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This article investigates statistical properties of random noise multiplication as a data masking
procedure, especially for tabular magnitude data. It is shown that (i) the original data moments
and correlations can be unbiasedly recovered from noise multiplied data (ii) for both finite and
infinite population sampling, all polynomial estimators for the original data can be adopted
easily for the masked data and (iii) for tabular magnitude data, multiplicative noises affect the
quality of a cell total more for sensitive cells than for nonsensitive cells. Disclosure risk
assessment and the choice of the noise distribution are discussed using the prediction error
variance in a conservative scenario, where an intruder knows the perturbed cell total and all
values within the cell, except the target unit’s value. We also derive some interesting
properties of a balanced noise method, and ascertain the reduction in the variance of a cell
total by using the balancing mechanism.
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inflation.

1. Introduction

The main goal of most statistical agencies is to collect and publish data relevant to

important national and regional public policy issues, but they also need to protect the

privacy of survey respondents for legal reasons and to maintain public trust. Typically, a

microdata set contains records of n sampling units on k variables, some of which are key

variables (Bethlehem et al. 1990), and some which are confidential or sensitive that need

protection against disclosure. To reduce disclosure risk, statistical agencies often release a

perturbed or masked version of the original data, sacrificing some statistical information.

Various masking procedures, such as grouping, cell suppression, data swapping, multiple

imputation and random noise inoculation have been developed for practical use. The
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books by Doyle et al. (2001) and Willenborg and De Waal (2001) discuss many issues

germane to disclosure avoidance and various disclosure control techniques.

Disclosure is a difficult topic (cf., Lambert 1993) and it can occur in different forms

depending on the disclosure scenario (see Willenborg and De Waal 2001). Broadly

speaking, disclosure occurs when the released data enable an intruder to predict the values

of some confidential variables for a specific unit too accurately. Identity disclosure, which

happens when an intruder correctly identifies the record of a survey unit using externally

available values of some key variables and thus learns the values of all confidential

variables of the identified unit, is most serious. Measures of identity disclosure risk have

been discussed by Bethlehem et al. (1990), Greenberg and Zayatz (1992), Willenborg and

De Waal (2001), Skinner and Elliot (2002), Reiter (2005) and others.

Another type of disclosure that has received much attention is predictive disclosure,

which occurs when the released data enable one to infer about a confidential variable value

of a respondent with high accuracy. Obviously, predictive disclosure depends not only on

the released data set but also on the intruder’s prior knowledge, and should be assessed

by comparing the intruder’s knowledge before and after data release (see Duncan and

Lambert 1986, 1989; Lambert 1993; Keller-McNulty et al. 2005).

Commonly used masking procedures dilute, suppress, and in some cases distort the

information in the original data. So, in practice, one should attempt to strike a balance

between disclosure risk and information loss when selecting disclosure control methods.

We refer to Duncan and Fienberg (1999), Duncan and Stokes (2004), Karr et al. (2006),

and Keller-McNulty et al. (2005) for excellent discussions of data utility and disclosure

risk issues.

Methods and formulas for analyzing a data set may not be appropriate for analyzing a

masked version of it; masking may destroy known properties, such as unbiasedness, of

standard estimators. Obviously, the sampling distribution of an estimator and hence its

statistical properties depend not only on the sampling design but also on the masking

method. So, a full knowledge of the masking process is necessary for investigating

properties of any statistical procedure and for deriving suitable inferential methods. Little

(1993) presents a likelihood theory that is applicable to a wide variety of masked data. In

general, likelihood theories require information about the masking procedure, which can

be viewed as a process for selecting the values that are to be masked and a mechanism for

masking the selected values. Thus, to allow data users to derive valid inferences, data

providers need to release full information about the masking procedure along with the

masked data.

There are multiple paradigms for addressing privacy protection and different

procedures are suitable in different paradigms. One paradigm advocates that inferential

methods for the original data should remain valid, at least approximately, for the perturbed

data, so that users will not need to develop new methods for data analysis (see Rubin

1993). This goal seems to be the main motivation for creating synthetic data. However,

analytical validity is retained fully if and only if the sampling distributions of original and

masked data are the same, which does not hold for most masking methods available in the

literature.

Another paradigm, which we subscribe to in this article, has the following features: (i)

data providers disseminate masked data and full information about the masking procedure,
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(ii) data users derive proper inference procedures for the released data, taking their

sampling distribution (and established statistical principles and theory) appropriately into

account, and (iii) data providers use masking procedures for which (a) adjustments

to standard analyses, additional theoretical derivations and programming are not too

complex or burdensome and (b) protection of private information can be assessed and

communicated reasonably well. With this perspective, we investigate statistical properties

of random noise multiplication as a disclosure avoidance technique, especially in the

context of magnitude tabular data.

Most papers on noise perturbation deal with additive noise and assume that the data are

generated by random sampling from an infinite population; see Brand (2002) for a nice

review and further references. Some distinguishing features of our article are that it

(i) focuses on multiplicative noise, which is well-suited for uniform privacy protection, as

the noise CV is held constant, (ii) includes estimation in finite population sampling,

(iii) covers magnitude tabular data, in addition to standard microdata, and (iv) appraises

confidentiality protection rendered by multiplicative noise masking.

In Section 2, we discuss statistical properties of multiplicative noise masking at

microdata level. Multiplicative noise provides uniform protection, in terms of noise CV, to

all values in the data set. Population moments are easy to estimate unbiasedly, along with

their standard errors, for both finite and infinite populations. Also, in finite population

sampling, all polynomial estimators for the original data can be adopted easily for

applying to noise multiplied data. In Section 3, we discuss certain properties of a

procedure, proposed by Evans et al. (1998), for protecting confidentiality in magnitude

tabular data. We theoretically prove that the cell level noise CV decreases as the

contributing values to the cell become more homogeneous. This indicates that the total of

a nonsensitive cell is likely to be less affected than that of a sensitive cell. We address

confidentiality protection and the choice of the noise distribution by considering the

variance of the prediction error under a fairly conservative scenario. In Section 4, we

consider a variation of Evans et al.’s (1998) procedure, viz., a balanced noise masking

method introduced by Massell and Funk (2007a, b). We show that the procedure is

unbiased in the sense that the noisy total of any set of units is an unbiased estimator of the

corresponding total based on the original data. We also ascertain the reduction in cell level

noise variance from using the balancing mechanism. Section 5 contains some concluding

remarks.

2. Random Noise Perturbation

Several forms of data masking using random noise have been discussed by Kim (1986),

Tendick (1991), Fuller (1993), Evans et al. (1998), Brand (2002), Yancey et al. (2002),

Kim and Winkler (2003) and others. Typical data sets contain values of several variables

for n units, usually sampled from a population. First, let us consider a single quantitative

sensitive variable Y with values y1; : : : ; yn for the n units. The basic mechanism for

random noise perturbation is to independently generate n numbers r1; : : : ; rn from a

known noise distribution, and then apply them to the y-values, either additively or

multiplicatively, to create a masked data set z1; : : : ; zn, where zi ¼ yi þ ri or

zi ¼ yiri; i ¼ 1; : : : ; n. The data agency selects the noise distribution, usually with
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mean zero for additive noise, and mean 1 for multiplicative noise, so that E½Zijyi� ¼ yi. In

this article, we shall focus mainly on multiplicative noise, which may be described by

Z ¼ YR ð2:1Þ

where R denotes a noise variable. Let nj ¼ EðRjÞ; j ¼ 1; 2; : : : ; denote the raw moments

of the noise distribution and s2
R the noise variance, and assume that v1 ¼ 1.

How much protection does noise multiplication provide to individual data values?

Specifically, what can an intruder infer about the original value ( y) of a specific unit, whose

identity he has ascertained correctly, from its perturbed value z? From (2.1) it follows that

E½Zjy� ¼ y; and s2
Zjy ¼ V½Zjy� ¼ y2s2

R

So, z is an unbiased estimate of y and the standard deviation sZjy ¼ jyjsR is a measure of an

intruder’s uncertainty about y. An intruder may estimate sZjy by jzjsR. As sZjy is

proportional to jyj, the relative size of perturbation is the same for all y, viz., 1
jvj
sZjy ¼ sR is a

constant, which also provides a practical interpretation of sR. A constant noise CV is

desirable in some applications, where one feels that small jyj should be perturbed little to

avoid excessive distortion and large jyj should be perturbed more to protect y reasonably

well. In contrast, for additive noise, V½Zjy� ¼ s2
R is the same for all y, which is too much for

small jyj and too little for large jyj. Thus, with additive noise, the level of masking may vary

widely depending on the range of y-values.

One can easily calculate confidence intervals for the original data values and use them to

assess disclosure risk. Suppose R is positive and has a continuous unimodal distribution,

which usually hold in practice. For given a, let [a,b ] be the shortest interval satisfying

Pða # R # bÞ ¼ 1 2 a. Note that the interval [a,b ] can be computed from the known

distribution of R. For any y . 0, it follows from (2.1) that Pðay # Z # byjyÞ ¼ 1 2 a or

PðZ=b # y # Z=ajyÞ ¼ 1 2 a. Similarly, for y , 0, PðZ=a # y # Z=bjyÞ ¼ 1 2 a. Since

z and y have the same sign, a 100ð1 2 aÞ% confidence interval for y, based on z, is

ðz=b; z=aÞ if z . 0 and ðz=a; z=bÞ if z , 0.

2.1. Estimation of Infinite Population Moments

Certain inferences, e.g., estimates of the mean, variance and moments of Y, can be derived

easily from noise multiplied data. First, consider random sampling from an infinite

population or simple random sampling with replacement (SRSWR) from a finite

population. Letting mY and s2
Y denote the mean and variance of Y, it can be easily seen that

E½Z� ¼ mY and

V½Z� ¼ V½EðZjYÞ� þ E½VðZjYÞ�

¼ s2
Y þ s2

R s2
Y þ m2

Y

� �
¼ 1 þ s2

R

� �
s2
Y þ m2

Ys
2
R

ð2:2Þ

From these, it follows that the mean (Z̄) of the masked data is an unbiased estimator of mY ,

but the variance S2
Z over-estimates s2

Y . However, unbiased estimation of higher order

moments of Y is fairly easy. Note that for all j $ 1; E½Z jjy� ¼ njy
j and hence E½Z j� ¼
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E½Y j�E½Rj� ¼ njE½Y
j�: So, z

j
i=nj is an unbiased estimate of y

j
i and ð1=njÞ

P
i Z

j
i=n

� �
is an

unbiased estimator of E½Y j�. Thus, all sample moments of noise multiplied masked data

can be modified easily to make them unbiased estimators of the corresponding moments

of Y. In particular, if T is any unbiased estimator of m2
Y , e.g., T ¼ 1=nðn2 1Þ

P
i–j ZiZj,

then from (2.2),

d ¼
S2
Z 2 s2

RT

1 þ s2
R

¼
1

nðn2 1Þ

nþ s2
R

1 þ s2
R

� �Xn
i¼1

Z2
i 2

Xn
i¼1

Zi

 !2
2
4

3
5 ð2:3Þ

is an unbiased estimator of s2
Y . Unbiased estimators of mY based on the original and the

masked data are Ȳ and Z̄, respectively, and their variances are s2
Y=n and s2

Z=n, which can

be estimated unbiasedly, from the masked data, by d=n and S2
Z=n, respectively. So,

ðS2
Z 2 dÞ=n is an unbiased estimator of the variance inflation due to multiplicative noise, in

the context of estimating mY . Kim and Winkler (2003) have discussed estimation of mY

and s2
Y when the noise distribution is truncated normal.

Practical datasets contain values of many variables, several of which may be sensitive.

Noise multiplication may be applied easily to more than one variable. It is convenient to

generate the noise factors independently, but possibly from different distributions for

different variables. Noise multiplication (or addition) distorts correlations among the

variables. For simplicity, suppose Y and W are two variables in the original file and the

masked file contains W (unchanged) and Z, which is noise multiplied Y, as described

before. Then, it can be seen, using (2.2), that

rðZ;WÞ ¼
s2
Y

1 þ s2
R

� �
s2
Y þ m2

Ys
2
R

" #1=2

rðY;WÞ ð2:4Þ

where rð:; :Þ denotes the correlation between the two variables within the parentheses.

Generally, as can be seen from (2.4), noise multiplication (or addition) deflates

correlations. Note that

covðZ1; Z2Þ ¼ EðZ1Z2Þ2 EðZ1ÞEðZ2Þ ¼ EðY1Y2Þ2 EðY1ÞEðY2Þ ¼ covðY1; Y2Þ

and hence independent noise multiplication (with mean 1) does not bias the sample means

and covariances, but inflates the variances as seen in (2.2). Thus, for valid estimates of

correlations, only the variances need to be estimated appropriately, perhaps using (2.3).

Unbiased estimation of correlations and joint moments from noise multiplied data

is also quite straightforward. Suppose Y1 and Y2 are two original variables and the

corresponding masked variables are Zi ¼ YiRi; i ¼ 1; 2, where R1 and R2 are

independently (but possibly not identically) distributed. Then, for all k1; k2 [ R,

E Zk1

1 Zk2

2 jy1; y2

� �
¼ yk1

1 yk2

2 E Rk1

1

� �
E Rk2

2

� �
which shows that Zk1

1 Zk2

2

� �
= E Rk1

1

� �
E Rk2

2

� �� �
is an unbiased estimator of yk1

1 yk2

2 . A data user

would simply need to divide the masked sample joint raw moment of order (k1; k2) by

E Rk1

1

� �
E Rk2

2

� �
to get an unbiased estimate of the corresponding original sample moment. A

similar approach can be used to obtain consistent estimators of regression coefficients and

their standard errors (see Hwang 1986). Analogous adjustments for additive noise (with
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mean 0) are fairly simple for estimating means, variances and covariances (see Kim 1986;

Kim and Winkler 1995), but can be tedious for higher order moments.

2.2. Finite Population Estimation

Commonly used finite population estimators, viz., all polynomial estimators, can be

modified easily to account for the effects of multiplicative noise masking. Suppose the

original data came from a subset s of a finite population, selected using a sampling design

pðsÞ, and N denotes the population size. First, consider one survey variable Y. Since z
j
i=nj is

an unbiased estimate of y
j
i it follows that if w0 þ

P
i[s

Pk
j¼1wijY

j
i is an unbiased estimator

of a population parameter based on the original data, then w0 þ
P

i[s

Pk
j¼1wij Z

j
i=nj

� �
is an

unbiased estimator of the same parameter but based on the masked data.

As linear estimators are most commonly used in practice, we now discuss them in more

detail. Suppose T ¼
P

i[s wsiYi is a homogeneous linear unbiased estimator of a

population parameter u based on the original data and VpðTÞ is its design based variance.

Then T * ¼
P

i[s wsiZi is an unbiased estimator of u based on noise multiplied data and

V½T *� ¼ Ep½VRðT
*jsÞ� þ Vp½ERðT

*jsÞ�

¼ Ep

i[s

X
w2
sis

2
RY

2
i

2
4

3
5þ VpðTÞ

¼ s2
R

XN
i¼1

Y2
i
s]i

X
w2
sipðsÞ þ VpðTÞ

ð2:5Þ

where Ep and ER denote expectations with respect to the sampling design and the noise

distribution, respectively. The first term of (2.5) is the variance inflation due to noise

multiplication, for which an unbiased estimator, based on the original data, is

s2
R

P
i[s w

2
siY

2
i . So, an unbiased estimator of it based on the masked data is

s2
R
i[s

X
w2
si

Z2
i

n2

� �
¼

s2
R

1 þ s2
R

� �
i[s

X
w2
siZ

2
i ð2:6Þ

It can be seen that (e.g., Hedayat and Sinha 1991, Sec. 3.1)

VpðTÞ ¼
XN
i¼1

biY
2
i þ

X
i–j

X
bijYiYj

where

bi ¼
s]i

X
w2
sipðsÞ2 1 and bij ¼

s]i;j

X
wsiwsjpðsÞ2 1

Hence an unbiased estimator of VpðTÞ, based on the original data, is

V̂pðTÞ ¼
i[s

X
bi
Y2
i

pi

þ
i;j[s;

X
i–j

X
bij

YiYj

pij
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where pi ¼
P

s]i pðsÞ and pij ¼
P

s]i;j pðsÞ. Clearly, V̂pðTÞ is a quadratic estimator in Y

and it can be easily adopted for the masked data. Specifically, an unbiased estimator of

VpðTÞ, based on the masked data, is

~VpðTÞ ¼
1

1 þ s2
R

� �
i[s

X
bi
Z2
i

pi

þ
i;j[s;

X
i–j

X
bij

ZiZj

pij

ð2:7Þ

Thus, from noise multiplied masked data, we can easily obtain an unbiased estimator

ðT *Þ of u and also its variance, which is the sum of (2.6) and (2.7). Note that (2.7) gives a

data user an estimate of the variance of an estimator of u based on the original data. Thus,

the estimates of the two components of V½T *�, given by (2.6) and (2.7), are useful for

ascertaining information loss (for estimating u) due to noise multiplication. Many agencies

grant researchers access to original data, but it often involves a lengthy application and

review process and conducting research at agencies locations. The numerical values of T *

along with (2.6) and (2.7) are directly useful to researchers for (i) ascertaining the worth

of the original data as compared to the masked data, (ii) suggesting a suitable level of data

masking to the data agency, and (iii) making a case for gaining access to the original data,

subject to appropriate pledge of maintaining confidentiality. We may note that V̂pðTÞ and

hence ~VpðTÞ can be negative. However, alternative estimators of VpðTÞ based on the

original data, that are available in the literature, can easily be adopted for noise multiplied

data. We conclude this subsection by noting that the usual finite sample estimators of joint

moments can also be adjusted easily, through simple divisions by appropriate raw

moments of relevant noise distributions.

2.3. Comments on Other Noise Methods

Mathematically speaking, noise masking can always be treated as additive if the noise

distribution is allowed to depend on y (see Fuller 1993). However, there are two

disadvantages of this approach. First, generating the noise values is not as simple as it is

for the iid case. Second, and more importantly, proper analysis of masked data is generally

more difficult for dependent noise.

Some researchers, e.g., Kim (1986) and Fuller (1993), have suggested that one should

preserve the means and the covariance matrix of the survey variables, which are important

summary statistics. One approach is to use a data dependent linear transformation after

noise inoculation (e.g., Kim 1986). Suppose k variables are to be masked and the vector ~yi
represents the values of the k variables for unit i. Then, ~yiði ¼ 1; : : : ; nÞ are first changed

to ~zi ¼ ~yi þ ~1i, where ~11; : : : ; ~1n are random noise vectors, independently generated from

a common k-dimensional distribution with zero mean and covariance matrix L (diagonal

when the noise values are independent). Next, ~ziði ¼ 1; : : : ; nÞ are changed to

~zi* ¼ A~zi þ ~b, via a linear transformation, where the matrix A (of order k £ k) and the

vector ~b are so chosen that the mean vector and the covariance matrix of ~zi*ði ¼ 1; : : : ; nÞ

are the same as those of ~yiði ¼ 1; : : : ; nÞ. Clearly, A and ~b depend on

ð~yi;~zi*Þ; i ¼ 1; : : : ; n, which makes calculation of the probability distribution of masked

data and assessment of the masking effect on various inferences very difficult. Because of

the second step, viz., the data dependent linear transformation, known properties of

additive noise do not continue to hold for the overall masking process.
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We also note that the mean vector and the covariance matrix can be preserved, using

a data dependent linear transformation, from arbitrarily generated ~z1; : : : ; zn, not

necessarily through additive noise. Let Y and Z be two data matrices (of same order) with

mean vectors �y and �z and nonsingular covariance matrices Sy and Sz. Let

~zi* ¼ A~zi þ ~b; i ¼ 1; : : : ; n, where A ¼ S1=2
y S21=2

z and ~b ¼ �y2 A�z. Then it can be seen

easily that {~yi; i ¼ 1; : : : ; n} and {~z*
i ; i ¼ 1; : : : ; n} have the same mean vector and the

same covariance matrix. Thus, the task of modifying the original data while preserving

the means and the covariance matrix can be accomplished easily (and fairly arbitrarily).

Interestingly, Kim and Winkler (1995) proved that if the covariance matrix of the

original data is nonsingular, then it is possible to change the values in one record

arbitrarily and yet preserve the means and the covariance matrix, by modifying other

records suitably.

Another approach is to generate the noise vectors from a distribution with mean 0 and

covariance matrix dS, where d is a constant chosen by the data provider and S is the

covariance matrix of the survey variables. Then, the noise added variables would have

mean 0 and covariance matrix ð1 þ d2ÞS. Since d is known, S can be estimated unbiasedly

(and consistently) from the masked data (see Brand 2002). Mathematical treatment

of additive noise is most convenient when both the survey variables and noise vectors

are normally (multivariate) distributed. Thus, Fuller (1993) suggested transforming

observed variables into pseudo normal variables, adding independent normal noise

vectors to the transformed records, and finally back-transforming the noise added values to

the original scale.

The main reason for publishing microdata is to facilitate the performance of different

types of analyses by data users. Preserving the overall mean vector and the covariance

matrix is of limited help if the analysis involves other features of the data that are

perturbed by the masking procedure. For example, deriving unbiased estimators of

subdomain means can be very difficult, even if the masking procedure is revealed fully.

Generally, the dependency of the transformations on both the original and noise added

data makes proper analysis of the masked data and assessment of disclosure risk very

difficult.

3. Tabular Magnitude Data

Often the mean or the total of a quantitative variable for various subgroups is of interest.

The estimates are presented conveniently in the form of a table, whose cells represent the

subgroups and are defined by cross classification of some geographic and demographic

variables. A published table may report for each cell its frequency, an estimate of the

quantity of interest and its standard error. Tables of magnitudes are commonly used for

disseminating information in data generated by economic surveys of establishments.

Usually, the variables that define the cells of a magnitude table are key variables, and

based on external information it may be possible to identify the cell in which a target unit

falls or even all units falling in a cell. If a cell contains only a few units, an estimate for that

cell, based on the original data, may induce high disclosure risk for all units in that cell.

Obviously, cells with only one or two contributors are highly sensitive. Let n denote the

number of contributors to a cell. For n $ 3, one common rule for defining sensitive cells is
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the p% rule (see Federal Committee on Statistical Methodology 2005), by which a cell is

sensitive if

y1 $
100

p

Xn
i¼cþ2

yi ð3:1Þ

where y1 $ · · · $ yn are the ordered values of the units in the cell, and 0 , p , 100 and

1 # c # ðn2 2Þ are two prespecified numbers.

One widely used technique for dealing with sensitive cells is cell suppression, which

begins by suppressing the values of all sensitive cells. In addition, the values of some other

cells are also suppressed, called secondary suppressions, so that primary suppression

values cannot be recovered from nonsuppressed cell totals and the marginal totals. Cell

suppression has certain disadvantages (see Evans et al. 1998), including withholding too

much information in many cases and the possibility of disclosure based on information

from multiple tables.

As an alternative to cell suppression, Evans et al. (1998) suggested creating magnitude

tables after noise multiplying the original microdata values. Often many tables are

published from the same microdata, and for maintaining consistency among different

tables, it is desirable to first create a masked microdata set and then generate all tables for

public release from it. We shall examine effects of iid noise multiplication on both

confidentiality and data quality for tabular magnitude data, assuming that the survey

variable is nonnegative, as is the case in most applications. For establishment survey data,

Evans et al. (1998) perturb all establishment values within a company in the same

direction (up or down), which makes some noise factors dependent. We do not consider

that case here and for simplicity assume that all noise factors are generated independently

from a common noise distribution.

3.1. Effects of Multiplicative Noise on Data Quality

We shall now consider the effect of multiplicative noise on a cell total. Suppose a cell

contains n units with values y1; : : : ; yn and T ¼ y1 þ · · · þ yn is the cell total. Let T*

denote the perturbed total, i.e.,

T* ¼
Xn
i¼1

yiRi

where Ri are iid random noise multipliers. It follows easily that E½T*jy1; : : : ; yn� ¼ T ,

i.e., T* is an unbiased estimator of T, and the cell level noise variance is

s2
C ¼ VðT*jy1; : : : ; ynÞ ¼ s2

R

Xn
i¼1

y2
i ð3:2Þ

When the original data are generated by sampling from a finite population, with a

sampling design p, the overall variance of T* is

VðT*Þ ¼ Ep½VRðT*jy1; : : : ; ynÞ� þ Vp½ERðT*jy1; : : : ; ynÞ�

¼ s2
REp

Xn

i¼1
y2
i

h i
þ VpðTÞ
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If V̂pðTÞ is an unbiased estimator of VpðTÞ, then an unbiased estimator of VðT*Þ is

V̂ðT*Þ ¼ s2
R

Xn
i¼1

y2
i þ V̂pðTÞ ð3:3Þ

Note that the formula for V̂ðT*Þ is not usable to data users as it involves all values in the

cell. Even in the case of no masking, the variance of a cell total cannot be estimated from

the cell total itself, and the variances, i.e., V̂pðTÞ, need to be calculated and reported by the

data agency, which has access to the microdata. In the same way, (3.3) are to be used by

data agencies, if they choose to report the estimated variances. Naturally, most data users

would like to see both components of VðT*Þ, in (3.3), instead of just the total, but often the

decision as to what information to release rests with the data agency. For example, a data

provider may decide to release only the perturbed totals and that too only for the cells

which it considers to be nonsensitive.

The fact that T* is an unbiased estimator of T was noted by Evans et al. (1998). They

also observed, through simulations and numerical examples, that cell level noise CVs are

generally higher for sensitive cells than for nonsensitive cells. Here, we explain this

phenomenon theoretically. From (3.2) we see that the square of cell level noise CV is

c2 ¼ s2
R

Xn
i¼1

yi

T

	 
2

¼ s2
R

Xn
i¼1

g2
i ð3:4Þ

where gi ¼ yi=T is the “share” of unit i in the cell total. Recall (from Section 2) that sR is

the noise CV for each individual value. So, (3.4) gives a simple relationship: cell level

noise CV equals unit level noise CV multiplied by
P

g2
i

� �1=2
.

For any nonnegative variable Y, gi $ 0; i ¼ 1; : : : ; n and g1 þ · · · þ gn ¼ 1. It is easy

to see that c2, considered as a function of g1; : : : ; gn, for given n, is permutation

symmetric and strictly convex in each argument, which implies that c2 is a Schur-convex

function (Marshall and Olkin 1979). This implies the following: (i) c2 or equivalently the

cell level noise CV (c) increases as {gi}, i.e., the shares of the n units, become more

heterogeneous, (ii) the maximum possible value of c2 is s2
R, which is attained when gi ¼ 1

for some i and 0 for others and (iii) the minimum of c2 is s2
R=n, which is attained when

g1 ¼ · · · ¼ gnð¼ 1=nÞ. The inequality in (3.1) essentially says that a cell is sensitive by the

p% rule if the share of the largest unit is very high and hence g1; : : : ; gn are

hetereogeneous. For nonsensitive cells, g1; : : : ; gn are likely to be fairly homogeneous.

So, Schur-convexity of c2 implies that noise CV of a cell total is likely to be higher for

sensitive cells than for nonsensitive cells (with the same cell frequency, n). As Evans et al.

(1998) have noted, this is a desirable property because nonsensitive cells do not pose much

disclosure risk and hence don’t need to be perturbed much.

One might expect the effect of noise on a cell total to diminish as the cell frequency

increases. We note that if a new value ynþ1 is added to a cell that already has n values

y1; : : : ; yn, the noise variance, s2
C given by (3.2), increases but noise CV ðcÞ decreases

unless the added value is very large. Specifically, it can be seen that the noise CV
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decreases, with the addition of the value ynþ1, if and only if

ynþ1 ,
2
Xn

i¼1
yi

	 
 Xn

i¼1
y2
i

	 

Xn

i¼1
yi

	 
2

2
Xn

i¼1
y2
i

¼ 2
Xn
i¼1

yi

 !
1

g2
2 1

� �21

ð3:5Þ

where g2 ¼
Pn

i¼1ð yi=TÞ
2 (with T ¼

Pn
i¼1yi) is a measure of the heterogeneity of

y1; : : : ; yn. As a numerical example, if n ¼ 5 and y1; : : : ; y5 are 10, 6, 3, 2 and 1, then the

right side of (3.5) is 19.76, which is about twice the largest value in the cell. Note that, in

general, 1=n # g2 # 1, which implies that ½ð1=g2Þ2 1�21 $ 1=ðn2 1Þ and hence (3.5)

holds if ynþ1 , ½2=ðn2 1Þ�
Pn

i¼1yi < 2�y.

3.2. Disclosure Control

We now examine the efficacy of noise multiplication for confidentiality protection.

Suppose a cell contains n units with values y1; : : : ; yn and let T and T* denote the true and

noisy cell totals. What can an intruder infer about the value of a specific (target) unit, say

the value y1, from a reported noisy total? Assume that the intruder has full knowledge

about the masking procedure, i.e., the noise distribution is revealed to the public. The

intruder’s uncertainty about y1, after learning a noisy total T*, depends on his prior

knowledge about y1; : : : ; yn. Logically, his uncertainty should be expressed using his

posterior distribution derived using the Bayes theorem, where the noise distribution

determines the likelihood function. It may be noted that derivation of the posterior

distribution requires the intruder’s prior information about y1; : : : ; yn; a prior distribution

of y1 alone is not sufficient (see Lambert 1993). Thus, a proper Bayesian updating of an

intruder’s knowledge is usually very difficult. Also, there are many intruders, who have

different prior information and hence would gain different amounts of knowledge from

the reported T*. Which intruder’s information gain should a data agency consider for

assessing disclosure risk? A further complication is that the information gain also depends

on the target unit.

We shall instead consider a conservative situation: the intruder knows all original values

in the cell except y1, and has no information about y1. Consider the natural estimator

of y1, given by

ŷ1 ¼ T* 2
Xn
i¼2

yi

Letting e1 ¼ ŷ1 2 y1 denote the estimation error, it can be seen easily that the mean and

variance of e1, for given y1; : : : ; yn, are 0 and

Vðe1Þ ¼ Vðŷ1 2 y1Þ ¼ s2
R

Xn
i¼1

y2
i ð3:6Þ

More realistically, an intruder may know the true total (Tc) of a coalition of units and

have an estimate (guess) ~Tr for the total of the remaining units, excluding y1. Such an

intruder may calculate (estimate) y1 as

~y1 ¼ T* 2 Tc 2 ~Tr
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It can be seen that the error of this estimator, viz., e*
1 ¼ ~y1 2 y1, has mean ðTr 2 ~TrÞ, where

Tr is the true total of the remaining units, and Var e*
1

� �
¼ s2

R

Pn
i¼1y

2
i (both mean and

variance are with respect to the noise distribution). Also, if the noise distribution is

symmetric, then e*
1 is also symmetrically distributed. In addition, if the distribution of e*

1 is

continuous and unimodal, then for any given k;Pðje*
1j , kÞ is a decreasing function of

jTr 2 ~Trj and consequently ~y1 is most accurate when ~Tr ¼ Tr.

Comparing (3.6) with (3.2), we see that multiplicative noise induces the same level of

uncertainty (noise variance) about any specific value as about the total of the cell

containing that value. This is not surprising because in our context, the knowledge of y1 is

equivalent to knowledge of the cell total. Actually, since a cell total is larger than any

specific value in the cell, in terms of CV, uncertainty about any individual value is larger

than the uncertainty about the cell total. Also note that the expression in (3.6) is a

symmetric function of y1; : : : ; yn, and hence it can be used to assess uncertainty about any

one of the cell values y1; : : : ; yn when the remaining ones are known.

How should we choose the noise distribution? To answer this question, we should take

both data quality and confidentiality into account. For privacy protection we may require

2sR

Xn
i¼1

y2
i

 !1=2

$ yi
p

100

	 

for i ¼ 1; : : : ; n ð3:7Þ

so that approximate 95% error bounds for each value yi are at least p% away from its actual

value. As our assumption that the intruder knows all values except yi is rather

conservative, we believe a modest value of p would be reasonable in practical

applications. Note that (3.7) is satisfied if and only if the inequality holds for the largest

value in the cell, i.e.,

1 þ
y2

y1

� �2

þ· · · þ
yn

y1

� �2

$
1

4s2
R

p

100

	 
2

where y1 $ · · · $ yn are the ordered values in the cell. From the data quality perspective,

and in view of (3.2), it seems logical to require

2sR

Xn
i¼1

y2
i

 !1=2

# T
p*

100

	 

ð3:8Þ

so that approximate 95% bounds for the cell total are no more than p*% away from the true

total. Naturally, one would want (3.7) to hold for a “large” p and also (3.8) for a “small” p*,

which may not be possible. It is easy to see that both (3.7) and (3.8) can be satisfied if and

only if p* $ ð y1=TÞp. The optimum combinations of attainable ð p; p*Þ are determined by

p* ¼
y1

T

	 

p or

p*

p
¼

y1

T
ð3:9Þ

So, one needs to choose p and p* satisfying (3.9) and then determine the corresponding

value of sR. This approach can be applied to each cell when the goal is to publish only one

table. Note that in this approach, s2
R would be different for different cells.

Journal of Official Statistics538



If many tables are to be published based on the masked data, as is usually the case, then

satisfying (3.7) for all cells in all tables is a more challenging task. One possibility is to use

sR ¼ p=200 so that (3.7) is satisfied for all n $ 1 and all y1; : : : ; yn. This approach

protects all values at the unit level using a conservatively large value of sR, for the given p,

which may not be attractive from the data quality perspective. The following may be a

better compromise: use a common noise distribution with tolerable sR, perhaps around .02

or .03, and then publish only those tables whose cells satisfy (3.7). Clearly, this approach

may require redefining the cells of a table.

4. Properties of a Balanced Noise Method

The disclosure risk from publishing the observed total of a cell is small if the cell has

several fairly homogeneous contributors. Generally, the need for perturbing a cell total

decreases as the cell frequency increases. However, as (3.2) shows, in independent noise

masking, the cell-level noise variance increases as more contributors join a cell. For

altering the cell totals differently for sensitive and nonsensitive cells, Massell and Funk

(2007a, b) proposed a balanced noise procedure, where the direction of change of a value

is determined by the preceding perturbations within the cell. For balanced noise, one must

select and use a specific table for balancing noise factors, but as one traverses the cells in

the table, one assigns noise factors to the microdata. The procedure can be described as

follows (for simplicity, we consider independent noise factors and do not require that all

establishment values within a company be changed in the same direction).

Suppose a cell contains n values, y1 $ · · · $ yn. The balanced noise procedure changes

them sequentially to y*
1; : : : ; y

*
n, where

y*
i ¼ ð1 þWiUiÞyi; i ¼ 1; : : : ; n ð4:1Þ

U1; : : : ;Un are iid random variables with a common pdf f Uð:Þ whose support is a subset

of ½0;1Þ, W1 is 1 or 21 with equal probability and for i $ 2, Wi ¼ 1 ifPi21
j¼1ðy

*
j 2 yjÞ , 0, Wi ¼ 21 if

Pi21
j¼1ðy

*
j 2 yjÞ . 0 and Wi is 1 or 21 with equal

probability if
Pi21

j¼1ðy
*
j 2 yjÞ ¼ 0. For simplicity, we shall assume that

Pi21
j¼1ðy

*
j 2 yjÞ – 0

with probability 1. From (4.1) we see that Wi determines the direction of change of yi and

Ui determines the magnitude. The direction of change of the largest value (y1) is randomly

selected and the subsequent values (i.e., y2; : : : ; yn) are increased or decreased depending

on the sign of the cumulative effect of the preceding changes. Thus, perturbation

magnitudes U1; : : : ;Un are determined independently, but the directions are dependent.

The distribution f Uð:Þ is known and is selected by the data agency. Note that the noise

factors are Ri ¼ 1 þWiUi; i ¼ 1; : : : ; n, and they are not independent.

In the balanced noise method, starting with the second-largest value, each perturbation

aims to undo in part the cumulative effect of the previous changes on the cell total.

Intuitively, if n is moderately large and y1; : : : ; yn are fairly uniform, the cell total is

expected to change little. However, due to dependencies among the noise factors,

distributional properties of the change in a cell total are not obvious. In the following, we

present some theoretical results for the balanced noise procedure. Our main conclusions

are contained in Proposition 4.1 and Theorem 4.2.
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To investigate statistical properties of the balanced noise procedure, let

Ti ¼
Xi
j¼1

yj; Ti* ¼
Xi
j¼1

y*
j and Di ¼ Ti* 2 Ti ¼

Xi
j¼1

WjUjyj

for i ¼ 1; : : : ; n. Note that T* ¼ Tn* and Wi ¼ 2sign ðDi21Þ; i ¼ 2; : : : ; n. For given

y1; : : : ; yn, note that D1 is a function of ðW1;U1Þ and for i $ 2, Wi is a function of

ðW1;U1; : : : ;Ui21Þ and Di is a function of ðW1;U1; : : : ;UiÞ. So, let’s write D1 ¼

D1ðW1;U1Þ and for i $ 2, Wi ¼ WiðW1;U1; : : : ;Ui21Þ and Di ¼ DiðW1;U1; : : : ;UiÞ.

Lemma 4.1 The functions D1; : : : ;Dn and W2; : : : ;Wn are skew-symmetric in W1,

that is, for all u1; : : : ; un,

Dið1; u1; : : : ; uiÞ ¼ 2Dið21; u1; : : : ; uiÞ; i ¼ 1; : : : ; n ð4:2Þ

Wið1; u1; : : : ; ui21Þ ¼ 2Wið21; u1; : : : ; ui21Þ; i ¼ 2; : : : ; n ð4:3Þ

Proof Note that (4.3) follows from (4.2) as Wi ¼ 2signðDi21Þ. So, we only need to prove

(4.2). Clearly, D1ð1; u1Þ ¼ u1y1 ¼ 2½2u1y1� ¼ 2D1ð21; u1Þ, and hence

W2ð1; u1Þ ¼ 2W2ð21; u1Þ, as Wi ¼ 2signðDi21Þ. We can now use induction to prove

the lemma. Suppose (4.2) holds for i ¼ 1; : : : ; k2 1 (and hence (4.3) holds for

i ¼ 2; : : : ; k). Note that, for l ¼ ^1;

Dkðl; u1; : : : ; ukÞ ¼ Dk21ðl; u1; : : : ; uk21Þ þWkðl; u1; : : : ; uk21Þukyk ð4:4Þ

The proof can now be completed easily using the induction hypothesis on (4.4) and the

fact that (4.2) holds for i ¼ 1. A

Theorem 4.1 For all i $ 1, (i) Di is symmetrically distributed around 0 and (ii) the

marginal distribution of Wi is uniform over {�1,1}, i.e.,

PðWi ¼ 1Þ ¼ PðWi ¼ 21Þ ¼ 0:5 ð4:5Þ

Proof Considering the joint distribution of D1;U1; : : : ;Ui and generically denoting

relevant densities by pð:Þ, we see that for all ui ¼ ðu1; : : : ; uiÞ,

pð1; uiÞ ¼ pð1ÞpðuiÞ ¼
1

2
pðuiÞ ¼ pð21ÞpðuiÞ ¼ pð21; uiÞ ð4:6Þ

Take any fixed interval ½a; b�. For k ¼ 21; 1, let AðkÞ ¼ {ui : a # Diðk; uiÞ # b} and

A*ðkÞ ¼ {ui : 2b # Diðk; uiÞ # 2a}. By Lemma 4.1, AðkÞ ¼ A*ð2kÞ and

Pða # Di # bÞ ¼ PðW1 ¼ 1ÞP½U i [ Að1Þ� þ PðW1 ¼ 21ÞP½U i [ Að21Þ�

¼ PðW1 ¼ 21ÞP½U i [ A*ð21Þ� þ PðW1 ¼ 1ÞP½U i [ A*ð1Þ�

¼ Pð2b # Di # 2aÞ

ð4:7Þ

as PðW1 ¼ 21Þ ¼ PðW1 ¼ 21Þ ¼ 1=2. Since (4.7) holds for all a # b, Di is

symmetrically distributed around 0. The second part of the theorem follows from part

(i) and the fact that Wi ¼ 2signðDi21Þ. A
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Since the distribution of Ui does not depend on any of the other variables, including Wi,

part (ii) of Theorem 4.1 yields the following:

Corollary 4.1 Marginally, each noise factor Ri ¼ 1 þWiUi is symmetrically distributed

with EðRiÞ ¼ 1 and VðRiÞ ¼ E½VðRijWiÞ� þ V½EðRijWiÞ� ¼ s2
U þ m2

U, where mU and s2
U

are the mean and variance of f Uð:Þ.

Theorem 4.1 also implies that a perturbed cell total ðT *Þ is symmetrically distributed

around the observed total (T) and hence T * is an unbiased estimator of T. As the balanced

noise procedure is applied at cell level, the cells must be predefined. However, in practice,

data agencies are obliged to prepare and publish many different tables based on the

same data set. Thus, while balanced noise masking of a microdata set must be done with

a “reference” table, it is important to assess its effect on cell totals of other tables.

By Corollary 4.1, the magnitude of perturbation of any value, i.e., ð yi 2 yiRiÞ, is

symmetrically distributed around 0 and hence
P

i[Að yi 2 yiRiÞ is also symmetrically

distributed around 0, for any set of units A. The main practical implication of this

discussion is the following:

Proposition 4.1 For any set of units A, the noisy total
P

i[A yiRi is symmetrically

distributed around the corresponding total in the original data set, i.e.,
P

i[A yi. So, for

any cell in any table, the noisy total is an unbiased estimator of the true total.

We shall now examine the noise variance for the total of a reference cell and the gain

in data quality from the balancing procedure.

Theorem 4.2 Suppose a cell in the reference table has n units with ordered values

y1 $ · · · $ yn. Then, the conditional variance of the perturbed total

T* ¼ y1R1 þ · · · þ ynRn, given the original data, has the following representation:

VðT*Þ ¼ s2
R

Xn
i¼1

y2
i 2 2mU

Xn21

i¼1

yiþ1E½jDij� ð4:8Þ

where s2
R ¼ m2

U þ s2
U , and mU and s2

U are the mean and variance of f Uð:Þ.

Proof From preceding definitions and discussions it can be verified easily that for

i ¼ 2; : : : ; n, (i) Di ¼ Di21 þWiUiyi, (ii) EðWiÞ ¼ 0 and W2
i ¼ 1 with probability 1 and

(iii) Di21Wi ¼ 2jDi21j with probability 1. From these and the fact that {Ui} are

independent of all other variables we get

VðT*Þ ¼ VðDnÞ ¼ V½Dn21 þWnUnyn�

¼ VðDn21Þ þ VðWnUnynÞ þ 2covðDn21;WnUnynÞ

¼ VðDn21Þ þ E U2
n

� �
y2
n þ 2mUynE½Dn21Wn�

¼ VðDn21Þ þ s2
Ry

2
n 2 2mUynE½jDn21j�

ð4:9Þ

The proof can now be completed easily by expanding the recurrence relation in (4.9) and

noting that VðD1Þ ¼ s2
Ry

2
1. A

Comparing (4.8) with (3.2), we see that balanced noises reduce the noise variance

of a cell total (in the reference table) by 2mU

Pn21
i¼1 yiþ1E½jDij�. Also, unlike in the case
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of independent noise multiplication where the variance of a perturbed total always

increases with the addition of an extra value, here the variance of a perturbed total with

increasing number of components may increase or decrease depending on the actual

values being added as well as on the mean and the variance of the noise distribution.

Specifically,

VðT ðnþ1Þ*Þ2 VðTn*Þ ¼ s2
Ry

2
ðnþ1Þ 2 2mUynþ1E½jDnj�

¼ yðnþ1Þ s2
Ryðnþ1Þ 2 2mUE½jDnj�

� �
which can be positive or negative.

5. Discussion

In this article we have presented some theoretical properties of multiplicative noise

masking procedures for preserving confidentiality of private information in statistical

databases. We showed that the sample moments and correlations based on the original data

can be recovered unbiasedly from the masked data, and unbiased polynomial estimators

based on the original data can be adapted easily for the masked data. These results are

important from the data analysis perspective. We believe our results and discussions

are helpful in clarifying the effects of multiplicative noise on tabular magnitude data.

In particular, the results that the Evans et al. (1998) procedure has little effect on the total

of a nonsensitive cell and that the balanced noise procedure of Massell and Funk (2007a, b)

is unbiased are reassuring.

For assessing disclosure risk and choosing a noise distribution, in connection with

the Evans et al. (1998) procedure, we considered a rather conservative scenario, where

the intruder knows all values in a cell except that of the target unit. It would be useful

to consider other and more realistic scenarios. One inherent difficulty in ascertaining

disclosure risk is that different intruders have different target units as well as different

prior information. We believe further research on modeling intrusion behavior and

developing an aggregate measure of disclosure risk would be of much practical value.

The balanced noise method of Massell and Funk (2007a, b) is a useful procedure as it

retains unbiasedness and at the same time reduces noise variances of the cell totals in the

reference table. Intuitively, we expect the gain from balancing to depend on the choice of

the reference table. This aspect, as well as how to choose the reference table, deserves

further investigation. Other balancing methods, e.g., randomly order the units in each cell

and then apply the procedure, may also be explored and compared.

Multiplicative noise masking is a useful tool for preserving confidentiality of private

information in statistical databases. One attractive feature of multiplicative noise, for

positive quantitative variables, is that it provides uniform record level protection to all

values, as the noise CV is constant (same as the noise variance). However, multiplicative

noise perturbation is not a panacea. Obviously, the procedure is not applicable to

qualitative variables. Also, while moments and correlations can be estimated easily,

estimation of other population parameters, such as quantiles, and adapting standard

nonpolynomial estimators for applying to the perturbed data may be difficult. We hope to

address some of these issues in future communication.
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