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This article deals with survey estimation when there is partial follow-up of sample
nonresponse. Two different approaches that make use of the follow-up data are presented, the
first based on weighting and the other on prediction, with appropriate variance estimators
developed for each case. A simulation evaluation using synthetic data and informative
nonresponse is then used to compare these two approaches, as well as to contrast them with a
simpler weighting approach that ignores the information obtained by the follow-up survey and
treats the nonresponse as missing at random. Our results indicate that the new approaches lead
to significant improvement as far as estimation of the population total is concerned.
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1. Introduction

In this article we develop and evaluate estimation methods for sample surveys with follow-

up. This situation is not uncommon in practice and has the potential to become widespread,

owing to increasing nonresponse rates for surveys in many countries. A widely used

strategy for dealing with this problem is to reweight the respondents’ data to account for

their different response propensities. However, this depends on the availability of auxiliary

information that “explains” the nonresponse, and implicitly assumes that the

nonrespondents’ data are missing at random (MAR) given this auxiliary information.

Clearly, the MAR assumption cannot be tested just using the respondents’ data. In situations

where the MAR assumption seems unjustified, therefore, one option is to carry out a follow-

up of a subsample of the nonrespondents, with a short questionnaire consisting of a few key

survey questions. This is not unlike the strategy of multiple callbacks used in some social

surveys in order to improve the overall response rate (Groves 1989; Elliott et al. 2000).

Here, however, the aim is to collect data from a sample of the nonrespondents that can be

used either to build a “better” overall model for response propensity (e.g., by incorporating

information obtained from the sampled nonrespondents) or to allow a more sophisticated

method of estimation that uses the data obtained from both respondents and sampled

nonrespondents. Unfortunately, however our experience is that in many cases where
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follow-up samples are taken, the additional data collected are used to check the quality

of the information obtained for core survey data items and are not exploited in estimation.

Innovation surveys are an important practical application of this follow-up approach.

These surveys are designed to collect information on the uptake and/or development of

new technology by businesses. However, they often have high nonresponse (e.g., the

nonresponse rate in the EU 1998–2001 innovation survey was more than 40% in many

countries; see Eurostat 2004, p. 287). It is not unreasonable in this situation to argue that it

is the businesses that are not innovative, and hence see no value in the information being

collected, that are less likely to respond to the survey. Consequently, following-up a sub-

sample of these nonrespondents with a short questionnaire containing a few key questions

along the lines of “Is your business innovative, or has your business invested in innovative

activities?” can be a useful exercise. If the survey is based on a personal interview, it is

possible, using the information collected in such a follow-up exercise, to clarify basic

survey concepts. In particular, this can facilitate a respondent’s understanding of what

the survey is about, and hence increase the probability of a response. If a followed-up

business is not innovative no further questions are asked, while if it is innovative, some

further key questions are asked in order to assess the extent of the innovativeness. Because

of this structured approach, the nonresponse rate for the follow-up survey is usually very

low. In what follows we therefore assume full response to this follow-up survey. This

seems realistic in business surveys where small enterprises are the main source of

nonresponse. In household surveys, however, this assumption may not be realistic, and our

approach would then need to be extended to allow for this extra source of nonresponse.

The data collected in this exercise can be represented by the layout in Table 1. Here X is

an auxiliary variable or group of variables, known for the entire population, while Y is a

target variable for the survey (in our empirical example X corresponds to size-band and Y

corresponds to the variable(s) used to determine innovativeness status); I1 is an initial

sample inclusion indicator; R1 is an initial sample response indicator, and I2 is a subsample

inclusion indicator (by definition, all initial respondents have their value of I2
automatically set to 1, i.e., if R1 ¼ 1; then I2 ¼ 1). Finally, we define R2 to be the response

indicator restricted to those units with I2 ¼ 1. It immediately follows that if R1 ¼ 1 then

R2 ¼ 1. Note that ‘obs’ means that Y-values are observed while ‘mis’ denotes nonobserved

values. By definition, Y-values are only observed for units with R2 ¼ 1. However, some of

these units will have R1 ¼ 0.

We assume that the initial sampling method is probability-based, with inclusion

probabilities that depend only on X, and so is noninformative given X. Similarly we

assume that the subsequent subsampling method is also probability-based, with inclusion

probabilities that depend only on R1 and X, and so is noninformative given R1 and X.

Table 1. Data structure for a survey with partial

follow-up of nonrespondents

X I1 R1 I2 R2 Y

obs
)

¼ 1
¼ 1 ¼ 1 ¼ 1 obs

obs
o
¼ 0

¼ 1 ¼ 1 obs
obs ¼ 0 mis mis
obs ¼ 0 mis mis mis mis
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This follows since pr ðI2 ¼ 1jR1 ¼ 1Þ ¼ 1; while pr ðI2 ¼ 1jR1 ¼ 0Þ depends only on X.

In the spirit of the discussion above, we do not assume that the initial sample response R1 is

noninformative given X. However, we assume that it is noninformative given X and Y.

Our aim is to develop estimation methods for the population total of Y (plus the

associated variances of these estimators) that fully exploit these observed data. To make

the exposition straightforward, the development and empirical results presented below are

based on the assumption that Y is a one–zero variable (e.g., corresponding to whether a

business is innovative or not). However, our basic approach is quite general. In particular

we consider two methods – weighting and prediction – of using the information described

in Table 1 for estimating the population total of a survey variable.

2. The Weighting Approach

Compensating for sample survey nonresponse by reweighting the sample respondents is a

well-established approach. The basic idea is an application of response propensity

modelling and has been discussed by Little (1986) among others, and in a more general

framework using a two-phase sampling approach proposed by Särndal and Swensson

(1987). Ekholm and Laaksonen (1991) made an early application of this approach in the

sample survey context. This article develops this approach, extending it to the partial

follow-up situation described in the previous section.

Ekholm and Laaksonen (1991) carried out respondent reweighting at the adjustment cell

level. In this article we follow Laaksonen (1999) in implementing the method at the

individual respondent level. There are two variants of this approach that we now describe.

In both, the probability of nonresponse is explicitly modelled as a function of the survey

variable Y. Since this value is only directly observed for the initial respondents and

followed-up nonrespondents (i.e., where I2 ¼ 1 in Table 1), the first variant estimates the

probability of response by fitting a logistic regression model to the indicator variable R1

based on the data from those units with R2 ¼ 1 in Table 1, using both the auxiliary

variable X and the survey variable Y as explanatory variables in this model. We denote the

fitted value under this model by ûAðX; YÞ below. This fitted value is assumed to be an

estimate of the probability uðX; YÞ that R1 ¼ 1 given I1 ¼ 1 and leads to the reweighted

estimator for the population total of Y

T̂A ¼
X
i[s1

Yi½piûAðXi; YiÞ�
21 ð1Þ

where pi denotes the inclusion probability of population unit i and s1 denotes the set of

respondents in the initial sample, i.e., the collection of units with (I1i ¼ 1; R1i ¼ 1). Note

that there is nothing unique about the use of the logistic link in (1). In the simulation study

reported in Section 4 we also investigated the probit and complementary log–log with

very similar results. Furthermore, unlike the situation faced by Ekholm and Laaksonen

(1991) where there was little variation in the sample weights, these weights varied

considerably in the business survey application we consider in this article. Consequently

the logistic model for uðX; YÞ was fitted using the sample weights p21
i of the units with

R2 ¼ 1 that contributed to the fit. The necessity for this weighting is made clear in

Section 4 where we also present results when the response model is estimated without
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weights. Since the model-fitting process is restricted to respondents and followed-up

nonrespondents, these weights are scaled to sum to the total of the sample weights within

each stratum prior to estimation of model parameters. Similarly, the adjusted weights

derived from these model-based response probabilities that are used in (1) are also scaled

to sum to the population size within each stratum.

The second variant constitutes an attempt to model the actual response variable of

interest (R1) by imputing values for the unobserved Y values associated with the initial

nonrespondents who were not followed up (i.e., those with I2 ¼ 0 in Table 1). Details of

the imputation method used are set out in the next section. Treating these imputed values

of Y as actual values, the probability of initial response uðX; YÞ is again modelled by the

(weighted) logistic regression of the observed R1-values for the entire sample on both

the auxiliary variable X and the survey variable Y. We denote the resulting fitted value

of the probability of response by ûBðX; YÞ; with the corresponding reweighted estimator of

the population total of a survey variable Y given by

T̂B ¼
X
i[s1

Yi½piûB ðXi; YiÞ�
21 ð2Þ

Note that the adjusted weights used in (2) are rescaled in the same way as in (1) prior to their

use. Estimated sampling variances of these estimators can be obtained using the approach

described by Ekholm and Laaksonen (1991). In the case of stratified sampling this leads to

an estimated variance of the form (this is a slight upward approximation as they mention,

p. 333)

V̂ðT̂Þ ¼
X
h

m1h V1h þ 1 2
m1h

n1h

� �
E2

1h

� �
ð3Þ

where h indexes the strata and E1h ¼ n21
1h

P
i[s1h

Yip
21
i û

21

i and V1h ¼

ðn1h 2 1Þ21
P

i[s1h
ðYip

21
i û

21

i 2 E1hÞ
2. Here ûi can be either ûAðXi; YiÞ or ûBðXi; YiÞ.

When using (3) to estimate the variance of (1), n1h denotes the number of units that

responded either in the initial survey or in the follow-up survey (R2 ¼ 1) in Stratum h and

m1h denotes the number of initial respondents in Stratum h (i.e., those withR1 ¼ 1), whereas

when using (3) to estimate the variance of (2), n1h denotes the number of units initially

selected in Sample (I1 ¼ 1) in Stratum h andm1h denotes the number of units with I2 ¼ 1 in

Stratum h. It should be noted that the first term of (3) is a standard sampling variance,

whereas the second shows the effect of the missingness on the variance of the estimator.

3. The Prediction Approach

The basic idea here is simple and is derived from the model-based approach to survey

estimation. See Valliant, Dorfman, and Royall (2000). However, its application to partial

nonresponse follow-up is new, and so we develop it in more detail below. As in the previous

section, we consider estimation of the population total T of the variable Y. Note that the

minimum mean squared error (MMSE) predictor of this population total is its conditional

expectation given the observed data. Since this “best” predictor will depend on unknown

parameters, we approximate it by replacing these parameters by suitable sample-based

estimates, leading to what is sometimes referred to as the “Empirical Best” (EB) predictor.
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Assuming that distinct population units have independent Y-values, the MMSE predictor

can be written

~T ¼
X
i:Ai¼1

Yi þ
X
i:Bi¼1

Yi þ
X
i:Ci¼1

EðYijXiÞ þ
X
i:I1i¼0

EðYijXiÞ ð4Þ

whereAi is the indicator function for the respondents in the initial sample (I1i ¼ 1;R1i ¼ 1),

Bi is the indicator function for the followed-up nonrespondents (I1i ¼ 1; R1i ¼ 0; I2i ¼ 1)

and Ci is the indicator function for the nonrespondents who were not followed up (I1i ¼ 1;

R1i ¼ 0; I2i ¼ 0).

In Section 1 we assumed that probability-based methods depending only on the

population values of X are used to select both the initial sample and the follow-up sample.

It is easy to see that then

EðYijXi; I1i ¼ 1;R1i ¼ 0; I2i ¼ 0Þ ¼ EðYijXi; I1i ¼ 1;R1i ¼ 0; I2i ¼ 1Þ ð5Þ

so the third term in the MMSE predictor (4) can be approximated by the fitted regression of

Y on X for the followed-up nonrespondents. A similar approach can be used to

approximate the fourth term of (4). In this case we can show that

EðYijXi; I1i ¼ 0Þ ¼ EðYijXi; I1i ¼ 1;R1i ¼ 0Þð1 2 prðR1i ¼ 1jXi; I1i ¼ 1ÞÞ

þ EðYijXi; I1i ¼ 1;R1i ¼ 1ÞprðR1i ¼ 1jXi; I1i ¼ 1Þ

It is clear that we can estimate EðYijXi; I1i ¼ 1;R1i ¼ 1Þ from the initial respondents’ data.

Denote this estimate by m̂1i. Similarly, we can estimate EðYijXi; I1i ¼ 1;R1i ¼ 0Þ from the

followed-up nonrespondents’ data. Denote this estimate by m̂0i. Suppose now that we can

also construct an estimate ûðXi; YiÞ of the response probability prðR1i ¼ 1jXi; Yi; I1i ¼ 1Þ.

An estimate ûðXiÞ of prðR1i ¼ 1jXi; I1i ¼ 1Þ can then be calculated as a suitably weighted

average of the ûðXi; YiÞ values generated by the initial sample. For example, if X is discrete

we can define ûðXiÞ to be the average of ûðX; YÞ for those initial sample units with X ¼ Xi :

ûðXiÞ ¼
X
j:I1j¼1

IðXj ¼ XiÞûðXj; YjÞ
. X

j:I1j¼1

IðXj ¼ XiÞ

Using (5), we can then write down a “plug-in” estimator for T, based on ~T (see (4)) as

T̂C ¼
X
i:Ai¼1

Yi þ
X
i:Bi¼1

Yi þ
X
i:Ci¼1

m̂0i þ
X
i:I1i¼0

ðm̂1iûðXiÞ þ m̂0ið1 2 ûðXiÞÞÞ ð6Þ

The problem therefore is one of determining ûðXi; YiÞ. Since we do not have values of Y

for nonresponding units that are not followed up, this is not straightforward. We

investigate an easy to implement but computer-intensive method of doing this, based on

imputation. The steps in this process are

. Impute the missing value Yi of a not-followed-up nonresponding unit (i.e., one with

Ci ¼ 1). In the case where Y is continuous, this could be by m̂0i þ 1*
0i; where 1*

0i is a

random draw from the follow-up subsample residuals {Yj 2 m̂0j; I2j ¼ 1;R1j ¼ 0}.

When Y is categorical, this is by a random draw from follow-up subsample units with

the same X value as the unit being imputed – i.e., from {Yj;Xj ¼ Xi;

I2j ¼ 1;R1j ¼ 0}.
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. Using these imputed values of Y, calculate estimates ûðXi; YiÞ for all the sampled

units. Use these estimates to compute the values of ûðXiÞ for the nonsampled units.

. Compute the “plug-in” estimator T̂ using (6).

Estimation of the prediction mean squared error for (6) is not straightforward under this

imputation approach. We therefore apply this technique below to the case where both Y

and X are categorical and show how variance estimates can be computed when ûðXi; YiÞ is

based on simple moment-type estimation.

3.1. Imputation-based Approach with Categorical Data

As noted above, we assume that both X and Y are categorical. In particular, we use Xi ¼ a to

denote that the ith population unit belongs to category a of X, and take Y to be a zero–one

variable (e.g., denoting whether a business is not innovative/innovative, respectively). We

assume that the population is stratified on the levels ofX and that the initial sample is randomly

selected from these strata. We also assume that the follow-up subsample is obtained by

randomly selecting units from the initial sample nonrespondents within each stratum.

In order to apply a model-based approach, we need to specify a model for the joint

population distribution of Y, X and R. A simple approach that makes minimal assumptions

is to assume a saturated model for the Y £ X £ R population cross-classification. In this

case we can use (5) to write down simple unbiased moment-type estimates for the

parameters of this model. Define

myx ¼ # responding sample units (I1 ¼ 1; R1 ¼ 1) with X ¼ x and Y ¼ y

k1yx ¼ # followed-up nonresponding sample units (I1 ¼ 1; R1 ¼ 0; I2 ¼ 1) with X ¼ x

and Y ¼ y

k0yx ¼ # not followed-up nonresponding sample units (I1 ¼ 1; R1 ¼ 0; I2 ¼ 0) with

X ¼ x and Y ¼ y

k1x ¼ # followed-up nonrespondents with X ¼ x

k0x ¼ # not followed-up nonrespondents with X ¼ x

mx ¼ # responding sample units with X ¼ x

nx ¼ # selected sample units with X ¼ x

In practice, k0yx will not be known. We shall assume, however, that this value is available

from the imputed values of Y for the not followed up nonrespondents. We denote this

imputed value by k*
0yx below. Then

m̂1a ¼
m1a

ma

¼ proportion of respondents with Y ¼ 1 and X ¼ a

m̂0a ¼
k11a þ k*

01a

na 2 ma

¼ proportion of nonrespondents with Y ¼ 1 and X ¼ a

ûða; 1Þ ¼
m1a

m1a þ k11a þ k*
01a

¼ respondent proportion of units with Y ¼ 1 units

andX ¼ a

ûða; 0Þ ¼
m0a

m0a þ k10a þ k*
00a

¼ respondent proportion of units with Y ¼ 0 units

andX ¼ a
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and so our estimator of

ua ¼ prðR1 ¼ 1jX ¼ a; I1 ¼ 1Þ

¼ prðR1 ¼ 1jX ¼ a; Y ¼ 1; I1 ¼ 1ÞprðY ¼ 1jX ¼ a; I1 ¼ 1Þ

þ prðR1 ¼ 1jX ¼ a; Y ¼ 0; I1 ¼ 1ÞprðY ¼ 0jX ¼ a; I1 ¼ 1Þ

is just the initial nonresponse rate for sample units with X ¼ a;

ûa ¼ ûða; 1Þ
m1a þ k11a þ k*

01a

na

� �
þ ûða; 0Þ

m0a þ k10a þ k*
00a

na

� �
¼

ma

na

The estimator (6) can therefore be written

T̂C ¼
X
a

{mam̂1a þ ðna 2 maÞm̂0a þ ðNa 2 naÞ½ûam̂1a þ ð1 2 ûaÞm̂0a�} ð7Þ

In order to estimate the prediction mean squared error VarðT̂C 2 TÞ of (7) under the

saturated model assumption, we use a sequence of iterated expectation arguments, first

conditioning on the initial and follow-up sample data (thus obtaining the variability caused

by the imputation process), then conditioning on the initial sample data (obtaining the

variability due to the follow-up sampling process), and finally recovering the variability

due to the initial sampling process. To start, we note that

VarðT̂C 2 TÞ ¼
X
a

Var k*
01a 2 k01a þ ðNa 2 naÞ½ûam̂1a þ ð1 2 ûaÞm̂0a�2

i:{I1i¼0;Xi¼a}

X
Yi

8<
:

9=
;

¼
X
a

8<
:E Var * k*

01a þ ðNa 2 naÞð1 2 ûaÞm̂0a

� �� �
þ Var

2
4E *ðk*

01aÞ2 k01a

þðNa 2 naÞ½ûam̂1a þ ð1 2 ûaÞE
*ðm̂0aÞ�2

i:{I1i¼0;Xi¼a}

X
Yi

3
5
9=
;

where E * and Var * denote expectation and variance with respect to the imputation

process. In order to evaluate the above expression we observe that

k*
01a ¼

X
i[Fa

DiYi

where Fa denotes the followed-up nonresponding sample units with X ¼ a and Di is the

number of times unit i is selected as a donor. Hence E *ðk*
01aÞ ¼ k0ak11a=k1a and

Var *ðk*
01aÞ ¼ k0ak11ak10a=k

2
1a, so

VarðT̂C 2 TÞ ¼
X
a

ðEa þ VaÞ
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where

Ea¼E k0a

k11ak10a

k2
1a

� �
1þ

ðNa2naÞð12 ûaÞ

na2ma

� �2
" #

Va¼Var
k11ak0a

k1a

2k01aþðNa2naÞ ûam̂1aþð12 ûaÞ
k11að1þk0a=k1aÞ

na2ma

� �	
2

X
i:{I1i¼0;Xi¼a}

Yi

#

To proceed further, we note that the use of simple random sampling within each category

of X implies that the number of successes in the respondent, nonrespondent follow-up and

nonrespondent non-follow-up groups are mutually independent given the respective sizes

of these groups, with k11a distributed as binomial (k1a, m0a), k01a distributed as binomial

(na2ma2k1a; m0a) and m1a distributed as binomial (ma, m1a). Hence, after some

simplification we obtain

VarðT̂C2TÞ¼
X
a

{M1aþM2aþM3aþM4a} ð8Þ

where

M1a¼E k0a

k11ak10a

k2
1a

� �
Na

na

� �2
" #

M2a¼
Na2na

na

� �2

ðm1a2m0aÞ
2nauað12uaÞ

M3a¼E m0að12m0aÞ
1

k1a

k0aþ
Na2na

na

� �
ðna2maÞ

� �2

þ k0a

( )"

þ
Na2na

na

� �2

mam1að12m1aÞ

#

M4a¼ðNa2naÞðm1auaþm0að12uaÞÞð12m1aua2m0að12uaÞÞ

An obvious “plug-in” estimator of (8) then follows, where we replace unknown

parameters in the expression by their estimates, and expectations of random variables are

replaced by realised values. This is

V̂ðT̂CÞ ¼
X
a

{M̂1a þ M̂2a þ M̂3a þ M̂4a} ð9Þ
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where

M̂1a ¼ k0a

k11ak10a

k2
1a

� �
Na

na

� �2

M̂2a ¼
Na 2 na

na

� �2

ðm̂1a 2 m̂0aÞ
2naûað1 2 ûaÞ

M̂3a ¼ m̂0að1 2 m̂0aÞ
1

k1a

k0a þ
Na 2 na

na

� �
ðna 2 maÞ

� �2

þk0a

" #

þ
Na 2 na

na

� �2

mam̂1að1 2 m̂1aÞ

M̂4a ¼ ðNa 2 naÞðm̂1aûa þ m̂0að1 2 ûaÞÞð1 2 m̂1aûa 2 m̂0að1 2 ûaÞÞ

3.2. Prediction Based on a Nonsaturated Model

The saturated model assumed in Section 3.1 will typically be over-specified, and so we can

expect that parameter estimation will not be fully efficient. For small sample sizes this may

be of some concern. In such cases we can apply logistic regression techniques to the

sample data to fit an unsaturated model to uðXi; YiÞ; again treating the imputed Y-values of

the not-followed-up nonrespondents as “real” data. Let ûLðXi; YiÞ denote the fitted values

generated by this model. One estimator of ua is then

ûLa ¼ ûLða; 1Þ
m1a þ k11a þ k*

01a

na

� �
þ ûLða; 0Þ

m0a þ k10a þ k*
00a

na

� �
ð10Þ

Note that (10) estimates prðY ¼ 1jX ¼ a; I1 ¼ 1Þ by the sample proportion of units with

X ¼ a that also have Y ¼ 1. However, a more sophisticated approach could easily be used

here as well, modelling Y in terms of X. From the definition of ua, we see that

ua ¼
uða; 1Þm0a þ uða; 0Þð1 2 m0aÞ

½1 2 {uða; 1Þ2 uða; 0Þ}ðm1a 2 m0aÞ�
ð11Þ

An alternative to (10) is therefore to substitute the logistic model-based estimates ûLða; 1Þ

and ûLða; 0Þ; together with m̂1a ¼ ðm1aÞ=ðmaÞ and m̂0a ¼ ðk11a þ k*
01aÞ=ðna 2 maÞ; into

(11).

Regardless of whether (10) or (11) forms the basis for estimation of ua; the final

estimator of T is then given by (7). Variance estimation for this nonsaturated model-based

version of (7) is complex and will depend on the actual specification of the model. In the

empirical results reported in the next section, we therefore adopt a conservative

variance estimation strategy, replacing ûa by (10) in the saturated model-based variance

estimator (9).
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3.3. Using Multiple Imputations

Clearly we can independently repeat the imputation process L times to define a “multiple

imputations” estimator

�TC ¼ L21
XL
l¼1

T̂Cðl Þ ð12Þ

Here T̂Cðl Þ denotes the value of (7) based on the lth set of imputed values. The average

value (12) should then be more efficient than a single imputation value of (7). In order to

estimate the prediction mean squared error of (12) we note that

Varð �TC2TÞ¼L22
XL
l¼1

VarðT̂Cðl Þ2TÞþ
XL
l¼1

XL
j¼1
j–l

CovðT̂Cðl Þ2T ;T̂Cð jÞ2TÞ

2
664

3
775 ð13Þ

As in Section 3.1, we use a “star” superscript to denote moments with respect to the

distribution induced by the simulation process. Independence of the repeated imputations

then implies that for l – j; Cov *ðT̂Cðl Þ2 T ; T̂Cð jÞ2 TÞ ¼ 0. Thus for l – j

CovðT̂CðlÞ2T ;T̂CðjÞ2TÞ¼EðCov *ðT̂CðlÞ2T ;T̂CðjÞ2TÞÞ

þCovðE *ðT̂CðlÞ2TÞ;E *ðT̂CðjÞ2TÞÞ¼VarðE *ðT̂C2TÞÞ

since E *ðT̂Cðl Þ2TÞ¼E *ðT̂Cð jÞ2TÞ and E *ðT̂Cðl Þ2TÞ¼E *ðT̂C2TÞ. Similarly

VarðT̂Cðl Þ2TÞ¼EðVar *ðT̂Cðl Þ2TÞÞþVarðE *ðT̂C2TÞÞ

Substituting these expressions into (13) and simplifying implies that

Varð �TC 2 TÞ ¼ VarðE *ðT̂C 2 TÞÞ þ L21EðVar *ðT̂C 2 TÞÞ. From (8) we obtain

Varð �TC 2 TÞ ¼
X
a

{L21M1a þM2a þM3a þM4a} ð14Þ

where the components M1a, M2a, M3a and M4a are defined following (8). An

estimate of (14) is easily defined by substituting estimates for unknown

parameters and replacing expectations by realised values. This leads to the

prediction mean squared error estimator

V̂ð �TCÞ ¼
X
a

{L21M̂1a þ M̂2a þ M̂3a þ M̂4a} ð15Þ

where again the components M̂1a; M̂2a; M̂3a and M̂4a on the right-hand side of

(15) are defined following (9). It should be noted that (15) is not the same as

the usual multiple imputation variance estimator, since it is based on a plug-in

estimate of the actual prediction variance of �TC. Also, it is clear that the

larger the value of L, the smaller the actual prediction variance (14) as well

as its estimate (15).
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4. Empirical Results

The population data underpinning our simulations were generated from data collected in

an innovation survey carried out in Finland in the 1990s. The population size was 4,453

businesses, and Y was an indicator variable that identified whether a business is innovative

(Y ¼ 1) or not (Y ¼ 0). There were a total of T ¼ 2; 474 such businesses in this

population. In each simulation a stratified random sample of size 1,200 was selected from

this population (note that in this type of survey the sampling fractions tend to be rather

high; see Eurostat 2004, p. 287). Table 2 shows the strata used in the sample design,

defined by size-bands based on the number of employees of each business.

Random nonresponse was generated using a threshold model defined in terms of another

variable “value added,” which is strongly associated with innovation, as well as other

variables correlated with the size of the business. There were an average of 800

respondents per sample, and since the nonresponse was informative, innovative businesses

(Y ¼ 1) were more likely to respond. For each sample of initial nonrespondents, a

stratified subsample of 150 was followed up and values of Y obtained. There was no

nonresponse associated with the follow-up subsample.

A total of 650 independent simulations were carried out and values for various estimates

of the population total of Y and associated estimates of variance were calculated. In

addition to the “standard” weighted estimator that assumes ignorable nonresponse within

strata, we computed estimates on the basis of the methods described in this article. These

estimates were as follows:

4.1. Weighting Approach

Estimators were defined by either (1) or (2), referred to as weighting (A) and weighting (B)

below, with estimated variance computed using (3) in both cases. Note that weighting (B)

was defined using a single imputation. We also fitted two different response propensity

models. Model I corresponded to a logistic specification with main effects for size-band

and value of Y, while Model II was the same as I but also included a size-band by Y

interaction term (i.e., the saturated model).

Table 2. Population and sample sizes by stratum. Note that micro

enterprises are excluded from the target population

Size-band (number
of employees)

Population
size

Sampling
fraction, %

5.0–9.9 1,046 20.0
10.0–19.9 1,305 18.4
20.0–29.9 595 28.1
30.0–49.9 546 30.2
50.0–99.9 443 40.0

100.0–199.9 229 40.2
200.0–499.9 180 50.0
500.0–999.9 56 50.0

1,000.0þ 53 60.4
All 4,453 26.9
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4.2. Prediction Approach

The single imputation estimator (7) based on the saturated Model II and with variance

estimator defined by (9) was computed. In addition, the multiple imputations estimator

(12) given the same saturated model and with variance estimator defined by (15) was

computed. This was based on L ¼ 8 independent imputations for each missing value of Y.

We also computed these estimators using the unsaturated Model I, but observed no

significant difference in performance. These results are therefore omitted.

Table 3 shows the results from the 650 simulations. Here Mean denotes the average value

of an estimator, MSE denotes the average of the squared difference between an estimator

value and the true value of T, Average(V) denotes the average of the corresponding

variance estimator and 95% CI Coverage denotes the percentage of resulting confidence

intervals that included the true value. All confidence intervals were generated as the

estimate value plus or minus twice the squared root of its estimated variance. All averaging

is over the 650 simulations. We also carried out a similar simulation exercise, but with a

smaller sampling fraction (20%) and consequently with a smaller subsample size. We do not

present these results since they are essentially the same as those in Table 3, the only

difference being that variances are higher because of the smaller sample size.

The first row in Table 3 clearly shows that the weighted estimator based on ignorable

nonresponse assumption within strata is heavily biased. All other strategies considered in

the table give better estimates than this one. The comparison between the use of

Table 3. Simulation results. Each estimation strategy is identified by the equation number of the

estimator þ the equation number of the corresponding variance estimator. In addition, for the two weighting

methods considered in the simulation, the specification includes the type of logistic model (I or II) used and

whether the logistic fit was weighted or not. The figure in parentheses in the Mean and Average(V) columns is the

Monte Carlo standard error of the corresponding row entry

Estimation strategy Mean
(True ¼ 2,474)

MSE Average(V) 95% CI
Coverage

Reweighting for ignorable
nonresponse within strata

2,821.9 (2.6) 12,5746 5,921 (6.8) 0.3

(1) þ (3), weighting (A),
Model I – unweighted
logistic fit

2,661.6 (2.6) 39,415 8,917 (13.6) 48.0

(1) þ (3), weighting (A),
Model I

2,467.7 (2.8) 5,291 5,671 (10.7) 95.2

(1) þ (3), weighting (A),
Model II

2,473.8 (2.8) 5,153 5,687 (11.0) 96.3

(2) þ (3), weighting (B),
Model I

2,478.3 (2.9) 5,672 6,003 (12.9) 96.0

(2) þ (3), weighting (B),
Model II

2,480.7 (2.9) 5,623 6,000 (12.7) 96.3

(7) þ (9), prediction (C)
single imputation,
Model II

2,480.6 (2.9) 5,623 5,933 (12.9) 96.3

(12) þ (15), prediction (C)
multiple imputations,
Model II

2,480.7 (2.8) 5,141 5,367 (10.8) 95.4
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unweighted and weighted logistic propensity modelling (second and third rows of the table)

is also interesting, since the importance of weighting is very clear. As previously noted,

there has been very little discussion of whether or not one should use sampling weights in

response propensity modelling. From a design-based perspective the probability of

inclusion for unit i in the respondent sample is defined by the product of the sample inclusion

probability for this unit and the probability that this unit is a respondent given that it is in

sample. However, there are two ways we can define this conditional probability:

. When it corresponds to pr (R1 ¼ 1jY ;X) for a randomly chosen unit from the

population. In this case it makes sense to weight when fitting the response propensity

model since it is a model for the whole population.

. When it corresponds to pr (R1 ¼ 1jY;X) for a randomly chosen unit from the selected

sample. In this case weighting the response propensity fit is not appropriate.

Our interpretation accords with the first dot point above, and so we recommend weighting

when carrying out response propensity modelling for use in “model-assisted” estimation

methods like weighting (A) and weighting (B).

Comparing weighting (A) with weighting (B), we see that the former is preferable.

However, there is little to choose between the weighting estimators when we compare

choice of propensity model, with estimators based on unsaturated Model I performing very

similarly to those based on the saturated Model II. This may be interpreted as indicating

that Model II fits the data only marginally better than Model I, and indicates that it is

important when using weighting-based methods to construct as well-fitting a response

propensity model as possible.

On the other hand, we also note that the weighting methods that used Model II tended to

give slightly higher estimates than those based on Model I. This leads to better estimates in

the case of weighting (A), but not in the case of weighting (B) where both estimates are

slightly larger than the true value.

The prediction (C) strategy (12) based on multiple imputations under Model II performed

best in terms of MSE of all estimation strategies considered in our study, although the

advantage is minor when compared with weighting (A) based on Model II. However, we

also note that the weighting (B) strategy and the single imputation prediction (C) strategy

based on the same saturated model lead to virtually identical MSEs. This raises the

possibility that a multiple imputations version of weighting (B) might also lead to significant

MSE gains. Development of such an estimator (as well as an estimator of its variance)

remains a topic for further research. As noted earlier, we also investigated the behaviour of

the prediction approach based on the nonsaturated Model I using the ideas described in

Section 3.3. However, we saw very little change and so do not report these results.

Not surprisingly, the variance estimation methods investigated in the study do not behave

like the corresponding estimates of totals. In particular, it is interesting to see that the highly

biased estimation method that assumed ignorable nonresponse within strata (Row 1 in

Table 3) gave very similar variance estimates to the much better performing methods that

allowed for nonignorable nonresponse, leading to confidence intervals with substantial

under-coverage. In contrast, the variance estimators (weighting and prediction based) that

properly took account of this nonresponse (Rows 3 to 8 in Table 3) tended to be somewhat

conservative, with all achieving close to nominal coverage levels. Note that the variance
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estimator (3) underpinning weighting (A) and weighting (B) does not include any type of

finite population correction (fpc), and so some of this conservatism may be due to this fact.

Unfortunately, it is not straightforward to include an fpc in (3). In contrast, the mean squared

error estimator (15) used under prediction (C) has “built-in” fpc since the expression (8) for

the prediction variance is zero when the entire population is sampled and all nonrespondents

are followed up. The conservative behaviour for (15) observed in Table 3 is therefore

probably more a consequence of Model II being somewhat over-specified. It should also

be noted that the variance estimates defined by (3) tended to be more positively correlated

with the corresponding estimation errors than those defined by (9) or (14). Overall,

our results indicate that a user will not be led astray by using these variance estimators.

5. Conclusion

In this article we contrast two approaches to making use of partial follow-up information to

adjust for nonignorable nonresponse in survey estimation. The first approach is based on

weighting by an estimate of the response propensity while the second uses the follow-up

information to directly predict the population total of interest. Our simulation results show

that, properly applied, the two approaches are rather similar in performance and so the

choice between them is a matter of personal preference. If small design bias is a primary

consideration then the weighting (A) strategy is simple to apply and returned the smallest

design bias in our simulations. If, on the other hand, small mean squared error is the aim then

the prediction (C) multiple imputations strategy performed well in the same simulations.

For reasons of simplicity of exposition, the development in this article has been based

on a simple dichotomous specification for Y. In practice one would expect to also

encounter situations where Y is polychotomous, or even continuous. The theory developed

in this article can be readily extended to these situations, and we anticipate that

applications based on use of either a weighting type estimation methodology or a

prediction approach will eventually appear.

Another extension that we do not address in this article is the case of survey variables in

the main survey that are not measured in the follow-up study. Both the weighting and

prediction approaches can be extended to handle this situation, with the latter then

depending on the conditional distribution of the not followed up Y variables given the

values of the followed up Y variables. This remains a topic for further research, as does

implementation of the prediction approach without recourse to imputation, which is

technically possible but not explored here.

Finally, we observe that both the weighting and prediction approaches can be easily

extended to multiple auxiliary variables. In practice, this should lead to better-fitting

response propensity models and hence better estimates.
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