows individual
values of X; and X, to be linked. This
operation is called slicing.

Slicing can be couched as a form of vari-
able deletion by introducing a permutation
variable P that links the two files; that is,
P(i) = if the ith case in the X;-file maps
into the jth case in the X,-file. The
unmasked data then consist of X =
(X1, X, P), where rows of X; and X, are
linked by P. Slicing is then equivalent to
deleting the values of P.

The likelihood prior to masking is pro-
portional to fy(X;,X,|P,8), the density
given the true value of P. The likelihood
of the masked data is proportional to

L(6|1Z) = Z | fx(X1,X2|P, 6) (14)
3

where the sum is over all possible permuta-
tions P linking the two files.

The marginal distributions of X; and X,
are unaffected by the permutation P, so
analyses involving only X; or X, are clearly
easy. Exact likelihood analysis involving
data on both X; and X, should be based
on (14), and is complicated by the
extremely large number of permutations
involved in the summation: even evaluating
this likelihood is impractical except for very
small files. Hence approximate analysis
methods are needed. One such approach is
for the data producer to provide an
imputed permutation P from the set of per-
mutations that are relatively likely given the
values of X; and X,. Then inference is based
on fx(Xy, X,|P, 8). Replacing P by P has the
effect of switching data between cases. If P
and P are chosen to be the same except on
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Table 2. Data from Table 1 further classi-
fied by a target variable (income)

Table 1. Hypothetical census data on two
key variables at a particular location
Size of household
1 2-3 46 >6 all
1 116 284 85 10 | 495
Race 2 44 161 68 6 | 279

3 I 23 3 1 38

all 171 468 156 17 812

Size of household

123 46 >6 all

< 30K |17 48 7 3 75

Income 30-60K |18 73 50 2 1143
>60K | 9 40 11 1 61

all 44 161 68 6 279

Location (L) = 1.

a subset of cases, the effect is to limit slicing
and switching to a subset of records. A good
choice of P provides confidentiality while
yielding an approximate likelihood that is
close to the likelihood given the true permu-
tation P.

A limitation of this approach is the failure
to allow for the added uncertainty of impu-
tation of P. One possible extension would
be to multiply-impute a set of permuta-
tions, thus allowing the propagation of
error from imputing P. Ideally the permuta-
tions should be drawn from the posterior
distribution of P, which involves con-
siderable computation; however, simpler
approaches might provide a step in the
right direction.

4.2.3. Masking data with a set of

categorical key variables

An important masking problem arises when
cases can be uniquely identified in a file from
a set of K key variables (Bethlehem et al.
1990). If the key variables are categorical,
data on them can be arranged in a K-way
contingency table, and uniquenesses are
single counts in this table; the masking pro-
blem is then to avoid disclosure of target
variable values for these cases; the disclo-
sure risk may also be considered high in
cells with a small number of cases (say
between two and nine), and cases in these
“sensitive cells”” might also be masked.

Location (L) = 1, Race = 2.

Example 6. A Numerical Example with
Three Categorical Keys

Consider for concreteness a three-way table
of counts of households from a census, clas-
sified by three key variables, S = household
size (4 categories), R = Race (3 categories),
and L = Location; hypothetical data for
812 households in one location are pre-
sented in Table 1. Suppose the three cells
with counts of 1, 3 and 6 are subject to
masking methods.

Griffin, Navarro and Flores-Baez (1989)
and Greenberg (1990) discuss two
approaches to masking of tabular target
data in this setting. Suppression deletes tar-
get variable information for the sensitive
cells. Imputation replaces target data from
cases in sensitive cells by imputed data
from cases that match on some, but not
all, the key variables. (A third approach dis-
cussed by these authors, controlled rounding,
is described in Section 4.3.)

Table 2 presents data from Table 1 further
classified by the target variable income.
Table 3A shows a possible outcome of sup-
pression applied to Table 2. The method
retains the row and column margins of the
table. The income values in the last column
inside the table are suppressed (primary
suppressions), and values in the first
column are also suppressed sc that the last
column cannot be computed by - sub-
traction; these are called secondary sup-
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pressions. Columns for secondary suppres-
sions are chosen so that the amount of addi-
tional information suppressed is minimized,
although the details of implementing this
rule become more complex in more elabo-
rate cases (Greenberg 1990). Table 3B
shows one possible outcome of imputa-
tion. Imputed incomes (marked with an
asterisk) are taken from other records
from different locations that match on S
and R.

Suppression and imputation both delete
target values (here income). The main dis-
tinction is that imputation fills in the
deleted values, whereas suppression leaves
the deleted values blank. As Griffin,
Navarro and Flores-Baez (1989) point out,
suppression shows more clearly that mask-
ing has taken place, but makes secondary
analyses difficult. Imputed data are more
readily amenable to aggregation and analy-
sis by standard statistical software, and
imputation is currently the option favored
for 1990 census operations.

From an analysis perspective, note that
masking by deletion is applied selectively
here, so the masking selection mechanism
is important. Since the decision to mask is
based on sample values of the key variables
(specifically, cell frequencies in the cross-
classification by S, R and L), it is ignorable
for suppression or imputation since values
of key variables are not masked. However
analyses (and imputation models) need to
condition on the key variables to avoid
bias. In particular, analyses of target vari-
ables (such as income) that effectively dis-
card the suppressed cases are subject to
bias. Also, imputation should be based on
models (implicit or explicit) that properly
reflect relationships between the key and
target variables. For example, the imputa-
tion procedure in our example assumes
that income is independent of location, con-
ditional on race and household size. If this

Journal of Official Statistics

assumption is inadequate, then analyses of
income are subject to bias, and the imputa-
tion method should be altered to reflect the
relationship between the key and target
variables more accurately.

Aside from the appropriate choice of
imputation model, the primary analysis
problem associated with imputed data is
that the effective sample size is overstated
since imputation error is not reflected in
analysis of the filled-in data. Thus standard
errors based on imputed data are under-
stated, and tests and confidence intervals
understate variability. Multiple imputation
solves this problem while retaining much
of the simplicity of analysis of imputed
files. For more discussion of this point see
Rubin and Schenker (1986); Rubin (1987);
or Little (1988).

Suppression also differs from imputation
in that it retains the original margins, and
adds secondary suppressions to mask the
target variable. The desire to retain the mar-
gins is understandable, and has the advan-
tage that in principle it allows efficient
analyses of models for which these margins
are the sufficient statistics. However,
secondary suppressions complicate matters
considerably — Griffin, Navarro and
Flores-Baez (1989) cite the problems of
constructing secondary suppressions for a
variety of data products. Imputation dis-
torts the margins, but since the contri-
bution from imputed cells is small the
distortion should be minor.

The suppression and imputation methods
discussed here mask the target variables. An
alternative approach, which as noted in
Section 1.2 may involve less information
loss, is to mask the key variables, namely
S, R and L in the example. Bethlehem
et al. (1990) discuss this approach for micro-
data files that have uniqueness in key
variables. Masking strategies .such as
collapsing or removing key variables are
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Table 3. Table 2 masked by (A) suppres-
sion; (B) imputation; and (C) controlled
rounding.

A. Suppressed data

Size of household

123 46 >6 all

<30K |S 48 7 P 75

Income 30-60K [S 73 50 P| 143
>60K |S 40 11 P 61

all 44 161 68 6 279

Location = 1, Race = 2, P = Primary sup-
pression, S = Secondary suppression.

B. Imputed data

Size of household

12-3 46 >6 all

<30K |17 48 7 2*| 74

Income 30-60K {18 73 50  4* | 145
>60K |9 40 11  0*| 60

all 44 161 68 6 279

Location = 1, Race =
data.

2, * = Imputed

C. Controlled rounding data, rounded to
base of §

Size of household

123 46 >6 all

< 30K |15 50 10 0 75

Income 30-60K {20 70 50 5| 145

> 60K |10 40 10 0 60

all 45 160 70 5 280
Location = 1, Race = 2.

discussed, and may be reasonable if the key
variables are not the major focus of analy-
sis. Limiting the suppression of key vari-
ables to selected records can reduce the
loss of information, but note that if selec-
tion is based on low frequencies in cross-
tabulations of the key variables, the
masking mechanism is non-ignorable.
Resulting analyses that omit records with

417

suppressed key variables are valid if the
masked key variables appear as covariates,
but are biased if the masked key variables
appear as outcomes (Glynn and Laird
1986, Little 1992).

4.3. Masking by coarsening variables

4.3.1. Grouping or rounding categorical

data

Grouping or rounding can increase confi-
dentiality while retaining partial informa-
tion on a response value. Two quite
different applications of the idea appear in
the masking literature: rounding counts in
contingency tables, and rounding or group-
ing values of variables in a microdata file.
The difference is illustrated in the next two
examples.

Example 7. Controlled Rounding of Counts
in a Contingency Table
( Example 6 continued)

Controlled rounding rounds counts in
crosstabulations to a suitable base (for
example, 5), while preserving summation
of internal counts to marginal totals. Table
3C illustrates the effect of controlled round-
ing with a base of 5 on the data in Table 2.
Simple rounding of values in the table and
the margins leads to inconsistency between
the sums of the rounded values and the
rounded margins. Controlled rounding
modifies the rounded values inside the table
to remove this inconsistency. The mathema-
tical details are iricky; see for example
Greenberg (1990). The effect of rounding
on statistical analyses of contingency
tables, such as loglinear models, appears
to have received little attention. If the
degree of rounding is minor, then standard
analyses of the rounded counts may be ade-
quate. If not, then the Poisson or multino-
mial error structure might be modified to
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account for the addition of a component of
error to the counts. Controlled rounding
avoids the cumulation of rounding error in
the margins, and hence improves unad-
justed analyses based on these margins. It
introduces a complicated correlation struc-
ture to the rounded counts that might
have non-
negligible effects on statistical inferences.

Example 8. Grouping Categorical Keys
(Example 6 continued): Use of
Fractional Records

Bethlehem et al. (1990) note that combining
categories of key variables in Table 1 can
reduce the incidence of uniqueness in a
file, with some loss of information for analy-
sis. The following extension limits the infor-
mation loss for microdata files, and might
be worthy of study. Cells with small counts
are combined with adjacent cells to create a
set S of C cells, labelled {1,2, ..., C} for con-
venience. Let m be the number of records in
S, and write m = X m,, where m, is the
number of records that originated in cell c,
¢=1,...,C. Then each case in S is replaced
by C fractional cases, with fractional case ¢
being assigned weight m,/m and values of
the key variables for cell ¢; values of target
values and key variables not involved in S
are unaltered. For example, consider the
data in Table 1, and suppose the cells
(R,S,L) = (3,4,1), (3,3,1) and (2,4,1)
are combined to form a set S with
1 + 3 + 6 = 10 records. Each record in S is
replaced by 3 records with weights 1/10, 3/
10 and 6/10, (R,S,L) = (3,4,1), (3,3,1)
and (2,4, 1) respectively, and the observed
value of I and other target variables.

This microfile solves the uniqueness prob-
lem by breaking the link between the key
and the target variables in sensitive cells.
However (a) the full crosstabulation of the
key variables can be constructed from the
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weighted data; (b) full information is
retained for the target variables; (c) analy-
sis involving both target variables and key
variables not involved in the pooling into
S is straightforward; (d) correct analysis
involving both target variables and vari-
ables in S requires special missing-data
methods.

4.3.2. Grouping quantitative outcomes

Grouping of a continuous variable can be
useful at the data collection stage. For
some sensitive quantitative variables (for
example, income), a better response rate
may be achieved by grouping the variable
into categories (e.g., < 20K, 20K-40K,
40K—-60K, 60K-80K, > 80K), and having
the respondent provide the category rather
than giving the exact value. Grouping can
also be useful as a masking device to reduce
disclosure risk. Direct analyses involving
the grouped form of the variable follow
standard lines for an ordered categorical
variable. For analyses involving the under-
lying exact values of the variable, the litera-
ture on grouped or interval-censored data
can be applied (e.g., Kulldorff 1961; Hassel-
blad, Stead and Galke 1980; Heitjan 1989).

Example 9. Masking by Grouping a
Continuous Variable

Suppose X = (xq,...,x,)7 is a random
sample from a continuous distribution
with density fx(x;|@); for example, the nor-
mal distribution with mean 6; and variance
0,. Let z; represent a grouped version of x;
with J categories, defined by known cut-
points {c;;j=0,...,J}, where ¢ =—00
and c; = oo; thus z; given x; has the degen-
erate distribution

1, iij_l <Xx; < Cj

fo(zi = %) = {0, otherwise (j = 1, ..., J).

The masking mechanism masks cases with
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z; = j with known probability =;
Su(m; =1z, =j,x;) = T, J= 1,..,J.

This mechanism is ignorable since masking
depends on values z; that are known for
all cases (whether or not they are masked).
The likelihood of 0 given the masked data is

L(6) = HfX(xilo) H
m;=0

m;=1

/ fx(x]0) dx
I(z;)

(15)

where the region of integration I(z;) is
(¢j-1,¢;) if z;=j. In particular, suppose
that cases with large values of x; are vulner-
able to disclosure. Setting J = 2, 7; = 0 and
7, = 1 results in all cases with x; > ¢; being
masked, yielding censored data with known
censoring point c;.

Likelihoods such as (15) can be analyzed
by treating the true underlying values as
missing and applying a missing-data tech-
nique such as EM; three examples are given
in Little and Rubin (1987, Sec 11.3). Multi-
ple imputation might also be used here, pro-
viding multiple imputes of the true value
within the chosen interval. A simple tech-
nique that might yield satisfactory approxi-
mate inferences is to create multiple
imputations by drawing randomly from a
distribution within each interval; if the
intervals are small then a uniform draw
within the interval may be adequate (Heit-
jan and Rubin 1990; Little 1991). How-
ever, attention needs to be paid to the
extreme categories. In the case of income,
the lowest category is bounded by zero,
but the highest category is unbounded.
Imputation for the latter requires some
information about the right tail of the distri-
bution, at a minimum, an upper bounding
value for the interval. In particular, analy-
sis of highly skewed variables such as
income can be very sensitive to the assump-
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tions made about the right tail of the distri-
bution (Rubin 1983). Imputing a random
draw within the interval can also create dis-
tortions when the imputed variable is used
as a predictor in regression, particularly
when the variables are highly correlated.
Sheppard’s corrections can improve estima-
tion in such settings (Dempster and Rubin
1983).

4.4. Masking by noise injection

One approach to masking is to delete and
impute the sensitive values, as illustrated
in Example 6. I have argued elsewhere
(e.g., Little 1988) that imputation for miss-
ing data should be based on a model (impli-
cit or explicit) for the predictive distribution
of the missing values given the observed
data; that the imputes should be drawn
from this predictive distribution; and that
the method of analysis of imputed data
should reflect imputation error, using mul-
tiple imputation of the missing values
(Rubin 1978b, 1987), or some other
method. I use the term predictive imputa-
tion to describe imputation methods based
on this philosophy.

Imputation for masking differs from
imputation for missing data in an import-
ant respect: the underlying true values of
the data are known to the data producer.
Information about the true values might
be supplied to the user in a form that does
not compromise confidentiality, for
example, by providing marginals as in
Table 3A or the mean and covariance
matrix of continuous data, or grouping
variables as discussed in Section 4.3. This
section discusses another way of exploiting
information in the true values, namely
imputing by adding noise. The relationship
between predictive imputation and noise
injection is examined in the following
example.
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Example 10. Adding Noise to Normal Data

Kim (1986) describes the following method
for masking p continuous variables. Sup-
pose the data consist of a random sample
{x; = (Xi1, - Xjp) : 1 <i<n where x; has
mean g and covariance matrix ¥ = {oj}.
Let X and S denote the sample mean and
covariance matrix, respectively, and let e}
denote a random draw from the p-variate
normal distribution with mean X, covar-
iance matrix ¢S. Kim proposes replacing x;
by the masked vector z;, with jth component

z,=a(x;+€)+ (1 —a)x (16)

where a is chosen so that z; has covariance
matrix ¥. Ignoring small sample cor-
rections, a = 1/4/1 + ¢. Sullivan and Fuller
(1989) propose a similar method for nor-
mal variables, and extend it to non-normal
and categorical variables by preliminary
transformations to normality.

The following slight reformulation of this
method provides a link with predictive
imputation. Let e; = ¢;//c be a normal
deviate with mean 0 and covariance matrix
S. If x; was missing but X and S were
known, one method of predictive imputa-

tion replaces x; by
)A(i =X + €;

(17)

the sample mean plus a random normal
deviate. Consider masked values of the form

(18)

for 0 < ¢ < /2. This method has the fol-
lowing properties

z; = X + cos ¢n(x; — X) + sin ¢ne;

A. The first two moments of z; match those
of x;, ignoring O(1/n) terms. More specifi-
cally, standard moment calculations yield

E(z;) = p; Var(z;) = {1 + (1 —cos ¢)/n}
Cov(z,z) = sin’ ¢n(S/m)(i #j).  (19)

B. z; =x; when ¢ =0 and z;=X; when
¢ = m/2. Hence this form of masking per-
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turbs the true value towards a predictive
imputed value (17); the angle ¢ provides
an obvious geometric interpretation for
this shift. The extreme case ¢ = /2 corre-
sponds to replacing the true data {x;} by
an equal number of simulated cases {z;}
with the same mean and covariance matrix
as the sample, a special case of the method
in Example 11 below.

C. If x; is multivariate normal, then z;
defined by (18) is also multivariate normal.
If x; is not normal, then the convolution of
x; with normal noise produces masked
values that are more normal than the origi-
nal values. Other forms of predictive impu-
tation avoid the normal assumption by
drawing from empirical distributions of
residuals, here the set of values {x; —X}.
However the convolution of the true values
with similarly-distributed residuals still
tends to distort the distribution of the
masked values towards normality. Thus
the method seems peculiarly suited to nor-
mal data, and indeed the extensions devel-
oped by Sullivan and Fuller (1989, 1990)
involve transformations to normality prior
to masking. These extensions appear pro-
mising but in need of further empirical vali-
dation.

D. From (A), p, ¥ and functions of these
parameters can be consistently estimated
by treating the masked values z; as if they
were the true values x;. However this
approach does not yield valid inferences
for parameters, since it does not account
for the added uncertainty from masking.
In particular inference for p is based on
the masked sample mean z, which from
(16) has mean p and covariance matrix

_ cosg(1 —cos qb))

X
var(z) = — <1 +sin® ¢ p

By comparison, the unmasked estimate y
has mean p and covariance matrix X/n.
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Hence correct inferences about means
requires inflation of the usual estimate of
standard error by a factor

\/1 + sin? ¢ — cos (1 — cos ¢)/n,

which ranges from 1 when ¢ =0 to V2
when ¢ = /2. Similar factors could be
worked out for analyses based on other
parameters, such as functions of ¥. These
results imply that for valid point estimation
the analyst does not need to be told the
value of ¢ used by the masker, but for valid
inferences the analyst needs to know ¢, or
variance inflation factors for the effects of
masking.

An alternative approach to propagating
the masking error is to multiply impute
draws of x; from the predictive distribution
of x; given z;, which is normal providing the
original data are normal. The resulting
data set can be analyzed using the simple
methods described in Rubin (1987), and
outlined in the appendix.

E. The masking method (18) can be general-
ized by replacing X by the predicted mean
given a set of covariates ¢;, and e; by a
draw from the residual (error) distribution
of x; given ¢;. In particular, categorical vari-
ables, which appear to fit rather awkwardly
in this masking scheme, might be left
unmasked or masked by some other
method such as grouping, and noise-
injection applied to the continuous variables
conditional on the categorical variables,
with predictive imputations based on a
MANOVA model. Mixed strategies of this
kind appear a fruitful topic for further
research.

F. Point (D) shows that there is a penalty in
information loss from noise injection. One
might limit the loss by confining noise
injection to a subset of cases that are vulner-
able to disclosure. As noted in Section 3, a
mechanism that selects based on the value
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of x;;, for example, censoring

1, ifx“ >,
0, ifx;<c

Su(m; = 1z, x;) = {

is not ignorable, since x;; is not observed for
masked cases. The likelihood ignoring the
masking mechanism is

L,(0) = [T sx(x6)
m;=0

x H /fZ(zi|X)fX(X|0) dx

m;=

which differs from the correct likelihood

L(0) = H Sx(x16)
m;=0

< [1 [ fotalxsixie)ex

m=1x>ec

where the integral is restricted to the region
of censoring of x. One ignorable selection
scheme is to stratify on one variable and
apply different masking rates across strata.

4.5. Simulation artificial records

An alternative to deletion or masking is to
simulate artificial records and add them to
the file, with or without inclusion of the
original records. The following example
shows implications for inference in the
simple context of Example 10.

Example 11. Simulating Continuous Data

Suppose the data {x;: 1 < i< n} are as in
Example 10, and an additional m records
{x;: n+1<i<n+m} are simulated to
have the same mean and covariance struc-
ture, using the predictive imputation
method (17). Suppose now r of the original
cases and the m new cases are included in
the file, and write A =r/n, § = m/n. The
estimate of the mean p is then
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Bgim = (ril +m(i+é))/n
A1+ 9% +(1- MK fe
N n(A+96)

where X, is the mean of the r included true
values, X, is the mean of the n — r excluded
values, and € is the mean of the added noise
for the m simulated cases. This estimator is
unbiased for p with variance

§{1+6+,\(1—,\)}
n

(A+6)?

ignoring higher order terms. Hence the pro-
portional increase in variance over the
unmasked estimator X is p= (6 + A(1-
2))/(A + 6)>, which provides a correction
factor for inference based on figy. For
example, replacing the n cases by n simu-
lated cases yields 6 =1, A=0 and p=1,
or a 100% increase in variance; adding 6n
simulated cases and retaining all the origi-
nal cases yields A =1, and p = §/(1 +6)%,
which is near zero when § is small or large
and has a maximum of 0.25 when 6 = 1.
Multiple imputation of simulated data is
proposed in Rubin (1993).

Note that the adjustment to the variance
requires knowledge of the fraction of simu-
lated records in the file. If this analysis is
extended to subsets of the data, then the
proportion of simulated cases in the subset
is also needed.

4.5. Masking by reporting aggregate
summaries

It is clear that if data masked by predictive
imputation, noise injection or simulation
are analyzed in the same way as the
unmasked data, some distortions result.
An alternative approach is simply to pro-
vide directly the sufficient statistics for par-
ticular analyses, such as the sample mean X
and covariance matrix S in Examples 10 and
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11. Since no changes are made to the data,
analysis can be carried out using standard
methods. Other information, such as the
one-way marginal distributions of the vari-
ables, might also be provided if necessary.
A challenge for previously-described mask-
ing procedures is to provide practically use-
ful additional information over this simple
approach.

The sample mean and covariance matrix
are the usual set of summary statistics men-
tioned in applications, but this choice is
clearly not appropriate for categorical vari-
ables. However, aggregation of data can
also be applied in non-normal settings.
From a modeling perspective, X and S are
sufficient statistics for the multivariate nor-
mal distribution. Sufficient statistics under
other exponential family distributions are
also suitable summaries, for example, low
order marginal counts for a contingency
table, which are sufficient for certain log-
linear models, or the sample size, mean
and covariance of a set of continuous vari-
ables within cells defined by a set of catego-
rical variables. The latter allow fitting of
regression models for continuous variables
that include main effects of the crossclassi-
fying variables, and interactions with those
variables. Microaggregation, the presenta-
tion of aggregate information for sensitive
cases, can be viewed as an extension of
this idea, and seems worthy of more study.

Disadvantages of the approach include
lack of flexibility in the choice of variables
to be analyzed, and the relative inability to
do exploratory analysis and model-check-
ing. Also as a practical matter, analysis pro-
grams are needed that will accept the data in
aggregate form. For example, current
regression packages often allow input of
the mean and covariance matrix, but log-
linear model packages require modification
to accept data in the form of low order
marginals.
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5. Concluding Remarks

There is clearly a close relationship between
masked data and missing data, and hence
the history of research in missing data pro-
vides an interesting perspective on the
masked data problem. My own view (e.g.,
Little and Rubin 1987) is that missing-data
research progressed from studies of ad-hoc
“fixes” (such as fill-in methods) to more
rigorous methods based on models for the
data and missing-data mechanism. As the
importance of masking for data confidenti-
ality increases, there may be a parallel tran-
sition from ad-hoc approximate analysis,
such as imputing confidential data and
then treating it as the truth, to more careful
analyses that take into account the masking
process; the work of Kim (1986) and Fuller
and his colleagues (Fuller 1993) provides
important steps in this direction.

This paper has presented a model-based
perspective for the analysis of masked
data. The likelihood-based approach
shows explicitly how masking activities
can be modeled and incorporated into the
analysis, and provides a rigorous basis for
creating and assessing masking methods.
Although a full likelihood-based analysis
may not be feasible in many settings, I
think the modeling perspective provides a
useful basis for assessing simpler approxi-
mate methods. Future work might provide
more detailed applications of the modeling
approach to specific masking procedures.

Appendix

The EM Algorithm and Multiple Imputation

1. The EM Algorithm

As in Section 2.1, let X = {x;} denote an
(n x p) data matrix prior to masking, M =
{m,;} denote the masking indicator matrix,
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with m; =1 if x; is masked and m; =0
otherwise. Let Z = {z;}, where z; rep-
resents the masked value of x;;, and write
X = (Xobs> Xmis) Z = (Zobs, Lnis), where
obs denotes observed components and mis
missing components of each matrix. Given
a model that specifies the distribution of X
with density fy(X|6), analysis of the
masked data should be based on the likeli-
hood for 6 given the data M,
Xobs and Zgy,,, which can be written in the
form

L(0|M7 Xobs Zobs) = /fX(Xlo)

X fZ* (Zobslx)fM(M|X7 Zobs) deis-
(A1)
Explicit ML estimates of 8 that maximize
(A1) are often not available. Standard
iterative algorithms such as Newton—
Raphson or scoring can be used in such
cases. However, the ubiquitous EM algor-
ithm (Dempster, Laird, and Rubin 1977,
Little and Rubin 1987, Ch. 7 and 11) is an
alternative approach that can be easier to
program, and provides insights into sim-
pler incomplete-data methods based on
imputation. Let
l(olM’ Zys, X) = lOg{fX(XW)fZ*(Zobslx)
XfM(M|X7 Zobs)}
denote the loglikelihood of @ based on M,
Z., and hypothetical complete data
X = (Xobs, Xmis)- Let 8 denote an estim-
ate of @ at iteration ¢ of the algorithm.
Iteration ¢ + 1 consists of an E-step and an
M-step. The E-step consists of taking the
expectation of /(8|M, Zs, X) over the con-
ditional distribution of X, ; given X,ps,
evaluated at @ = ). That is, the expected
loglikelihood

0(616”) = [ 161M, Zess, X)

><f(Xmislxobs’ M, Zobs» 0= e(t)) dxmis

is formed.
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The M-step determines 6! by maxi-
mizing this expected loglikelihood

Q(0(1+1)|9(t)) > 0(016"Y), for all 8.

The new estimate 8+ ") then replaces 8 in

the next iteration. It can easily be shown
that each step of EM increases the likeli-
hood of 6 given X. Also, under quite gen-
eral conditions, EM converges to the
maximum of this function. In particular, if
a unique finite ML estimate of 6 exists,
EM will find it. If the masking mechanism
is ignorable, then the distribution of M
can be omitted; specifically, the E-Step
computes

0(0)6") =

/1(0|Zobsa X)f(xmis|xobs7 ZObS7 0= o(t))dxmis

where

l(elzobsa X) = lOg{fX(Xle)fZ*(Zobs|X)}'

EM is particularly useful when the M-
step is noniterative, or available using exist-
ing software. Note that the algorithm does
not involve computing and inverting an
information matrix at each iteration. This
feature can be useful in problems with
many parameters, since the information
matrix is square with dimension equal to
the number of parameters. Standard errors
based on the inverted information matrix,
however, are not an output of EM and
hence if required need a separate com-
putation. (Other methods of computing
standard errors, such as profile likelihood
or sample re-use methods, do not rely on
the information matrix and may be prefer-
able with moderate-sized samples.)
Although EM is reliable in that it increases
the likelihood at each iteration, it can be
painfully slow to converge in problems
where the fraction of missing information
(defined in terms of eigenvalues of the infor-
mation matrix) is large.
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2. Multiple Imputation

Imputation creates a rectangular data set
convenient for subsequent analysis by
replacing masked values X, by estimates
based on the masked data (M, Xps, Zobs)-
Methods that supply a single impute are
usually deficient in that they do not reflect
imputation error; standard errors from the
filled-in data are too optimistic. Rubin
(1978, 1987) proposes multiple imputation
as a solution for this problem. Two or
more (say, m) values are drawn from the
predictive distribution of the missing
values, and then complete-data analyses
are repeated m times, once with each impu-
tation substituted. Let é, be the estimate of a
particular parameter 6 from the /th analysis,
and let ¥; be the estimated variance. The
final estimate of 8 is § = ¥,,/m, with esti-
mated variance

=241 +m)st (A2)
where sﬁ, = X,;¥;/m is the average variance
within imputed data sets and sj =
%,(6, — 6)*/(m — 1) is the between-imputa-
tion variance, and reflects uncertainty in
the imputation process. Large-sample infer-
ence for 6 is based on treating (§ — §)/9 as ¢
distributed with v = (m —1)[1 + {m/(m +
1)}s% /s3] degrees of freedom. For theory
underlying the method and practical
examples, see Rubin and Schenker (1986)
and Rubin (1987).
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