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Statistical Disclosure Control and Sampling Weights

A.G. de Waal and L.C.R.J. Willenborg'

Before a microdata set is disseminated by a statistical office it should be checked whether
sensitive information about individual respondents could be disclosed by a potential intruder.
The procedure to check whether the dissemination of a microdata set could lead to disclosure
of sensitive information usually amounts to examining how much so-called (indirectly)
identifying information is contained in the microdata set. In case too much identifying
information is contained in the microdata set it is considered unsafe for release. When a
statistical office releases a microdata set, sampling weights are usually included to facilitate
analyses. A description of the auxiliary variables, their categories and the sampling method
underlying the weights is usually also provided. Unfortunately, the sampling weights,
innocent as they may seem, can provide additional identifying information to an intruder
when they are based on identifying information that is not contained in the released microdata
set. A simple idea to prevent disclosure from sampling weights would be not to publish
which weight corresponds to which stratum. Surprisingly, this is not sufficient. In this article
we demonstrate that in many cases an intruder will be able to determine which stratum
corresponds to a specific weight given sufficient knowledge about the population.
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1. Introduction

Before microdata are disseminated by a statistical office, it should be checked whether this
could lead to the disclosure of sensitive information about individual respondents. Such
disclosure should be avoided to prevent the privacy of respondents being endangered.
To disclose sensitive information about an individual respondent an intruder, i.e., someone
who is attempting to disclose sensitive information, would first have to identify to whom a
particular record in the microdata set belongs. This is called re-identification. To prevent
re-identification, it is usual first to examine how much (indirectly) identifying information
is contained in the microdata set. Examples of such (indirectly) identifying information are
the age and domicile of a person. Directly identifying information, such as the name or the
address of a respondent, should never be included in a microdata set, of course, because
this would immediately lead to re-identification. If too much identifying information is
contained in the microdata set it is considered unsafe for release. In that case suitable
statistical disclosure control (SDC) measures must be taken. Further discussion on SDC
for microdata is given by Duncan and Lambert (1989), Bethlehem et al. (1990), De
Waal and Willenborg (1996), and Willenborg and De Waal (1996).
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When a statistical office releases a microdata set, sampling weights are usually included
to facilitate analyses. A description of the auxiliary variables, their categories and the
sampling method underlying the weights is generally also provided. Unfortunately, the
sampling weights, innocent as they may seem, can in some cases provide additional
identifying information to an intruder when they are based on idenﬁfying information
that is not contained in the released microdata set. For instance, Statistics Netherlands
does not release regional information in its microdata sets that are meant for public use.
However, regional information may be used to calculate the sampling weights. If an
intruder could derive the regional information from the sampling weights the SDC-rules
would be violated. In general, an intruder should not be able to derive identifying informa-
tion from the sampling weights that may not be included in the microdata set according to
the SDC-rules. The problem is not that inclusion of the sampling weights in the microdata
set necessarily leads to an unacceptably high disclosure risk, but rather that the SDC-rules
may become inconsistent. Sampling weights may enable an intruder to obtain identifying
information he or she is not supposed to possess.

Sampling weights can be determined by means of several procedures. In this article we
consider three kinds of such procedures, namely poststratification, linear weighting and
multiplicative weighting (the latter is also called raking, raking ratio estimation or iterative
proportional fitting). In each case, we suppose the weights are based on population infor-
mation on categorical auxiliary variables. We refer to the cells in the cross-classification of
these variables as strata. Details on linear weighting can be found in Bethlehem and Keller
(1987) and on multiplicative weighting in Deville and Sirndal (1992). As the methods
to derive additional identifying information are different for poststratification on the one
hand and linear and multiplicative weighting on the other hand, we distinguish between
these two situations.

A simple idea for protecting disclosure from sampling weights would be not to publish
which weight corresponds to which stratum. Surprisingly, this is not sufficient. In this
article we demonstrate that in many cases an intruder will be able to determine which
stratum corresponds to a specific weight when his or her knowledge about the population
is sufficiently large.

In Section 2 we describe a method to match the sampling weights and the strata in case
poststratification was used to calculate the weights. In Section 3 we describe two methods
for the cases that multiplicative and linear weighting was used. The article is concluded
with a short discussion in Section 4.

In the remainder of this article we assume that the sampling weights have been calcu-
lated by using identifying information that may not be included in the microdata set, and
that no explicit reference to their strata is made. We also assume that an intruder knows the
population frequencies that have been used to evaluate the sampling weights (almost)
perfectly. This is quite a plausible assumption as information provided by the auxiliary
variables is often published by the statistical agency itself. Moreover, we assume that
sampling weights corresponding to different strata are different. Again this is a plausible
assumption as we are dealing with real-life data. The same assumptions are made by
Van Kouwen (1993), who describes the main ideas of the methods to obtai_g additional
identifying information from the sampling weights. However, Van Kouwen does not
describe how to apply his method for general numbers of categories of the auxiliary



de Waal and Willenborg: Statistical Disclosure Control and Sampling Weights 419

variables, but only provides some examples for specific cases. The present article is an
extension of Van Kouwen (1993).

2. Poststratification

The case of poststratification is the simplest. By counting the frequency of a certain weight
in the sample and by multiplying this frequency by the weight an intruder can determine the
number of units in the population that belong to the poststratum that corresponds to this
weight. Because the intruder has a (nearly) perfect description of the population with respect
to the auxiliary variables he or she can subsequently match the weights to the poststrata.

Example 1

Suppose that two auxiliary variables A and B have been used to calculate the sampling
weights. The number of categories of A is two and of B is three. We suppose that
poststratification has been used and that the frequencies of the poststrata in the
population are given in Table 1.

Table 1. Frequencies of the poststrata in the population

Poststratum Frequency in the population
A; X By 1,368
A; X B, 725
A| X Bs 896
A, X By 2,633
Ay X B, 2,787
Ay X By 1,642

The weights are listed in ascending order in Table 2.

The weight of a poststratum multiplied by its corresponding frequency in the sample is
by definition equal to the size of this poststratum in the population. So, if the intruder
knows the frequencies of the poststrata in the population, as given in Table 1, then he
or she would be able to determine which weight corresponds to which stratum. For
instance, it is easy to see that weight 82.095 corresponds to stratum A, X Bz, and weight
89.596 to A; X Bj.

When the intruder knows the frequencies of the strata in the population only approxi-
mately, he or she will have to choose the most likely way to match the weights with the
strata. If the knowledge of the intruder about the frequencies of the strata in the population

Table 2.  Weights of the poststrata

Index i Weight W; Frequency in sample Weight x Frequency
(rounded)
1 82.095 20 1,642
2 89.596 10 896
3 96.102 29 2,787
4 105.320 25 2,633
5 120.833 6 725
6 136.799 10 1,368
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is sufficiently precise, he or she will be able to determine which stratum belongs to a specific
weight. Suppose, for instance, that the intruder thinks that stratum i occurs X; = X,,,, ; + ¢
times in the population, where X, ; is the actual frequency of stratum i/ in the population
and ¢; is the error made by the intruder. Suppose furthermore that —50 =< ¢; = 50. In this
case the intruder would still be able to match the weights to their corresponding strata
correctly, because the differences between the population frequencies of different strata

are larger than 100.

3. Linear/Multiplicative Weighting

For both linear weighting and multiplicative weighting the product of a weight and its
frequency in the sample is generally unequal to the frequency of the corresponding stratum
in the population. Such a product is usually only an approximation of the frequency of the
corresponding stratum. This complicates the situation for an intruder considerably.
However, because the products of the weights and their frequencies do sum up to the
marginal totals in the population an intruder is in many cases still able to derive
identifying information from the sampling weights. In the sequel we show how an intruder
might proceed. We concentrate on two methods the intruder may apply. This does not
imply, however, that these methods are the only ones. We start by considering the case
of multiplicative weighting. Having examined this case we show how the results obtained
can be translated into the case of linear weighting.

To demonstrate how an intruder may proceed we assume that m auxiliary variables have
been used to determine the sampling weights. These auxiliary variables are denoted by V;
(i =1, ...,m). The number of categories of these variables is denoted by n; (i = 1, ..., m).
The categories themselves are denoted by C;; (i = 1,...,m; j = 1,...,n;). We assume that
the variables are ordered in such a way that ny =n, = ... =n,,.

The two methods we examine in this section can be applied when a weight is
given by

W,' =F£XF§X"‘XF;:

1 i

in the case of multiplicative weighting, or by

Wity = Fiy + Fi + o+ F

102U

in the case of linear weighting, where a factor F ,~k depends only on the category C;;. When
two weights have the same factor F, i‘j, we say that these weights have category C,; in
common. Now we discuss the two methods to derive additional identifying information
from the sampling weights.

3.1. Method 1

In the first method the disclosure problem is split into two parts. Firstly, the intruder deter-
mines which weights have exactly (m — 1) categories in common. Secondly, the intruder
determines the actual auxiliary variables and categories. Why an intruder has to determine
in the first step which weights have exactly (m — 1) categories in common will become
clear in the second step. T

The steps for this method are illustrated by applying them to an example.
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Step 1

The intruder begins by listing all the different weights that occur in the microdata set.
To determine which weights have exactly (m — 1) categories in common, the intruder
evaluates the ratios of all pairs of weights. The ratios are listed, producing what we refer
to as the ratios list. ’

Example 2

Suppose that three auxiliary variables A, B and C have been used. The number of
categories of variable A is two, of variable B three and of variable C six. We assume
that multiplicative weighting has been used.

In Table 3 the knowledge of the intruder about the frequencies of the categories of the
auxiliary variables is shown.

The weights that are released are listed in ascending order in Table 4.

The ratios list is rather large — it contains 36 X 36 ratios — so only part is presented in
Appendix A. Only ratios pertaining to Example 2 are listed.

For the moment it is convenient to denote a weight by W . . A ratio in the ratios list
has the following form

1 2 m

Wklkzmkm _ Fkl Xsz Xoeee Xka
T Fl AN m

ng £... 4, F{’l XF€2 X XFE,,,

6]

The ratios F,:/Fé will be denoted by R(i,k,€). We assume that a ratio R(i,k,€) is
different from R(i’,k’,€’) whenever (i’,k’,€') # (i,k,€) except when k' =¢" and
k = €. Moreover, we assume that R(i,k,€)xR(@i',k’,€')=1 if and only if i’ =i,
k' = € and €’ = k. Note that a ratio R(i,k,€) = 1 if and only if k = €.

The value of a ratio of two weights as given by (1) occurs

Ny, 2

i€ {ik=¢)
times in the list, where [[;cqm, =1 by definition, because when k; # ¢; for all
i =1,...,m, the value of this ratio occurs only once.

Table 3. Frequencies of the categories of the auxiliary

variables in the population. These are supposed to be
known to the intruder

Category Frequency in the population

Ay 7,480,000

A, 7,649,000

B 6,572,000

B, 7,037,000

B; 1,520,000

C 2,765,000

G 3,570,000

(o) 3,605,000

Cy 2,549,000 )
Cs 1,811,000 -

Cs 829,000
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Table 4. Weights in the sample

Index i Weight W; Frequency in sample Weight X Frequency
in sample
1 94.6384 495 46,846.01
2 95.2153 703 66,936.36
3 96.0524 960 92,210.30
4 96.6379 3,368 325,476.45
5 96.8195 7,004 678,123.78
6 96.8338 15,749 1,525,035.52
7 97.4097 6,174 601,407.49
8 97.4241 12,999 1,266,415.88
9 98.1456 168 16,488.46
10 98.2806 105 10,319.46
11 98.7439 620 61,221.22
12 98.8797 233 23,038.97
13 99.0655 2,868 284,119.85
14 99.2341 940 93,280.05
15 99.6120 805 80,187.66
16 99.6694 4,626 461,070.64
17 99.8391 623 62,199.76
18 100.2193 3,599 360,689.26
19 100.4076 1,848 185,553.24
20 100.7081 13,989 1,408,805.61
21 100.7168 1,338 134,759.08
22 100.8228 4,121 415,490.76
23 101.0197 1,236 124,860.35
24 101.3220 13,385 1,356,194.97
25 101.3308 1,959 198,507.04
26 101.4374 2,495 253,086.31
27 101.5212 10,583 1,074,398.86
28 102.1400 9,652 985,855.28
29 102.2128 0 0.00
30 102.3292 1,228 125,660.26
31 102.8358 0 0.00
32 102.9530 1,643 169,151.78
33 103.0291 0 0.00
34 103.1464 12,688 1,308,721.52
35 103.6571 0 0.00
36 103.7752 12,844 1,332,888.67

The frequency of the ratios for which the weights have all categories except one, say of
variable V,, in common is given by

G= [[ m 3
i€ {ili#s)
Note that this frequency depends only on the variable for which the categories differ and
not on the categories themselves.
If all the G,’s are different from the frequencies of ratios of which the weights have less
than (m — 1) categories in common, then an intruder can determine which welghts have
(m — 1) categories in common. In this case the first step would be complete. If, moreover,
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all the values G, (s = 1,...,m) are distinct, then the intruder would even know the asso-
ciated variables for these common categories. All that would be left to find out would be
the actual categories.

When a G, is equal to the frequency of a ratio of which the weights have less than
(m — 1) categories in common, then the intruder does not know yet which weights have
(m — 1) categories in common. This situation occurs when G, can be written as

G, = ny Xny, X Xn €]

for some combination (iy, iy, ..., i;), where ¢ is less than (m — 1) and all i;’s are distinct. In
this case s must be one of the indices iy, i, ..., i;, say § = i;.

Example 2 (continued)

In our example we denote weights by W, i.e., by one index only. Examining the ratios list
we see, for instance, that the ratio of W, and W,, i.e., 0.99394, occurs 18 = n, X n; times in
the ratios list. So, W; and W, have a category of variable B and a category of variable C in
common. The ratio of W, and Wj, i.e., 0.98528, occurs 12 = n; X n3 times in the list.
Because 12 # n,, we know that W; and W5 have a category of variable A and a category
of variable C in common. In this way we can determine all weights that have a category of
variable A and a category of variable C in common, and all weights that have a category of
B and a category of C in common.

The situation is somewhat more difficult for W; and Wg. The ratios of these weights, i.e.,
0.97733, occurs six times in the list. Because 6 = n; X n, = n3, we cannot determine yet
whether or not W, and W have two categories in common. The same situation occurs for
W, and W5. The ratio of these weights, i.e., 0.97155, also occurs six times.

Because the above situation can occur, we might hope that an intruder is not always able
to determine which weights have (m — 1) categories in common. Unfortunately, we have
the following theorem.

Theorem

Assuming that a ratio R(i,k,€) differs from R(',k’,€") whenever (i,k,€) # (i',k’, ")
(except when k' = ¢” and k =€) and that R(i,k, €)X R(',k’,€") =1 if and only if
i"=1i, k'=4¢ and € =k, an intruder can always determine which weights have
(m — 1) categories in common.

Proof

We start by observing that weights that have a ratio that occurs n, X nz X -*- X n, times in
the ratios list have (m — 1) categories in common, because relation (4) cannot be satisfied
because n, < n, < --- < n,,. The corresponding ratios can be determined. If possible we
determine other weights that have (m — 1) categories in common. We can do this for those
G,’s for which (4) cannot be satisfied.

Now suppose there are weights that have a ratio that occurs G, times in the ratios
list (for some p), but for which the intruder cannot determine yet whether or not they
have (m — 1) categories in common. There may be several numbers p for which this’
situation occurs. The smallest number will be denoted by s. The ratios R(i, k,¢) can be
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determined for i = 1, ...,s — 1. Suppose there are g numbers s, s+ 1,...,5s + ¢ — 1 such
that Gy = G,y = - = Gyy,_. Let the ratios of weights that occur G, times be denoted
by R}, where « is an index.

These ratios R, are either equal to an R(s + j, k,€) (forj = 0, ...,q — 1) or to a product

I1 R(. ki, €) )

P# 0,0, 0, 8,8+]1,.., s+g—1
In the latter case we have the following relation

Gy =n; Xny X Xn

-1

XMy X Ry X" X Ry (6)

where t <m — g — 1 and all j;’s are distinct. The intruder can multiply the ratios R}, by the
R(i,k;, €;)’s fori = 1,...,s — 1. We distinguish between three cases:

1. If R}, is equal to an R(s + j, k,€) (forj = 0,...,q — 1), then the product occurs G, /n;
times in the ratios list. This follows from (2) and i # s + j.

2. IfR; isequal to a product given by (5) and i & {i}, 5, ...,i,_; }, then the products occur
either zero, G; or n;G, times in the ratios list. Namely, when i & {i|, 5, ...,i,_;} then
a factor R(i, k,-’, €,~’) occurs in (5). So, the product of R}, and R(i, k;, £;) occurs zero
times if k; # €; and €; # k;. The product occurs G, times if k; = ¢/ and ¢; # k/, or
k; # €{ and €; = k/. Finally, the product occurs n;G, times if k; = €/ and €; = k/.

3. If R}, is equal to a product given by (5) and i € {i},i,,...,i,_;}, then the products
occur G,/n; times in the ratios list. This follows from (2) and the fact that no factor
R(i, k;, €;) occurs in (5).

So, if the products occur zero, G, or n;G, times in the ratios list, then the intruder knows
that the weights of which the ratio is given by R}, do not have (m — 1) categories in common.
When the products occur G,/n; times, then the intruder cannot decide yet whether or not the
weights of which the ratio is given by R}, have (m — 1) categories in common.

So, only when 1,2,...,s — 1 are all elements of {i;,iy,...,i,_;} the intruder will not
be able to determine in this way whether or not the weights with such a ratio R, have
(m — 1) categories in common.

We claim, however, that when 1,2, ...,s — 1 are elements of {i,i,...,i,_;} then the
weights of which the ratio is R}, have (m — 1) categories in common. Suppose they did
not have (m — 1) categories in common. In that case relation (6) must be obeyed. Because
1,2,...,s — 1 are elements of {iy,i,...,i;_;},t<m—qg—1and ny =n, < - <n,, we
can conclude that the product ng , X --- Xn,, i.e., the product of the m — (s +¢q) + 1
largest n;’s, is equal to a product of less than m — (s + ¢) + 1 distinct n;’s. This is clearly
a contradiction. Hence, 1,2, ...,s — 1 cannot all be elements of {i;,i,...,i,_;}.

We have demonstrated that the intruder can determine which ratios that occur G, times
have (m — 1) categories in common. Now the intruder can apply the same procedure for
numbers larger than s. In this way the intruder can determine all weights that have (m — 1)
categories in common. This concludes the proof and Step 1.

Example 2 (continued)

We multiply the ratio of W; and W and the ratio of W; and W, by the ratios of v&‘eights that
have categories of variables A and C in common and by the ratios of weights that have
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categories of variables B and C in common. So, we multiply the ratio of W; and W by the
ratio of W, and W), for instance. The resulting ratio, W, divided by W, equals 0.98329.
This number occurs 3 = Gs/n; times in the ratios list. Multiplying the ratio of W; and W
by the ratio of each pair of weights that have categories of variables B and C in common
results in a ratio that occurs Gs/n; = 3 times in the list. ’

Similarly, when we multiply the ratio of W, and W by the ratio of W3 and Wy, then the
resulting ratio, W divided by Ws, occurs 2 = Gs/n, times in the list. Multiplying the ratio
of W, and W, by the ratio of each pair of weights that have categories of variables A and C
in common results in a ratio that occurs Gs/n, = 6 times in the list.

According to the proof of the above theorem, we can conclude that W; and W have two
categories in common. These two categories are categories from A and B.

When we multiply the ratio of W; and W, by the ratio of W, and Wi, then the resulting
ratio, W, divided by W5, equals 0.97747. This number occurs twelve times in the list.
Therefore, according to the proof of the theorem of Section 2, W; and W; do not have
two categories in common.

In the above way one can determine all the weights that have two categories in common.

Step 2

After the intruder has determined which weights have (m — 1) categories in common he or
she has to determine the actual variables and categories involved. From now on we denote
weights by W,, i.e., by one index only.

The intruder can begin by making sets of weights that have the same (m — 1) categories
in common. This is easy. When weights W; and W, have (m — 1) categories in common
and so do W, and W, and also W, and W3, then Wy, W, and W; necessarily have the same
(m — 1) categories in common. Because of this property it is important to determine the
weights that have exactly (m — 1) categories in the first step of the method. The
property is quite easy to prove. Suppose W; and W, have categories of all variables except
variable V, in common, and suppose that W; and W; have categories of all variables
except variable V;, in common. In that case W, and W5 have (m — 1) categories in common
if and only if V, = V,,. In other words, W, and Wj have (m — 1) categories in common if
and only if W;, W, and W3 have the same (m — 1) categories in common.

All weights that have the same (m — 1) categories in common are placed in the same set.
Such a set of weights that have the same (m — 1) categories in common will be called an
equivalence class. Note that the equivalence classes are not disjoint: each weight is an
element of m equivalence classes. The total number of equivalence classes is

> I )
—
The number of elements of the equivalence class of which the weights do not have a
category of variable V; in common is n;, i.e., the number of categories of V.
Example 2 (continued)

The next step in the example is to determine which weights form equivalence classes. For
example, W, and W; have two categories in common and so have W; and W5 and W3 and
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Ws. Therefore, Wi, W3 and W5 have the same two categories in common. In particular, W;,
W3 and W5 form an equivalence class. Likewise it can be shown that W; and W, form an
equivalence class, and that W, W, Wy, W14, W, and W,, form another equivalence class.

Now suppose weights W, and W, are elements of an equivalence class and that Wz/z and
W,; are elements of another equivalence class. If the ratios W,/W, and W; / W; are equal
and different from one, then W, and W;, have the same category of a variable V; in
common. Namely, suppose that W, and W, have (m — 1) categories in common, then their
ratio is given by an R(i, k, €). The ratio of W, and W, is also given by an R(i’,k’, ¢'). We
have assumed that these ratios are equal if and only if i =i’, k =k’ and € = €'. This
implies that W, and W, have category C;; of variable V; in common.

By examining all the ratios of weights in this way the intruder can determine all
the weights that have the same category of V; in common. Note that the intruder may
not know the variable V; yet. However, if the value n; occurs only once among
ny, My, ..., Ny, then the intruder can infer the variable V;. The sets of weights that have
the same category of a variable in common are not disjoint.

Example 2 (continued)

Because the ratio of Wy and Wy, i.e., 0.97733, is equal to the ratio of W, and W4, W, and
W; have a, still unknown, category of variable C in common. In this way, we can deter-
mine all the weights that have a, as yet unknown, category C; of variable C in common.
Similarly, we can determine all the weights that have a, still unknown, category A; of
variable A in common and all the weights that have an, also unknown, category By of
variable B in common.

The intruder can evaluate the number of times that a category occurs in the population
by multiplying all the weights that have the same category in common by their frequencies
and taking the sum of these products. All that remains to be done is to find the categories
and variables that correspond to the evaluated population frequencies by comparing these
evaluated frequencies to the known frequencies in the population. This concludes the
second step.

Example 2 (continued)

We can evaluate the frequencies of a category C; of variable C in the population by
multiplying the corresponding weights by their frequencies and subsequently taking
the sum of these products. This can be done for all categories of C. Similarly, popu-
lation frequencies of A; and of By can be evaluated by multiplying the corresponding
weights by their frequencies and taking the sum of these products. The results are listed
in Table 5.

All that remains is to find the actual categories corresponding to the weights.
Comparing Table 5 to Table 3 yields A, = Ay, A, = A, B, = By, B, = B,, B, = B,
Ci=0C, C =0, C.=0C5,Cy=Cy4, C, = Cs and C; = Cg. So, we have matched the
weights to the strata. For instance, weight 1 corresponds to categories A;, B, and Cs.
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3.2. Method 2

The second method consists of one step only. Again the ratios of pairs of weights are
evaluated and listed. Now, however, only those ratios that occur G, times for some s
are listed, where G; is given by (3). In other words, ratios of weights are listed only
when these weights may have (m — 1) categories in common. Of course, when a G,
satisfies (4), then also ratios of weights are listed of which these weights have less than
(m — 1) categories in common.

Now suppose the ratio W, /W, occurs G times, i.e., Wi,/We, = W;./W,, for certain
weights Wy and W, (i = 1, ..., G,). We do not know yet whether the weights W,, and W,
have (m — 1) categories in common or not. As in step 2 of Method 1 we multiply the weights
W;, by their frequencies f;, in the sample and take the sum of these products, i.e., we compute

Gs
> Wi xf, @®)
i=1

Now we examine the two possible cases.

1. The weights W, and W, have (m — 1) categories in common
When the weights Wy, and W, (i = 1, ..., G,) have (m — 1) categories in common,
then the W, ’s are all the weights that have the same category C of a certain variable
V in common. As in Step 2 of Method 1 the number given by (8) is equal to the
(known) frequency of category C of variable V in the population. So, an intruder
can determine a category corresponding to a weight Wy, whenever W, /W, have
(m — 1) categories in common.

2. The weights Wy, and W, do not have (m — 1) categories in common
When the weights Wy, and W, (i=1,...,G;) do not have (m — 1) categories in
common, then the number given by (8) is not equal to one of the known frequencies
of the categories in the population.

So, by comparing (8) to the known frequencies of the categories in the population we
can conclude whether or not the weights W, and We. have (m — 1) categories in common.
If they do have (m — 1) categories in common, we can moreover determine the category
corresponding to the W} ’s. In other words, by comparing (8) to the known frequencies of
the categories in the population an intruder can determine which stratum a particular
weight corresponds to.

When linear weighting has been used instead of multiplicative weighting almost the same
two methods as described above can be applied. In fact one should only replace ratios by
differences. For instance, instead of the ratios list an intruder should make a differences list.

Example 3

Suppose that three auxiliary variables A, B and C have been used. The number of
categories of A is two and of both B and C is four. So, n; = 2, n, =4 and n; = 4. We
suppose that linear weighting has been used. Suppose, furthermore, that the frequencies
of the categories of the auxiliary variables in the population are given in Table 6.

The weights are listed in ascending order in Table 7. -

Part of the differences list is presented in Appendix B.1. Only differences less than zero
that occur 8 (=ny X ny = n; X n3) or 16 (=n, x n;) times are listed.
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Table 6. Frequencies of the categories of the auxiliary
variables in the population (known to the intruder)

Category Frequency in the population
A 1,485,135
A, 1,514,865
B 754,875
B, 735,023
B; 775,036
B, 735,066
C, 735,443
C, 784,387
G 745,122
C, 735,048

Table 7. Weights of the strata

Index i Weight W; Frequency in sample Weight x Frequency
in sample
1 932.4877 96 89,518.82
2 933.1395 89 83,049.42
3 944.7638 97 91,642.09
4 945.4156 85 80,360.33
5 952.5411 104 99,064.28
6 959.1034 105 100,705.86
7 964.8172 97 93,587.27
8 969.4501 97 94.036.66
9 970.1019 93 90,219.48
10 971.3795 100 97,137.95
11 981.7261 109 107,008.15
12 982.3780 102 100,202.55
13 989.5035 102 100,929.36
14 995.7425 88 87,625.34
15 996.0658 93 92,634.12
16 996.3943 97 96,650.25
17 1,001.7796 87 87,154.83
18 1,008.0186 88 88,705.64
19 1,008.3419 102 102,850.87
20 1,008.6704 87 87,754.33
21 1,015.7959 90 91,421.63
22 1,022.3582 87 88,945.17
23 1,028.0720 90 92,526.48
24 1,034.6343 98 101,394.16
25 1,034.7040 88 91,053.95
26 1,035.3558 97 100,429.51
27 1,046.9801 82 85,852.36
28 1,047.6319 92 96,382.13
29 1,054.7574 78 82,271.08
30 1,061.3197 91 96,580.09 )
31 1,067.0335 92 98,167.08 -
32 1,073.5958 97 104,138.79
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Examining the list in Appendix B.1 we see, for instance, that the difference W; — Wy
occurs eight times. So, W; and W, have two categories in common. Because W, — W5 =
Wy — Wog = W3 — Wy = Wy — Wog = W5 — Wog = Wy — W3g = W7 — W3 = Wi — Wiy,
weights Wy, W,, W3, Wy, Ws, W, W5 and W, have the same category in common. In this
way we can determine all the groups that have the same category in common. These
groups are listed in Appendix B.2. The products of the weights and their frequencies in
the sample are also listed. The sum of these products for each group, also given, is equal
to the frequency of a category of the auxiliary variables in the population if all the weights
in the corresponding group have this category in common.

Comparing the sums of each group in Appendix B.2 to Table 6 yields that weight W,
corresponds to categories A, B4 and C. In a similar way the other weights can be matched
to the strata.

In example 3 it is very easy to apply Method 2. If Method 2 had been applied to the
second example, then some groups would have been constructed which do not have the
same category in common. The sum of the products of the sampling weights in such a
group and their frequencies in the sample would, however, differ from any frequency of
a category of the auxiliary variables in the population. So, it is still possible to match
the sampling weights to the categories of the auxiliary variables in the same way as above.

4. Discussion

In the previous sections we have shown that sampling weights can provide additional
identifying information to an intruder when identifying information not contained in the
released microdata set is used to calculate these weights. If this leads to an unacceptable
risk of disclosure then it may be desirable to apply specific SDC measures. Two techniques
to reduce the risk of disclosure caused by sampling weights could be applied. The aim of
these techniques would be to prevent the successful application of the methods described
in Sections 2 and 3.

The first method is to subsample the records with a relatively low weight in the micro-
data set and then to re-calculate the weights for the remaining records. As a consequence
the weights of the remaining records with low original weights are increased. In this way
one can make all the weights of the records approximately equal. In this case the weights
cannot provide any additional identifying information. Subsampling leads to a loss of
information, of course, because some records are not released.

The second method to reduce the risk of disclosure caused by sampling weights is to add
noise to these weights. In other words, instead of releasing the true sampling weight W; of
record i the statistical office releases values W; = W; + ¢;, where ¢; is a random value.
When noise is added to the sampling weights these weights are perturbed. Because
generally all these perturbed weights will have a different value the methods described
in Sections 2 and 3 cannot be applied immediately. So, obtaining additional identifying
information is made (much) more difficult for an intruder. However, when much noise
is added to the sampling weights the resulting perturbed weights will hardly be useful
for subsequent analysis. In particular, the results may be biased. When, on_the other
hand, little noise is added, the weights should remain useful for analysis, but the probabil-
ity that an intruder can obtain additional information from these weights will be relatively
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high. How much noise should be added in order to obtain both ‘safe’ and useful weights is
a problem that remains to be solved.

Appendix A: The Ratios List of Example 2

The numbers in Columns 1 and 2 are the indices of the weights in Table 4. The number in
the third column is the ratio of the two weights in Column 1 and Column 2. Only ratios
pertaining to Example 2 are listed.

Index i Index j Ratio W;/W; Index i Index j Ratio W;/W;
9 23 0.97155 11 18 0.98528
14 28 0.97155 14 21 0.98528
6 16 0.97155 26 32 0.98528
22 36 0.97155 20 29 0.98528
1 7 0.97155 1 3 0.98528
20 35 0.97155 9 15 0.98528
22 30 0.98528
2 8 0.97733 6 10 0.98528
4 12 0.97733 17 25 0.98528
7 16 0.97733 2 4 0.98528
5 13 0.97733 8 12 0.98528
1 6 0.97733 24 31 0.98528
3 10 0.97733
15 19 0.99208
14 27 0.97747 21 27 0.99208
11 23 0.97747 31 35 0.99208
9 19 0.97747 4 7 0.99208
20 33 0.97747 18 23 0.99208
26 36 0.97747 12 16 0.99208
2 7 0.97747 10 13 0.99208
6 13 0.97747 29 33 0.99208
1 5 0.97747 3 5 0.99208
8 16 0.97747 32 36 0.99208
22 34 0.97747 30 34 0.99208
24 35 0.97747 25 28 0.99208
17 28 0.97747
14 17 0.99394
4 10 0.98329 15 18 0.99394
2 6 0.98329 21 25 0.99394
7 13 0.98329 34 36 0.99394
19 23 0.99394
4 8 0.99193 9 11 0.99394
3 6 0.99193 6 8 0.99394
30 32 0.99394
13 16 0.99394
5 7 0.99394
22 26 0.99394
20 24 0.99394
1 2 0.99394
10 12 0.99394
3 4 0.99394
33 35 0.99394 |
27 28 0.99394

29 31 0.99394
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Appendix B.1:

The Differences List of Example 3

Journal of Official Statistics

The numbers in Columns 1 and 2 are the indices of the weights in Table 7. In the third
column the difference of the weights in Columns 1 and 2 is listed. Only differences less
than O that occur 8 or 16 times are listed.

Index i Indexj W;,—W, Index i Indexj W;—W, Index i Indexj W;—W,
2 26 —102.2163 11 19 —26.6158 2 4 —12.2761
3 27 —102.2163 3 10 —26.6157 6 10 —12.2761
4 28 —102.2163 14 22 —-26.6157 9 12 —12.2761
6 30 —102.2163 25 30 —26.6157 14 18 —12.2761
7 31 —-102.2163 27 32 —26.6157 15 19 —12.2761

10 32 —102.2163 1 6 —26.6157 25 27 —12.2761
1 25 —102.2163 15 —26.6157 26 28 —12.2761
5 29 —102.2163 18 24 —26.6157 29 31 —12.2761

30 32 —12.2761

11 27 —65.2540 11 18 —26.2925 1 3 —12.2761
9 26 —65.2539 9 16 —-26.2924 5 7 —12.2761

12 28 —65.2539 15 22 —26.2924 13 17 —12.2761

15 30 —65.2539 8 14 —26.2924 16 20 —12.2761

17 31 —65.2539 12 20 —26.2924 21 23 —12.2761

19 32 —65.2539 13 21 —-26.2924 22 24 —12.2761
8 25 —65.2539 17 23 —26.2924 8 11 —12.2760

13 29 —65.2539 19 24 —26.2924

7 10 —6.5623

2 16 —63.2548 2 6 —25.9639 17 19 —6.5623
3 18 —63.2548 4 10 —25.9639 21 22 —6.5623
6 22 —63.2548 9 15 —25.9639 23 24 —6.5623
1 14 —63.2548 12 19 —25.9639 29 30 —6.5623
4 20 —63.2548 16 22 —25.9639 31 32 —6.5623
5 21 —63.2548 20 24 —-259639 5 6 —6.5623
7 23 —63.2548 26 30 —25.9639 13 15 —6.5623

10 24 —63.2548 28 32 —25.9639

11 12 —0.6519

20 28 —38.9615 11 17 —20.0535 3 4 —0.6518

23 31 —389615 1 5 —20.0534 14 16 —0.6518

24 32 —389615 3 7 —20.0534 25 26 —0.6518

14 25 —38.9615 8 13 —20.0534 27 28 —0.6518

16 26 —38.9615 14 21 —20.0534 1 2 —0.6518

18 27 —38.9615 25 29 —20.0534 9 —0.6518

21 29 —38.9615 27 31 —20.0534 18 20 —0.6518

22 30 —38.9615 18 23 —20.0534
1 8 —36.9624 2 5 —19.4016
2 9 —-36.9624 9 13 —19.4016
4 12 —-36.9624 4 7 —19.4016
5 13 —36.9624 12 17 —19.4016
6 15 —36.9624 16 21 —19.4016
7 17 —36.9624 20 23 —19.4016

10 19 —36.9624 26 29 —19.4016
3 11 —36.9623 28 31 —19.4016
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Appendix B.2:
The Groups of Weights Containing W, that Have a Specific Category in Common

(Example 3 continued)

Index Weight x Frequency
Group 1:
1 89,518.82
2 83,049.42
3 91,642.09
4 80,360.33
5 99,064.28
6 100,705.86
7 93,587.27
10 97,137.95
Total 735,066.02
Group 2:
1 89,518.82
3 91,642.09
8 94,036.66
11 107,008.15
14 87,625.34
18 88,705.64
25 91,053.95
27 85,852.36
Total 735,443.01
Group 3:
1 89,518.82
2 83,049.42
5 99,064.28
6 100,705.86
8 94,036.66
9 90,219.48
13 100,929.36
14 87,625.34
15 92,634.12
16 96,650.25
21 91,421.63
22 88,945.17
25 91,053.95
26 100,429.51
29 82,271.08
30 96,580.09
Total 1,485,135.02
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