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Strategies for Collapsing Strata
for Variance Estimation

Keith Rust and Graham Kalton'

Abstract: The collapsed strata variance esti-
mator is frequently used with sample designs
in which one primary sampling unit is selected
per stratum. The bias and precision of this
variance estimator depend upon the way in
which strata are collapsed. This paper examines
the effects of collapsing strata in pairs, triples,

1. Introduction

A feature of many survey sample designs is the
selection of a single primary sampling unit
(PSU) per stratum. This is achieved either
explicitly through fine stratification, implicitly
through systematic selection, or through a
combination of these methods. The selection
of a single PSU per stratum gives efficiency in
design since stratification is carried out to the
fullest possible extent, but it does not general-
ly permit an unbiased variance estimator to be
obtained. A widely used method of variance
estimation for this situation is known as the
collapsed strata technique. With this tech-
nique, strata and their corresponding sample
PSUs are collapsed together in groups (col-
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and larger groups on the quality of the variance
estimator. The effects of the bias and preci-
sion of the variance estimator on the inference
for the parameter of interest are considered.
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lapsed strata) and then the variability among
the units within these groups is used to derive
a variance estimator (Hansen et al. (1953,
Vol. 1, §9.15, §9.28), Wolter (1985, §2.5)).
This paper discusses the extent of collapsing to
use, taking into account both the bias and vari-
ance of the resultant variance estimator.

Other approaches to estimating variances
with one PSU per stratum designs have been
proposed. A method proposed by Chromy
(1981) selects one PSU per implicit stratum by
asequential selection procedure. This method
permits unbiased variance estimation, but it is
not clear that the unbiased estimator is suffi-
ciently precise in many applications.

Other variance estimators for use with one
PSU per stratum designs generally require
auxiliary information. A model relating the
auxiliary information and the survey variables
is utilized, and must hold reasonably well if
the variance estimator is to be satisfactory.
Hartley et al. (1969) have, for instance, pro-
posed a method which uses a linear regression
of the stratum means on one or more auxiliary
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variables. The estimated covariance matrix of
the regression residuals is then used to esti-
mate the stratum variance components.

If the strata can be ordered in approximately
ascending order of the stratum means, the
method of successive differences (see Kish,
1965, §8.6B) is attractive. This method is an
extension of collapsing strata in pairs. Fre-
quently these methods have similar biases but
the method of successiv differences has some-
what greater precision (DuMouchel et al.
(1973)).

Isaki (1983) uses auxiliary information to
reduce the bias of the collapsed strata variance
estimator. Isaki’s theoretical and empirical
results suggest that when auxiliary variables
highly correlated with the survey variable are
available, substantial improvements in the
accuracy of variance estimation can be
obtained.

In practice, closely related auxiliary infor-
mation is often not readily available, and this
fact, together with the simplicity of execution
of the original collapsed strata method,
explains its continued popularity. In using the
collapsed strata variance estimator, there are
choices as to the extent to which strata are col-
lapsed, and the manner in which collapsed
strata are formed. This paper considers how
best to collapse strata, and the extent of col-
lapsing that gives rise to the most powerful
inference concerning the population param-
eter of interest. To do this, a number of issues
need to be addressed. Section 2 gives results
on the bias and variance of the collapsed strata
variance estimator, and shows how these
quantities depend on the method of collap-
sing. Since the collapsed strata variance esti-
mator is biased, the question of how to
compare the performances of biased variance
estimators needs to be considered; this is dis-
cussed in Section 3 for a simple case. Section 4
then examines the best choice of collapsing
method to use in the simple case. The findings
are summarized in Section 5.
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2. The Collapsed Strata Variance Estimator

Suppose that the population to be sampled is
divided into H strata, with stratum % con-
taining N, PSUs. A multistage sample is
drawn by first selecting one PSU from each
stratum, and then subsampling from within
the selected PSUs. Let m;,; denote the proba-
bility that PSU i of stratum h is selected

N, H
( T T = 1). A parameter p = Z, b is esti-
i= h=

mated using an unbiased linear estimator
mn =h§=:,l L, where (i, = Y, /m;,; and Yy, is the
value of the characteristic of interest for PSU i
of stratum A (if the sample is single stage) or an
unbiased estimator of the characteristic of
interest derived from the units subsampled
from that PSU (if the sample is multistage).
Suppose that the H strata are partitioned
into J groups of strata, known as collapsed
strata, and that there are H; = 2 strata in col-
lapsed stratum j. Stratum A within collapsed
stratum j is denoted by A(j). The collapsed
strata estimator of the variance of (i is then

~ é H j gl N l’:[j 2
ves(u) = Pat T’H]'_“l"') hel (g = [_7’] >

where [L,,(j) denotes the unbiased estimator of
Wy(j)> the parameter value for stratum h in col-
lapsed stratum j, and ; = / ;;’l Wa)-

2.1.
mator

Bias of the collapsed strata variance esti-

Hansen et al. (1953, Vol II, §9.5) give the
expected value of v(u), from which it follows
that

J  H. H, W
S et _ Vi
D 2 Mol
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Bias (v()) =
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I

where y; = i i:lll (- This bias is non-negative,
and is zero only when the strata within each
collapsed stratum j have a common value of
Wy The bias is kept small by collapsing
together strata with similar w, values. It will
generally be smallest when little collapsing
occurs so that values of w, can be kept similar
within each collapsed stratum.

It should be noted that the choice of which
strata are to be collapsed must be based on
prior knowledge and expectations about the
w, values, not on data from the sample. If
sample data are used, for example to collapse
strata with similar i, values, a severe negative
bias in variance estimation can result.

In the special but common case where H =
H/J (= H say) for all j, the bias of va(u) can
readily be expressed in terms of the average
variance of the w, within collapsed strata, o2,
where

2 1
Oye = H Pt

Il M«

H W;
z [bagy — 'ﬁL]z-
i

By comparing o2, with Bias (vm(ﬁ)) in (1) it
can be seen that

Bias(v, (1)) = AHo2, /(H -1).
This bias can alternatively be expressed as
Bias(ves(W) = H(1-0)o},

where @ is the intraclass correlation of the w,
values within collapsed strata, given by

Hoy,
b

o=1- — =
(H-1)o}

and o is the between strata variance given by

The possible values of @ range from —1/(H 1)
to1.

In the following discussion, it proves more
convenient to employ the relative bias rather
than the bias of the collapsed strata variance
estimator. The relative bias of v (n) is defined
as

Rel Bias(v,,(1)) = Bias(v(1)/V(1).

2.2. The likely magnitude of the relative bias
of ves()

As will be seen in Sections 3 and 4, some idea
of the likely magnitude of the relative bias of
vcs(;l) is needed in order to assess alternative
collapsed strata variance estimators. The fol-
lowing example gives the order of magnitude
of the relative bias that might occur in one
particular case. Suppose that a multistage
sample with one PSU selected per stratum is
drawn to estimate a population proportion .
Strata are of equal size, and PSUs are selected
with probabilities proportional to their exact
sizes. A sample of n elements is selected from
each selected PSU, giving a total sample size
of Hn. Denote the stratum population propor-
tions as P, and their sample estimates as pp,
and let w, = Py/H (so that p = 2 w,) and
i, = pp/H. Further, let the varlance of the
stratum population proportions P, be

o2 =1

A1 HZZ
P H h=

2 (P W)’ =

For this example, the variance of i is
- H

V([.L) = hZ] Deff,,Ph(l - Ph)/’le

where Deff, is the within stratum design effect

(see Kish (1965, § 8.2)). For simplicity Deff, is

taken to be 1. Noting that

H
Hu(1-p) = hz=:l Py(1-P,) + Hol,
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the variance of L can be expressed as
V() = [w(1-p) - op)/nH.

Thus the relative bias of va(;;.) reduces to

n(1-e)o,

Rel Bias (ve,(1)) = .
w(l-p)-o,

)

As an illustration of likely values for ¢ and
0,3,, consider the following examples. Suppose
that the collapsed stratum proportions P; are
equally spaced over a range of 0.4 to0 0.6, and
that the stratum proportions within each
collapsed stratum are equally spaced with a
range of 0.1. For H = 100 strata using J = 10
collapsed strata, this corresponds to the case
where one collapsed stratum contains ten
strata with proportions (P;) of .350, .361,
372, .383, ..., .439, .450, a second collapsed
stratum has strata with P, values of .372, .383,
394, ..., .450, .461, .472, and the tenth col-
lapsed stratum has P, values of .550, .561,
.572, ..., .650. In this case the strategy of
forming homogeneous collapsed strata has
been only moderately successful. With such
uniform distributions of proportion values
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both within and across collapsed strata, the
values of 0}, and o, are given by

o2 = 0.1)2(H + 1)
" RH@E-1)
and

o = (0.1)2(H + 1)

02U +1)
l12(H-1)

12(J-1)

This gives 0,% = .0051 and o = 0.78 when
H = 100 and J = 10 as in the above example.

If H = 30 and J = 15, there are 15 collapsed
strata, with the first collapsed pair having P,
values of .350 and .450, the second having .363
and .463, the third .377 and .477, and the
fifteenth .550 and .650. In this case, the col-
lapsed strata are not very homogeneous with
respect to P, values, and this is reflected by the
relatively low value for g of 0.21. The value of
o} is .0063.

If H =12 and J = 2, one collapsed stratum
has P, values of .35, .37, .39, .41, .43, .45 and
the other has P, values of .55, .57, .59, .61,
.63, .65. Here the collapsed strata are quite
homogeneous with ¢ = 0.87, and o} = .0112.

Table 1. Relative biases of v (1) for a range of values of 62, , and n, forp = 0.5
0,2, 0 n
5 10 25 50

.001 .00 .020 .040 100 .201
75 .005 .010 .025 .050
.95 .001 .002 .005 .010
.99 .000 .000 .001 .002

.003 .00 .061 121 .304 .607
75 015 .030 .076 152
.95 .003 .006 .015 .030
.99 .001 .001 .003 .006

.005 .00 102 204 .510 1.020
75 .026 051 128 .256
.95 .005 .010 .026 .051
.99 .001 .002 .005 .010

.01 .00 .208 417 1.042 2.083
75 .052 104 .260 .521
.95 .010 .021 .052 .104
.99 .002 .004 .010 .021
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If the range of P, values within collapsed
strata is reduced from 0.1 to 0.05 in the above
three examples, the homogeneity of the col-
lapsed strata increases substantially. The @
values become 0.93, 0.72, and 0.97 respec-
tively. The corresponding values for 0,2, are
.0043, .0044, and .0103.

Table 1 shows the relative bias of va.(;;) for
some likely values of 02, 0, and #, in the case
where pu = 0.5. It can be seen from the table
that the relative bias varies greatly with varia-
tion in these three parameters.

For values of p other than 0.5, the relative
biases will be greater than those shown in
Table 1 by a factor of (0.25 - 2)/(u(1 —p) - 0%)
(for the same values of 0,%, o and n). For
example, if p = 0.2, the relative biases will be
slightly more than 56 % greater than those
shown in Table 1. Note, however, that with
more extreme proportions, relatively small
values of 0,2, are likely to be encountered, as
the range of P, values will generally be small.
Thus, even though the relative biases will be
larger than those shown in the table, they will
not be of great magnitude because small 0,2,
values are associated with smaller relative
biases.

Relative biases greater than 0.5 occur in
Table 1 only when 0,2, and n are both large and
o is small. This combination of values is sel-
dom likely to arise in practice. One reason is
that when the variation among the stratum
proportions is large (0; = .005, say), it should
generally be possible to collapse strata so that
pislarge (¢ = 0.75). Another reason is that in
national surveys of human populations, the
average cluster sizes are usually less than
n = 50. Moreover, the values of n applicable
for subclass estimates are smaller than that for
the total sample. Thus, as a rule relative biases
can be expected to be less than 0.5; only in the
case of large cluster sizes (n = 50) are larger
relative biases likely to occur.

2.3.  The variance of v ( ;1)

A
The variance of v (p) is given by:

Var(vy(i)) = A + B + C+ D Q)

JooH @ B,
where A= X [ -, % oip],
j=1 h=1 1=
J 4 H; W
B= ¥ —e 5 (o -—LT0k,,
j=1 HF) n=1 (4 H,.] h()
I 4, N w )
C= = r—= ¥ [p-
/~=1~1(H,—1)! h=1 [p.;,(,) H, ]l‘vh(,),
I HoH

D= I —= 3 3 0k Ok
2@y % %o

l‘*(/:‘()n = E(llh(/)’ wag))*s u;f?,){= E(ﬁh(,)— Wz(,))%
and oh;) = E(pyq) — M)’ Anoutline of the
derivation of this result is given in the appendix.
Expression (3) generalizes the result given by
DuMouchel et al. (1973) for the case when all
H;=2.

It can be seen that the terms B, C and D are
affected by the method of collapsing strata.
The term B is always non-negative, and is
minimized at zero, like the bias, when Wh() 18
constant for all / in j. However, the two terms
C and D will not necessarily be minimized by
such an arrangement. The term C will be zero
if either w,; or u,,(f/)) is constant for all #in j, but
this is not necessarily the minimum
achievable, since this term may become nega-
tive. The term D depends upon the stratum
sampling variances alone, and not the w,
values.

As is evident from the above, the optimal
extent of collapsing is not obvious, even if it is
possible to collapse the strata so as to give an
unbiased variance estimator. Minimal col-
lapsing keeps the bias and the variance term B
low, but will generally give rise to a relatively
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large value for D. In the absence of a general
solution for optimal collapsing, we will con-
sider a case with some simplifying assumptions.

3. Comparing Collapsed Strata Variance
Estimators

The comparison of unbiased, or approximately
unbiased, variance estimators is commonly
made in terms of their precisions (the inverses
of their variances). The use of a more precise
unbiased variance estimator gives rise to more
powerful inference from the sample data. In
comparing biased variance estimators, how-
ever, the effects of the biases and the preci-
sions of the estimators must both be taken into
account.

A measure frequently used to assess the
combined effect of the bias and variance of an
estimator is the mean square error. The mean
square error provides a useful index of the
quality of the estimator 6 for making inference
about 6. However, since the purpose of using
v(u) to estimate V(pt) is not generally to make
inference about V(pt), but to make inference
about the parameter y, it is not clear that the
mean square error provides an appropriate
index of the quality of a variance estimator.

The criterion we propose for choosing
between variance estimators is that the pre-
ferred variance estimator is the one that leads
to the most powerful inference, while still
maintaining at least the stated level of confi-
dence. The variance estimator giving the most
powerful inference for a given confidence
level (1 — a) is taken to be the one with the
shortest expected confidence interval with
coverage of at least (1 — a). Although we con-
sider this criterion to be a reasonable one, it
should be noted that it ignores issues relating
to the control that the researcher has over the
width of the confidence interval attained for a
particular sample.

Confidence intervals are generally con-
structed as [ & & (12 VV(R), Where k is an
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appropriate number of degrees of freedom for
the variance estimator. The form of v(u)
affects both its bias and variance. The presence
of a positive bias increases the expected size of
v(l;.), and hence the expected width of the con-
fidence interval. The variance affects the
width of the confidence interval through the
choice of the number of degrees of freedom
for the t-value.

In this section we examine whether the
standard confidence intervals calculated with
the collapsed strata variance estimator satisfy
the condition of having coverage of at least
(1 — o). We then consider whether the mean
square error serves as an adequate index of
the quality of a variance estimator according
to the criterion proposed above. To obtain
tractable expressions for analyzing confidence
interval coverage and mean square error, we
first introduce some simplifying assumptions.

3.1. A simple model

In the remainder of the paper, a simple model
for the population and sample design will be
used to derive a less complex form for the
variance of vcs(;l) and in particular to derive a
simple relationship between the variance and
bias of vcs([x) The assumptions made are as
follows: suppose that o}, = 0° u,,o) u® and
By = u,,(,) loh; = B are constant for all h,j.
Then the variance of 1 is V(u) Ho?. Further,
consider only collapsing strategies for which
collapsed strata contain equal numbers of
strata, so that H; = H/J (= H say) for all j.

Under these assumptions,
variance of v,(u) is obtained, using (3), as

the relative

Rel Var(ve()) = Var(va(W)/V(n)*
= ZB-1)

+_2

(H-1)

{1+ %ﬁ Rel Bias(v(1))}].
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Thus under the simple model, for given H
the relative variance of v, (i) reduces to a
function of just three quantities: the relative
bias, the extent of collapsing, and 3, the com-
mon kurtosis of the sample estimators within
strata. If f = 3, the value for a normal distribu-
tion, then

Rel Var(vcs(f‘*)) =

2

=) [1 + 2 Rel Bias(v,(11))]. 4)

3.2.  Coverage properties of confidence inter-
vals based on collapsed strata variance esti-
mators

Consider the collapsed strata variance esti-
mator under the above model. In this case the
standard method of constructing confidence
intervals is to use b % fu ) (e VVe(l),
where the number of degrees of freedom
adopted is (H-J). For example, for a 95 %
confidence interval (a = .05) for a design with
H = 30 strata collapsed in pairs (H = 2,J = 15),
the coefficient generally used is £;5_g75 = 2.1315.
The question considered here is whether such
standard confidence intervals have coverage
of at least (1-a).

Suppose that p is normally distributed, and
that v“(ﬁ) is independent of fL Provided that
the relative bias of v (n), denoted by RB, is
not too large, it is reasonable to assume that
rve(W/[V(W)(1 + RB)] has a chi-squared
distribution with r degrees of freedom, where

r=2(1 + RB)/Rel Var(v(p)).

Hence (b - p)y/1 + RB/\/v,(ji) has a

central ¢ distribution with r degrees of free-
dom. With § = 3, it can be shown using (4)
that

r = (H-J)(1+RB)¥(1 + 2RB).

Since RB = 0, it follows that the number of
degrees of freedom r is at least (H-J). A con-
fidence interval for p with exact 95 % coverage
is given by 0t £,y V(1) VV1+RB. Since
Y1), (1=ar2) = b, (1-ay and / 1+RB =1, it thus
follows that the standard confidence interval
R % Lo, (- Vves(Whas coverage of at least
(1-o).

Under these assumptions, the standard con-
fidence intervals are doubly conservative in
that they use a larger t-value than is required
for exact (1-a) coverage, and they also ignore
the effect of the positive bias of the variance
estimator. When the above distributional
assumptions do not hold exactly, but do hold
approximately, it seems probable that the
standard confidence intervals will still have
coverage of at least (1-a).

3.3.  Relationship of the mean square error of
Ve(It) to confidence interval widths

We now turn to consider how well the mean
square error of vcs(ﬁ) tracks the widths of the
standard confidence intervals discussed
above. For this purpose, we will examine the
relative mean square error of va(;l), which we
define as

Rel MSE(v(1)) = MSE(ve,()/V(1)?
= Rel Var(v,(n))
+ {Rel Bias(v,(1))}2

The relative mean square error is preferred to
the mean square error because it is expressed
more readily in terms of relative bias. The
relationship between standard confidence
intervals and relative mean square error
depends upon the chosen confidence level a.
We use a = .05, as 95 % confidence intervals
are the most frequently utilized when making
inference from sample survey data.
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When vcs(fx) is estimated using different
extents of collapsing, the expected widths of
the standard 95 % confidence intervals for p
vary in proportion to fy._y) 75 \/1+RB. This
quantity is therefore used as the basis for the
assessment of Rel MSE(vc_\.(;l)) as a measure
of the quality of vcs(ﬁ). However, rather than
employ this quantity directly, we introduce
what we term a relative 95 % CI width. This
latter quantity is the expected width of the
standard two-sided 95 % confidence interval
expressed relative to a reference confidence
interval width, where the reference is the
expected 95 % confidence interval width
resulting from the use of a simple random
sample of H PSUs, with true sampling
variance V(l’l). The reference is thus the
expected confidence interval width for the
case where all strata are collapsed together
and no bias results. For example, for 30 strata,
the reference corresponds to the use of an un-
biased variance estimator, together with the ¢
coefficient appropriate for 29 degrees of free-
dom (2.0452).
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Values of relative 95 % CI width and Rel
MSE are given in Table 2 for the simple model
of Section 3.1 with B = 3 and for a range of
values of relative bias (RB), of numbers of
strata (H), and of extents of collapsing (H).
An examination of the table shows that Rel
MSE tracks the relative 95 % CI width poorly
when there are 30 strata or more. For
example, for H = 30 strata the table shows
that, in terms of relative 95 % CI width, col-
lapsing in tens with .05 relative bias (relative
95 % CI width 1.028) is not as efficient as col-
lapsing in fives with a .02 relative bias (1.019).
The corresponding values for Rel MSE (.084,
.087) suggest on the contrary that, despite the
substantially greater bias, collapsing in tens is
superior.

The Rel MSE values track the relative 95 %
CI widths better for 12 strata. For example,
the alternatives of collapsing into one col-
lapsed stratum of twelve strata with a .05 rela-
tive bias, and collapsing into fours with a
relative bias of .02 have relative 95 % CI
widths of 1.025 and 1.038 respectively. The

Table 2. Comparison of relative 95 % CI width and Rel MSE

Relative 95 % CI width RelMSE
RB RB
H | .01 .02 .05 01 .02 .05 1
H=100
2 1.017 1.022 1.037 1.062 .041 .042 .047 .058
5 1.008 1.013 1.028 1.052 .026 .026 .030 .040
10 1.006 1.011 1.026 1.050 .023 024 .027 .037
H=30
2 1.047 1.053 1.068 1.093 136 139 .149 .170
5 1.014 1.019 1.034 1.058 .085 .087 094 110
10 1.008 1.013 1.028 1.052 | .076 .077 .084 .099
H=12
2 1.117 1.123 1.139 1.166 .340 .347 369 410
4 1.033 1.038 1.053 1.078 227 232 247 277
12 1.005 1.010 1.025 1.049 .186 .190 203 228
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corresponding Rel MSE values of .203 and
.232 reflect this ordering. Thus it can be seen
that in comparing forms of the collapsed strata
variance estimator, with respect to reflecting
relative 95 % confidence interval widths, Rel
MSE provides a poor criterion, except when
only a few strata are involved. With larger
numbers of strata, Rel MSE places too little
emphasis on bias.

4. Choice of the Extent of Collapsing for
Use with v,,(1)

We now consider the choice of the extent of
collapsing to use with the collapsed strata vari-

ance estimator, employing the 95 % confi-
dence interval width as the index of quality.
As in Section 3, two-sided 95 % confidence
intervals are used, these being the most fre-
quently employed in practice. It must be
noted that the conclusions reached regarding
the desirable degree of collapsing may differ
from those reached if a different level of con-
fidence is used. Under the assumptions of the
simple model of Section 3.1, Table 3 shows the
effect of a range of extents of collapsing on
95 % confidence interval widths in the pre-
sence of varying degrees of relative bias. Parts
(a), (b), and (c) of the table are for H = 100,

Table 3. Relative 95 % CI widths for different extents of collapsing

(a) H = 100
H: 2 3 4 5 10
Rel 0.0 1.012 1.006 1.004 1.003 1.001
Bias .005 1.015 1.009 1.007 1.006 1.004
.01 1.017 1.011 1.009 1.008 1.006
.02 1.022 1.016 1.014 1.013 1.011
.03 1.027 1.021 1.019 1.018 1.016
.05 1.037 1.031 1.029 1.028 1.026
1 1.062 1.055 1.053 1.052 1.050
2 1.109 1.102 1.100 1.099 1.097
4 1.198 1.190 1.188 1.187 1.185
(b) H =30
H 2 3 5 6 10
Rel 0.0 1.042 1.020 1.009 1.007 1.003
Bias .005 1.045 1.023 1.012 1.010 1.006
.01 1.047 1.025 1.014 1.012 1.008
.02 1.053 1.030 1.019 1.017 1.013
.03 1.058 1.035 1.024 1.022 1.018
.05 1.068 1.045 1.034 1.032 1.028
1 1.093 1.070 1.058 1.056 1.052
2 1.142 1.117 1.106 1.103 1.099
4 1.233 1.207 1.194 1.192 1.187
(c)H=12
H 2 3 4 6 12
Rel 0.0 1.112 1.048 1.028 1.012 1.000
Bias .005 1.115 1.050 1.030 1.015 1.002
.01 1.117 1.053 1.033 1.017 1.005
.02 1.123 1.058 1.038 1.022 1.010
.03 1.128 1.063 1.043 1.027 1.015
.05 1.139 1.074 1.053 1.037 1.025
.1 1.166 1.099 1.078 1.062 1.049
2 1.218 1.148 1.126 1.109 1.095
4 1.315 1.240 1.216 1.198 1.183
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30, and 12 strata respectively, and in each case
B = 3. The table entries are relative 95 % CI
widths, derived in the same way as those in
Table 2. ‘

Table 3(a) shows that when there are many
strata (H = 100), little is to be gained from
extensive collapsing. Reading across the rows
of the table shows that there is little reduction
in confidence interval width when the relative
bias remains constant as collapsing is increased.
If additional collapsing leads to even a modest
increase in bias, the quality of variance esti-
mation decreases. For instance, collapsing in
tens with a .03 relative bias (relative 95 % CI
width = 1.016) is slightly inferior to collapsing
in pairs with a .005 relative bias (1.015). Since
increased collapsing is likely to result in in-
creased bias, the risks inherent in the use of
extensive collapsing outweigh the potential
benefits. In this case, collapsing in pairs would
seem the safest strategy. Even in the presence
of a relative bias as large as .05 collapsing in
pairs will result in a 95 % confidence interval
that is only 3.7 % wider than the reference
confidence interval.

When there are only 12 strata (Table 3(c)),
the situation is different. Appreciable gains in
the precision of variance estimation result
from a greater degree of collapsing, resulting
in a noticeable reduction in confidence inter-
val width, even if substantial bias is introduced.
For example, collapsing six strata together
and incurring a relative bias of 0.1 (relative
95 % CI width = 1.062) is markedly superior
to collapsing in pairs with no bias (1.112).
When there is a large variation in stratum
means or proportions (large o2 or 03) and col-
lapsing into relatively homogeneous groups
(large @) is possible, and collapsing into
groups of six or four strata appears a good
strategy. Forming one collapsed stratum con-
taining all 12 strata (¢ = —.09) will give a high
relative bias in this case.

For a design with 30 strata (Table 3(b)),
results between these two extremes are found.
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In this case the best choice of a collapsing
strategy is heavily dependent upon the extent
to which the relative bias increases with the
extent of collapsing. There are worthwhile
gains to be had from a high level of collapsing
if minimal additional bias is introduced, but
these are easily lost if an appreciable increase
in bias occurs. Table 3(b) shows that collapsing
in triples is superior to collapsing in pairs pro-
vided that the resulting increase in relative
bias s less than about .04. Collapsing in fives is
superior to collapsing in triples if the increase
in relative bias is less than .02. Additional col-
lapsing beyond fives leads to little gain at best,
and this will disappear with only a little in-
crease in bias. A strategy of collapsing in
triples thus appears to be a robust approach.
Collapsing in triples with a .03 relative bias,
for instance, gives confidence intervals that
are only 3.5 % wider than those attainable
under complete collapsing with no bias. Col-
lapsing in fives will reduce confidence interval
widths by only (1.035-1.024)/1.035 = 1.1 %
if no further bias is introduced, whereas if the
relative bias increases to 0.10 as a result. of
such collapsing, the interval widths will in-
crease by (1.058 —1.035)/1.035 = 2.2 %.

If a reasonable assessment of the relative
bias resulting from different collapsing
strategies can be made, the optimum col-
lapsing strategy can be chosen by calculating
the relative CI widths. For example, with 30
strata and using 95 % confidence intervals,
suppose that collapsing in pairs gives a relative
bias of .01. Collapsing in triples will be superior
if the relative bias is below (1.047%/1.020%) - 1
= .055. If the relative bias from collapsing in
triples is certainly lower than this, say around
.02, then collapsing in triples is clearly the
superior strategy. Collapsing in fives is
superior to collapsing in triples with a relative
bias of .02 if the resultant relative bias is below
(1.030%1.009%) — 1 = .042. Thus, if collapsing
in fives is thought likely to result in a relative
bias of .05 or greater, it should not be used.
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In making an assessment of the magnitude
of the relative bias to be expected from a given
collapsing strategy, one must remember that
the relative bias varies with the sample size per
PSU (see, for example, equation (2)). This
implies that a greater extent of collapsing will
be appropriate for subclasses than for the total
sample, as is discussed below.

The relative bias of a collapsed strata vari-
ance estimator depends upon the bias of the
estimator and on the size of the sampling
variance being estimated. The first of these
quantities is a function of the variation among
stratum population means within each col-
lapsed stratum. For a given set of collapsed
strata this variation is likely to be approxi-
mately the same for a subclass, and particu-
larly for a crossclass spread evenly across
PSUs, as for the total sample. In consequence,
the bias of the subclass variance estimator will
be of similar size to that of the corresponding
total sample variance estimator. For a greater
extent of collapsing, the variation among
stratum means is likely to increase, thus in-
creasing the bias of the variance estimator. On
the other hand, the sampling variance of the
subclass estimator will be larger than that of
the total sample estimator, but will be un-
affected by the manner in which strata are col-
lapsed. It therefore follows that the absolute
difference between the relative biases resulting
from two different extents of collapsing will be
smaller for the subclass variance estimator
than for the total sample variance estimator.
From Table 3 it can be seen that when the
absolute difference in relative bias between
two alternative extents of collapsing is small,
the variance estimator using the greater extent
of collapsing is preferable. Hence in general a
greater degree of collapsing should be used to
estimate a subclass variance than a total
sample variance.

The criterion used for the assessment of col-
lapsed strata variance estimators in the above
discussion has been the expected width of the

confidence interval with coverage of at least
(1 — a). Applying this criterion, a greater
extent of collapsing is beneficial when the use
of a smaller ¢ coefficient (arising from a
greater number of degrees of freedom in the
variance estimator) outweighs the effect of the
extra bias in the variance estimator. Another
distinct consideration concerns the random
variation in the width of the confidence inter-
val from sample to sample. Should two differ-
ent extents of collapsing give rise to the same
expected confidence interval width, the one
with the greater extent of collapsing yields the
more stable width. The more stable the width
from sample to sample, the more control the
survey researcher has over the width of the
confidence interval that will be obtained from
a particular sample.

S. Summary of Findings

The following factors need to be considered in
deciding on the extent of collapsing to be
used:

i. The number of strata in the design. Less
collapsing is indicated for designs with
many strata than for designs with few
strata.

ii. Differences between stratum means with-
in collapsed strata. If these are great for a
given degree of collapsing, a lower degree
of collapsing is recommended (provided
that more homogeneous collapsed strata
can be formed as a result).

iii. The final stage sample size per selected
PSU. If this is small, a higher level of col-
lapsing should be used.

iv. Subclass (and particularly crossclass) esti-
mates. A greater level of collapsing is
desirable for variances of subclass esti-
mates.

As a rule the routine practice is to collapse
strata in pairs. This is probably generally
appropriate for national estimates from large-
scale surveys with 60 or more PSUs. However,
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a greater degree of collapsing may be appro-
priate when a smaller sample of PSUs is
selected, and especially so when the number
of PSUs is as few as, say, 20.
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Appendix

Variance of the Collapsed Strata Variance Estimator

Equation (3) in Section 2 gives the variance of the collapsed strata variance estimator, vcs(fx). An
outline of the derivation of this expression is given below.

Hansen et al. (1953, Vol. II, § 9.5) show that
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where the notation is as given in Section 2. It then follows that
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where terms are as defined in Section 2, and collecting terms, gives the stated result. Additional
details of the derivation are given in Rust (1984).



