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Testing of Distribution Functions from
Complex Sample Surveys

Abba M. Kriegerl and Danny Pfe]fj‘ermann2

Testing the parametric family of distributions is a classical problem in theoretical and applied
statistics. However, when the sample is selected with unequal selection probabilities which
are related to the values of the response variable, standard methods no longer apply. In this
article we consider two alternative approaches for taking account of the sample selection
effects. Under the first approach, the range of the response variable is divided into a fixed
number of intervals and large-sample Wald statistics and other related statistics are con-
structed from design-based estimators of the interval probabilities. Under the second
approach, the parametric distribution of the sample data is extracted as a function of the
hypothesized population distribution and the sample inclusion probabilities. The extracted
distribution is then tested using standard test statistics. The two approaches are compared
in a simulation study which indicates that the second approach performs better overall in terms
of the achieved significance levels and powers against alternative distributions considered.

Key words: Chi-squared statistics; inclusion probabilities; Kolmogorov-Smirnov; probability
integral transformation; randomization distribution; Wald statistics.

1. Introduction

Testing parametric families of distribution functions is a classical problem in theoretical
and applied statistics. Several goodness of fit statistics based on different distance func-
tions between the hypothesized distribution and the empirical sample distribution have
been explored in the literature for their theoretical properties, and are in common use in
applied work. Well known examples are the Kolmogorov-Smirnov and the Chi-square
test statistics. For review and discussion of these and other test statistics, see, for example,
the books by Kendall and Stuart (1973, Vol. 2, Chapter 30) and Pratt and Gibbons (1981,
Chapter 7).

A common assumption underlying the use of these statistics is that the sample measure-
ments are independent realizations of the population distribution. This assumption is
violated in a typical sample survey where the sample units are often selected with unequal
selection probabilities, at least at some stages of the selection process. When the selection
probabilities are related to the values of the response variable, the empirical sample dis-
tribution is in general not consistent with the distribution of the population measurements,
implying that standard testing procedures no longer apply.

For example, consider the testing of an income distribution; a familiar problem in
economic studies. A major source for income data are household surveys like for example
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the Panel Study of Income Dynamics (PSID) in the U.S. and the Survey of Consumer
Finances (SCF) in Canada. The PSID oversamples low-income families, whereas the
SCF uses incomes for the formation of strata. Under both designs the income distribution
in the sample is not representative of the income distribution in the population. Testing
income distributions based on the Canadian SCF prompted the present study.

In this article we consider two classes of test statistics that can be used in such situations.
The first class consists of large-sample Wald (1943) statistics, constructed by dividing the
range of the response variable into a fixed number of intervals and computing the
Mahalanobis (1936) distance between the estimated probabilities of these intervals and
the true probabilities under the hypothesized distribution. The notable feature of this class
is that the estimators are chosen so that they are design-consistent under repeated sampling
for the corresponding probabilities that would have been computed if all the population
values had been observed. Alternatives to the Wald statistics are considered as well.

The second class contains standard test statistics and a moments-based statistic. These
statistics, however, are applied to the distribution of the sample measurements under
the null hypothesis, derived as a function of the hypothesized population distribution
and known characteristics of the sampling design, such as the first order sample inclusion
probabilities.

In Section 2 we discuss the rationale for the use of design-based test procedures and
define several statistics that fall into this class. Section 3 defines the sample distribution
of survey data, illustrating its dependency on the population distribution and the sample
selection probabilities. The use of this distribution for testing hypotheses on the population
distribution is considered in Section 4. Section 5 presents the results of a simulation study
aimed to compare the performance of the two classes of test statistics. The general con-
clusion from this study is that the test statistics of the second class outperform the test
statistics of the first class both in terms of type I error probabilities and in terms
of power against the alternatives considered. Section 6 contains some general remarks
with suggestions for further research.

2. Design-Based Test Statistics

2.1. Rationale for the use of design-based test statistics

Survey data may be viewed as the outcome of two random processes: the process generating
the values in the (finite) population U = {1,...,N} from which the sample is taken,
(the ‘superpopulation’ model), and the process generating the sample data from the finite
population values Y = {Y;...Yy}.

In what follows we assume that the population values are independent measurements
from a continuous probability density function (pdf) f£,(y;0), indexed by the (possibly
vector) parameter . The subscript “‘p’’ is used to distinguish the population distribution
from the sample distribution defined in Section 3. The problem investigated in this study is

the testing of hypotheses of the general form
Hy : f(y;0) =f"(;6) (1)

with f*(y; 6) fully specified.
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Let F(f) = %E,N:ID(t —y;) denote the empirical distribution in the finite population
where D(a) = 1 for a = 0 and D(a) = 0 otherwise. If F(¢) was known, (as in the case of
a census), the null hypothesis defined by (1) could be tested by testing the significance
of the distance between F(f) and F*(t;0"), the cumulative distribution under H,, using
standard test procedures. The distribution F(v) is, however, not computable in the case
of a sample and so the idea behind the use of design-based test statistics is to estimate
percentiles of F(f) by design-consistent estimators, and use those and their design-based
variances to construct appropriate tests.

Let Ty(Y) define a known vector function of the finite population values Yy, ..., Yy. In
our application Ty(Y) will stand for the proportions of values {Y;} falling in given inter-
vals. Suppose that a sample S = {1...n} with measurements y’ = {y,...y,,n <N} is
selected from the finite population U by a well defined probability sampling design P(S).

Definition 1: The sample statistic t,(y) is design-consistent for Ty(Y) if
Plim,_, o N [t,(Y) — Ty(Y)] = O where ‘Plim’ stands for limit in probability under
the randomization distribution as induced by repeated sampling from the finite population
using the sampling design P(S).

Comment 1: The definition of design consistency requires a formulation of the manner by
which the sample and the population mutually increase. Such a formulation is given, for
example, by Isaki and Fuller (1982).

Proposition 1: Assuming that Ty(Y) converges in probability to some functional 7
under the model distribution, the design-consistent sample statistic t,(y) is consistent
for 7 under the mixed R * M (randomization and model) distribution generating the
sample data.

The variance-covariance (V-C) matrix of t,(y) as an estimator of 7 can be decomposed as

Vealta()] = Ey{VRlt,(DIY1} + Vi { Eglt,(DIY]} = Epg{ Valt,(DIY]} + ON ™)
03

Notice that Eg[t,(y)|Y] is a population quantity which suggests that its variance under the
model is O(N _1). In a cluster sample, however, it is often the case that the number of
clusters, rather than the number of ultimate sampling units has to be increased for the
asymptotics to hold. This will be the case, for example, when estimating the between
cluster (group) variance in a variance components model.

It follows from equation (2) that as n— oo and (n/N) — 0, the V-C matrix under the
mixed R % M distribution can be estimated consistently by estimating consistently the
randomization V-C matrix (n and N may represent the number of sample and population
clusters, see the previous comment). For a more rigorous discussion with examples of the
use of design-consistent estimators for inference about model parameters, see Pfeffermann
(1993).

2.2.  General structure of design-based test statistics of distribution functions

Let [ag < a1 < ... < ag_; < ak] define a division of the range of Y into K exclusive and
exhaustive intervals with qy= —o, agx=-oco. Let P;=F*(a)— F'(@_1) =
Prp+[a;_1 =Y =a;], k =1...K denote the computed interval probabilities under Hj.
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Let {P,} be design-consistent for {P; } with randomization variance Cy = Varg(P,) and
covariances Cyp = Covg(Py, Py). Denote P*' = [P]...Pg_1],

=[P)..Pg 1], Cr=[Cpe)s 1=k, £=K—1
The large-sample Wald statistic (1943) is defined as

W2 =n® -P*YCg'(®—P*) (3)
where 1CR is design-consistent for Cg. (Here and throughout this article we assume a
single stage sample of size n). Assuming that P is asymptotically normal (see, e.g., Fuller
1975; and Binder 1983, for central limit theorems applicable to complex survey data), the
statistic W2 is distributed asymptotically as X(ZK#I) under H,, Stroud (1971).

The use of the Wald statistic and modifications thereof has been studied extensively

in the literature on categorical data analysis. The modifications discussed below are
borrowed from that literature.

Suppose that Cgr is replaced by the multinomial sampling V-C matrix A* =
[diag(P*) — P*P*’]. The statistic W? then has the form

K
X*=n Z(Pk — PP} “)
k=1

which is in the form of the Pearson Chi-Squared test statistic. Rao and Scott (1981)
establish the asymptotic distribution of X % under general sampling designs as the dis-
tribution of the weighted sum Ek_l AW, of independent X(1) random variables W;, where
AMN=N=...= N are the elgenvalues of the matrix D = nA*"'Cg. Calculating
percentage points of the distribution of X? requires therefore the knowledge of all the
eigenvalues {\;} or consistent estimators of them.

In practice, it is often the case that reliable estimates of the full V-C matrix Cy are not
available because of the complexity of the sampling design and/or limitations in access to
microdata files required for the computation of such estimates. Rao and Scott (1981)
propose simple modifications to X 2 applicable in such situations. Two such modifications
are

X% = XYM )

where M()A\) _1)A\k/(K —1); f\l = ):2 =..= )A\K_l are the eigenvalues of b=
nA~ CR, [dlag(P) — PP'], and

X2 = X2/1 + VAYM>N)] ©)

where V(\) = £ A — MOIPI(K - 1).

The distribution of Xj; under H, is approximated by x(K 1y- The distribution X7 is
approximated under Hy as x(,,) where v = (K — 1)/[1 + V()\)/M ()\)] The idea behind
the approx1mat10ns is to have the first moment of X3 and the first and second moments
of Xs approximately equal to the corresponding moments of the X? distributions used
for the approximations. As discussed by Rao and Scott, the computation of X% only
requires estimates for the variances Cy = Varg(P,) whereas the use of XS requires
essentially an estimate of the full V- C matrix Cg. Nonetheless, the use of XS is often
recommended as an alternative to W in situations where Cy is unstable, as reflected by
large differences in the eigenvalues f\k. Thomas and Rao (1987) also consider F
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transformations of the statistics XA24 and st for the case of a cluster sample with equal
selection probabilities. The validity of this transformation in the case of unequal selection
probabilities is, however, not clear.

The design-based estimators Py and the associated variance estimators C‘kk can be used
also to construct a test procedure based on Bonferroni probability bounds. The procedure
consists of computing the statistic
P — P

BON = max W

I=k=K

(M

and compare it to the o/2K percentage point of the standard normal distribution. The use of
BON is known to be conservative but it has the advantage that it does not require the
estimation of the covariances C,.

2.3. Design-based estimators considered

The following design-based estimators {P,} have been considered in the empirical study
for construction of the Wald statistics and the modifications discussed in Section 2.2. The
notation [;(z) is used to define an indicator variable taking the value of 1 when
Q| =7 =ay.

1) The modified Horvitz-Thompson (1952) estimator

Py = Zlk(}’i)wi / Zwi ®
i=1 i=1

where w; = 1/7; is the sampling weight associated with unit i.
2) Rao, Kovar, and Mantel (1990) Difference and Ratio estimators

n N n
Pp=N"" {Zlk(y»w,- + D h(Rx) — Zlk(iex,-)w,-] } ©
i=1 i=1 i=1
. n N . n .
Rig = N‘l{ lz L(yw; lz Ik(Rx»] / [Z L(Rxw; } (10)
i=1 i=1 i=1

where X is an auxiliary variable related to Y with known values for every unit in the
population, R = I/, y/E{_; x; and R = E'_; y;w,/E/;x;w;. Note that when y; = Rx; for
all i, IA’k,D = f’k’R = [F(a) — F(a,_;)], the proportion of units in the population with y
values falling into the kth interval.

Rao, Kovar, and Mantel (1990), in fact consider the estimation of the empirical popula-
tion distribution F(¢), rather than the finite population interval proportions but the modi-
fication of their estimators to the latter case is trivial. As discussed in Section 2.1, these
estimators, as well as f’k, a7 can be viewed as estimating also the ‘superpopulation’ interval
probabilities P, = [F(a;) — F(ay_1)]. The authors provide general formulae for the
asymptotic randomization variances of the three estimators and estimators for the
variances based on linearization. Estimators for the randomization covariances Cyp =
Covg(P;, Py) can be obtained from the estimators of the variances of the corresponding
differences (P, — Pe).

It should be noted that several other estimators of the empirical population distribution
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F(r) have been proposed in the literature, see e.g., Chambers and Dunstan (1986), Kuo
(1988), Rao, Kovar, and Mantel (1990), Kuk (1993) and Silva and Skinner (1995). The
common feature to all of these estimators is that they utilize auxiliary population informa-
tion as in the Difference and Ratio estimators defined by (9) and (10). In fact, Silva and
Skinner (1995) found the other estimators to perform better than the three estimators con-
sidered in our study with respect to an average MSE criterion, but their simulation study
was restricted to simple random sampling with small sample sizes (n < 50). We did not
consider these other estimators in our study for two reasons:

1) Some of the estimators are purely model-based in the sense that they assume certain
relationships between the response variable and the auxiliary variable, or that they
require the specification of a kernel density and a corresponding bandwidth. The
estimator proposed by Silva and Skinner (1995) requires a division of the population
into poststrata based on the ascending values of the auxiliary variable. (Their estima-
tor is defined as EgG=1 (N,/N )Is,f’ ur Where f’,i 18 the H-T estimator (8) derived from
poststratum g of size N,.) The authors found that for simple random sampling a
division into strata of equal size performs well, but the specification of an appropriate
division when the selection probabilities depend on the auxiliary values, (allowing
also for stable variance estimators), has yet to be investigated.

2) Estimation of the randomization variances of these estimators for sampling designs
with unequal selection probabilities is either computationally intensive, even for
small samples, and/or it requires the computation of third order sample inclusion
probabilities which is not feasible under most sampling designs in common use.

3. Distributions of Complex Survey Data

The sample pdf of Y;, the measurement associated with unit , is defined as the conditional
pdf of Y;, given that i € S, and is obtained as

LN =f(yili € 8) =Pr(i € SIY; = y;; ) f,(y:; 0)/Pr(i € S) 11

where X = (0,v) and Pr(i € S) = [, Pr(i € SIY; = y;;¥)f,(y; 0)dy. The subscript *“s” is
used to distinguish the sample pdf from the pdf f,(y;; 6) holding in the population, prior
to sampling. Notice that the probabilities Pr(i € s|Y; = y;) may depend, in general, on
some vector parameter v, see equations (12) and (14) below. In what follows we denote
Pr(i € SIY; = y;;v) as Pr(i € Sly;; y).

Proposition 2: The sample pdf is different from the superpopulation pdf generating the
finite population values, unless Pr(i € Sly;;y) = Pr(i € S) for all y;, in which case the
sampling design is noninformative.

Let I; be the sample indicator variable such that I; = 1if i € § and I; = 0 otherwise and
let 7; = Pr(I; = 1) be the sample inclusion probability of unit i under the sampling design
P(S). In this study we consider the case where ; is a measure of size. By viewing the
probabilities {m;;i=1,...,N} as random outcomes with conditional pdf gp(7r,~|yl~;y),
(Smith 1988), the probability Pr(i € Sly;;y) can be expressed alternatively as

Pr(i € Sly;y) = JPr(I,- = 1ly;, m)g,(milyi; Ydm; = Epy(milyis ) (12)

i
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since Pr(l; = 1ly;, ;) = ;. Substituting (12) into (11) yields
£0N = EuCrbit0) | | Bl 0 (13)

Yi

Notice that the denominator of (13) is Ep(m;; A).

Proposition 3: For a given pdf f,(y;;0), the sample pdf f,(y;; N) is fully specified by the
conditional expectation Ey(w;ly;; ).

Comment 2: The relationship in (13) can be extended straightforwardly to the case of
conditional pdfs f,(y;lx;; ).

Comment 3: It is important to emphasize that even when Ej(w;ly;;y) depends on y;, the
sample pdf may still be of the same parametric family as the population pdf, with only
some of the parameter values being changed. Pfeffermann, Krieger, and Rinott (1995)
consider several such examples and define more general invariance conditions under
which the parametric distribution of the population measurements is ‘‘closed under
sampling,”” a term borrowed from the Bayesian literature, where it refers to conjugate
prior distributions.

Under the assumption that Ey(wly;y) = m(y;7) is a continuous function, a general
class of sample pdfs is obtained by approximating m(y;~) by the Taylor approximation

J
m(y) =Y Ay’ (14)
j=0

where the {A;;j =0, ..., J} are functions of y with J appropriately specified. (See Section
4.) Notice that 0 < m(y;vy) <1 and for a fixed sample size n, E,-Iilm( y;;y) = n. It is not
required, however, to scale the expression on the right-hand side of (14), since it appears

in both the numerator and the denominator. Substituting (14) into (13) yields
J J
L NED AEy (YR (;,6) / > AE(Y) (15)
j=0 j=0

where A5(y;0) = y/fu(y;0/Ey(y’). The pdf (15) is a mixture of the pdfs ),
j=0,1,...,J with mixture coefficients ¢; = AjEM(y’)/EjJ:OAjEM(y]).

Example: In the empirical study, (Section 5), we consider the case where
fp(¥;0) = Gamma(c, ). Under (14), the sample pdf is a mixture of Gamma densities,

J J
LN = zcj* Gamma (o + J, ﬁ)/ ch* (16)
7=0

=0
where c§ = Ag and ¢/ = Ajo(a +1)...(¢ +j — 0/

Comment 4: For given values of « and (3, a full specification of the sample pdf in (16)
requires a specification (estimation) of the coefficients ¢;". See Section 4.

4. Application to Testing Distribution Functions

4.1. Use of classical test procedures

By a classical test procedure we mean testing that the empirical sample distribution is
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consistent with the distribution postulated under the null hypothesis, viewing the sample
measurements as independent identically distributed (iid). The application of such pro-
cedures therefore requires the specification of the sample distribution under the null
hypothesis, with an added assumption of independence. The sample pdf under unequal
sample selection probability schemes is defined in (13) and for the case where
Ey(w|y;v) can be approximated by a polynomial in y, it takes the form defined by
(15). Our proposed testing procedure therefore consists of the following stages:

I Specify the highest power J in the polynomial approximation defined by (14).
IT Estimate the coefficients {A;} in (14) or the ‘‘mixture coefficients” c¢; =
AEw(YVELoAE,(Y") in (15).
III Apply classical test statistics to the cumulative distribution obtained from (15) under
the null hypothesis f,(y;0) = f*(y;8*) with A;(c;) replaced by their sample esti-
mates.

The specification of J can be based on knowledge of the sampling design, or it can be
carried out in conjunction with the estimation of the coefficients A;(c;), using an appro-
priate stepwise selection algorithm. In theory, this could be achieved by regressing the
probabilities 7; observed for the sample data against powers of y;. The resulting estimators
and hence the specification of J could however be severely biased this way since the
sample is selected with these probabilities (the regression dependent variable). Two
alternative approaches which account for the sample selection effects are:

a) Regress the probabilities 7; against powers of y; but estimate the coefficients A;
by use of design-based estimators which incorporate the sampling weights. See
Pfeffermann (1993) for a review of such methods.

b) Estimate the coefficients ¢; by maximum likelihood techniques applied to the like-
lihood obtained from (15) — this can be carried out most conveniently by means of
the EM algorithm. It amounts to iterating the set of equations ¢ =1L”,
{c/" VB, j)E{=oc VB(i, €)} where B(,j)= yiIEy(y’) such that hﬁf)( y;,0) =
B@, j)p(3:5:0),j=0,....J5i=1,...,n.

In the empirical study the two approaches yield very similar estimates. We used the first
approach for estimating the (randomization) variances of the estimated coefficients.

The use of maximum likelihood for estimating the coefficients c; and the consequent
application of classical test procedures to the estimated sample distribution assumes
that the sample measurements are independent. In practice, the selection of units to the
sample is not carried out independently, with the joint selection probabilities possibly
related to the values of the target response variables. As a result, the independence of
the sample measurements could be distorted, depending on the sampling design and the
sampling rates.

Studying the effect of the sampling scheme on the interdependence of sample measure-
ments is complicated since the sample inclusion probabilities often depend on several
design variables, some of which may not be known to the analyst. Moreover, for most
of the sampling designs in common use, only the second order inclusion probabilities,
w;; = Pr[(i,j) € S, can be computed systematically. When the relationship between these
probabilities and the response variable values is known, the effect of the sampling scheme
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on the mutual dependence of pairs of measurements can be assessed. See the Appendix for
such an analysis in the case of systematic probability proportional to size (PPS) sampling.

For the case of PPS sampling with replacement, asymptotic independence of the sample
measurements can be established theoretically under mild conditions on the population
distribution. The asymptotic analysis assumes fixed sample size with the population size
increasing to infinity. These results extend to three PPS selection methods without replacement
in common use. See Pfeffermann, Krieger, and Rinott (1997) for details. The independence of
the sample measurements under different methods of selection without replacement and
given population distributions and sampling designs can be assessed by simulations.

This can be carried out as follows: If the variable of interest is discrete with possible
values y,...,yp, one can calculate from the simulated samples the fraction of times
that values y;,i = 1,...D, pairs ( YY) 1 =i=j=D etc, are observed. These fractions
can then be compared to the probabilities implied by the independence assumption.
This approach is, however, not computationally feasible when D is large and it also
does not apply if the variable of interest is continuous. It is more natural (and important)
to consider, in such cases, sample statistics of interest (e.g., the likelihood function) and
compare the sampling distribution of these statistics with the distribution implied under
independent sampling from the extracted sample distribution. The latter can again be
assessed by simulations if it is not feasible theoretically.

A simulation study along these lines, considering a variety of population distributions
and sampling designs has been carried out by Pfeffermann, Krieger, and Rinott (1997),
indicating that for the commonly used sampling designs, the independence of sample
measurements is preserved. See also the empirical results in Section 5.

4.2. Test statistics under proposed approach

In this section we define four test statistics that can be used in conjunction with the proposed
approach. These statistics are considered in the empirical study in the next section.

4.2.1. The Pearson chi-squared test statistic
K ~ ~
CSQ = [ — nPy)’InPy] (17)
k=1

where the probabilities P,k = 1...K are defined analogously to the definition of the
probabilities Py in Section 2.2, but based on the extracted cumulative sample distribution
F}(y;\*) and the n; are the corresponding observed counts.

4.2.2. The Kolmogorov-Smirnov test statistic

K —S= sup [F(y) — F{ ()] (18)

Y1-Yn

where F,(t) = L., D(t — y;)/n is the empirical sample distribution.

4.2.3. The Bonferroni version of the CSQ statistic (see also Section 2.2)

nk—ni’k

VnPy(1—Py)

BONCS = mlflx

19



132 Journal of Official Statistics

4.2.4. A fourth test procedure considered in the empirical study utilizes the following
two properties of distribution functions
(A) For a continuous random variable X with cumulative distribution function F,
FX)~ U@, 1)
(B) Under very general conditions, the set of all the moments of a distribution, when
they exist, determine the distribution (Kendall and Stuart Vol. 1, 1973, Chapter 4).

The proposed test procedure consists therefore of the following steps:

(a) Apply the probability integral transformation 7; = F;'(y;), i = 1...n.
(b) Compute the empirical moments u,, = L;2,7;"/n, m = 1...M.
(c) Compute the large-sample Wald statistic based on the empirical moments in (b).

Note that for the U(0,1) distribution, u, = E,) = 1/(m+1); and o0,, =
Cov(u,,, ug) = ml/[(m + )€ + 1)(m + € + Dn] for all m and €. Thus, assuming that
u' = (uy, ..., uy) has an approximately normal distribution, under Hy

UNIF = (u — p)T ™ @ — p) ~ X, (20)

where p' = (uy,...,pmy) and £ = [0ye], 1 =k, £ = M. An important question underlying
the use of UNIF is the choice of M. Since corr®(ty, tp_1) = [1 — (1/4m>)], it is evident
that high order moments add only marginally to the power of the test. The choice M = 5
was found in the empirical study to perform well with respect to both types of errors.

4.3. Implementation of the procedure in practice
The implementation of the procedure discussed in Sections 4.1 and 4.2 involves three steps:

A Evaluation (approximation) of the conditional expectation Ey(m;| y;,y). This step is
needed for extracting the sample distribution under the null hypothesis.

B Determination of the number of intervals and the interval boundaries used for the
various chi-square statistics.

C Specification of the number of moments used for the UNIF statistic.

For single stage sampling with the ;s as measures of size, (PPS sampling), imple-
mentation of the first step can be carried out by regressing the 7; against y;, similarly to
the analysis in Section 4.1. See also the empirical study in Section 5. Note that the focus
in this article is on continuous distributions, but the ideas follow through to the case of
discrete distributions, such as testing cell probabilities of a multinomial distribution.

A different situation arises in a (nonproportional) stratified sample where the sample
selection probabilities are fixed within strata. In such cases the conditional expectations
E(m;|y;; v) depend also on the formation (definition) of the strata. Krieger and Pfeffermann
(1992) consider the case where the strata are defined based on the ascending values of a
design variable Z, assumed to be a function of the target response variables and possibly
other survey variables. The corresponding sample pdf of the survey variables is then dif-
ferent in different strata, see equation (3.8) of that article. The marginal sample distribu-
tion of the response variables can be obtained by integration. (Pfeffermann and Krieger
consider the case where the joint population distribution of the survey variables is normal,
but the extraction of the sample pdf is not restricted to the normal case.) A special case of
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this sampling design occurs when the stratification is based directly on the values of the
response variable. Two actual surveys of this kind are the ‘‘Gary Income Maintenance
Experiment’” — Hausman and Wise (1981) and the ‘‘National Maternal and Infant Health
Survey’’ — Korn and Graubard (1995).

The case of a multistage sampling design requires a different treatment because the
sample selection effects may prevail at any of the selection stages. For example, in the
case of a two stage cluster sample, it is often the case that where as the ‘clusters’, (primary
sampling units), are selected with unequal selection probabilities, the ultimate sampling
units are selected with equal probabilities. The sample distribution under a two stage
cluster sampling design and its use for inference in relation to the mixed variance
components models is considered in Pfeffermann, Krieger, and Rinott (1997).

The problems mentioned under step B above are not unique to the proposed procedure.
In fact, both the specification of the number of intervals and the interval boundaries are
still largely open questions and the reader is referred to Kendall and Stuart (1973,
Vol. 2, Chapter 36) for a thorough discussion of these problems. In the empirical study
we follow the recommendation made by the two authors and use intervals of equal
probabilities under the null hypothesis. We consider two specifications for the number
of intervals, k = 5 and k = 10, which are common choices in other studies.

As for the specification of the number of moments for use of the UNIF statistic, (step O),
our experience based on the empirical study is that the choice of M = 5 performs well with
respect to both types of error. See the discussion below equation (20).

5. Monte Carlo Simulation Results

5.1.  Design of the Monte Carlo study

In order to illustrate and compare the performance of the various test statistics defined
in Sections 2 and 4, we designed a simulation study by which samples were selected
with unequal inclusion probabilities from populations generated randomly from given
distributions. Specifically, populations were generated from the distributions

Jo(¥:0) = mx Gamma(ay, 8) + (1 — m) x U(0, 2ct,/B) 21

with m = 1, 0.7. Fixing m = 1 allows one to assess the performance of the various test
statistics under the null hypothesis Hj : f,(y,#) = Gamma(a;y, 8). The specification of
m = 0.7 is used for power comparisons. Note that E,(Y) = (c;/8) for all m.

The samples were selected using systematic probability proportional to size (PPS)
sampling (Cochran 1977, Section 9A.10) with the size variable, Z, defined as either

Z; =Ap+ Ay + A[G; — (/)] (22)
or
Z; = exp{Ag + Aly; + A3[G; — (o/B)]} (23)

where G; ~ Gamma(ay, 8). Note that under (22), Ey(m;|y;) is linear in y; so that the
approximation in (14) is exact with the corresponding sample distribution obtained
from (16). The relationship (23) is considered in order to assess the robustness of the
polynomial approximation (14) to the expectations Ey(;ly;; v). The specification of the
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highest power J in the approximation has been carried out using a forward regression step-
wise algorithm applied to the sample measurements, {m;,y;i=1,..., n}. The regression
coefficients and their randomization variances were estimated by probability weighted
estimators, thus accounting for the sample selection effects (see Section 4.1).

The estimation of the randomization variances of the regression coefficients and the
randomization variances and covariances of the estimators P, of the interval probabilities,
used for the construction of the design-based test statistics, (Section 2.2), requires the use
of the second order inclusion probabilities m;; = Pr(i,j € S). These probabilities are
unknown for the systematic PPS sampling scheme and we therefore used the approxima-
tion developed by Hartley and Rao (1962) which is of order O(N —3), where N is the popu-
lation size. Using this approximation, it is shown in the Appendix that under the systematic
PPS sampling scheme

£y N = fGiyilij € 8) = (s N M+ OWN ™, Q4

establishing an approximate independence of pairs of sample measurements. See also
Pfeffermann, Krieger, and Rinott (1997) for simulation results illustrating an overall
independence of the sample measurements.

5.2. Results

The results reported in this section are each based on four populations of size N = 5,000
and 150 samples selected independently from each population. We consider two sample
sizes, n = 300 and n = 500. The size values {z;,i = 1,...,5,000} have been randomly
ordered before each sample selection. The corresponding parameter values are:

oy = 2, 8 = 1— for the distribution of Y in the population, (equation 21), Ag = A; =2,
A, = 1, ay = 2— for the case where Z; is linearly related to Y}, (equation 22), Ay = —2,
AT =025, A3 =025, a = 2—for the case of a logistic relationship (equation 23).
The number of intervals used for the construction of the design-based test statistics
(Section 2) and the chi-squared statistic (equation 17) is either K =5 (Tables 1-4) or
K = 10 (Tables 5-8). In both cases the interval boundaries were determined such that

Table 1. Proportion of significant results, m = 1, linear relationship, K =5

Nominal ~ W*(H-T) Wi, (H-T) W2(H-T) wXD) WiD) Wi(D)
levels

0.15 0.242 0.213 0.207 0208  0.175 0.135
0.10 0.180 0.167 0.155 0.155  0.128 0.083
0.05 0.102 0.092 0.078 0.077  0.073 0.027
0.025 0.065 0.048 0.040 0.040  0.045 0.010
0.01 0.035 0.033 0.017 0.020 0018  0.003

WA(R) W(R) W2(R) CSQ K-S UNIF
0.15 0.225 0.348 0.290 0.175  0.152  0.180
0.10 0.172 0.295 0.218 0.112  0.115 0.125
0.05 0.107 0.227 0.140 0.067  0.068 0.060
0.025 0.063 0.170 0.102 0.037 0032  0.033

0.01 0.023 0.127 0.082 0.012 0.012 0.020
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Table 2.  Proportion of significant results, m = 1, logistic relationship, K = 5

Nominal ~ W*(H-T) Wi (H-T) W2(H-T) WD) WD) WD)
levels

0.15 0.200 0.177 0.173 0.192  0.177 0.147
0.10 0.140 0.122 0.108 0.137  0.123 0.083
0.05 0.075 0.055 0.053 0.083  0.067 0.031
0.025 0.040 0.037 0.032 0.042  0.035 0.015
0.01 0.023 0.017 0.013 0.018  0.017 0.002

WA(R) WZ(R) W2(R) CSQ K-S UNIF
0.15 0.210 0.170 0.138 0.178  0.173 0.168
0.10 0.148 0.127 0.078 0.125  0.102  0.100
0.05 0.088 0.073 0.048 0.062  0.065 0.055
0.025 0.052 0.055 0.035 0.032  0.028 0.032
0.01 0.030 0.033 0.027 0.008  0.008  0.012

the theoretical interval probabilities under H, are equal, (P, = 0.2 for 5 intervals and
P, =0.1 for 10 intervals). The number of moments used for the test statistic UNIF
(equation 20) is 5.

In Tables 1-8 we show the proportion of significant results as obtained for the various
test statistics under the linear and logistic relationships. Tables 1-2 and 5—6 correspond to
the case where m = 1, i.e., when the population data were generated from Gamma(a, 3)
as hypothesized under H;. Tables 3—4 and 7—8 correspond to the case where m = 0.7 in
which case the null hypothesis is incorrect. The proportion of significant results were cal-
culated for five critical values C(o); & = 0.15, 0.10, 0.05, 0.025, 0.01 of the corresponding
distributions of the test statistics under the null hypothesis. Thus, for the case of m = 1
they estimate the significance levels of the test statistics whereas for m = 0.7 they estimate
the respective powers.

The test statistics are denoted in the eight tables as follows:

W(H - 7)), WZ(D), WZ(R) — The design-based Wald statistics (equation (3) with the
interval probabilities estimated by the Horvitz-Thompson estimator (equation 8), the

Table 3.  Proportion of significant results, m = 0.7, linear relationship, K = 5

Nominal ~ W*(H-T) Wi (H=T) W2(H-T) WD) WiD) WD)
levels :

0.15 0.275 0.220 0.203 0387  0.182 0.147
0.10 0.200 0.157 0.137 0288  0.133 0.087
0.05 0.127 0.080 0.070 0200  0.075 0.027
0.025 0.088 0.058 0.050 0.138  0.033 0.013
0.01 0.050 0.022 0.015 0.100  0.017 0.003

WA(R) Wi (R) W2(R) CSQ K-S UNIF
0.15 0.352 0.362 0.320 0.837  0.565 0.710
0.10 0.255 0.298 0.245 0.783 0430 0.625
0.05 0.175 0.218 0.148 0.675  0.258 0.502
0.025 0.113 0.162 0.132 0575  0.165 0.397

0.01 0.080 0.138 0.108 0.468 0.085 0.270
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Table 4.  Proportion of significant results, m = 0.7, logistic relationship, K = 5

Nominal ~ W*(H-T) W2 (H-T) W2(H-T) WD) WiMD) WD)
levels

0.15 0.283 0.248 0.243 0265  0.175 0.130
0.10 0.217 0.185 0.180 0.195  0.113 0.068
0.05 0.138 0.110 0.100 0.115 0062  0.027
0.025 0.083 0.063 0.057 0072  0.030  0.008
0.01 0.047 0.022 0.020 0032  0.010  0.000

WA(R) W (R) W2(R) CcsQ K-S UNIF
0.15 0.265 0.222 0.188 0550 0410  0.648
0.10 0.203 0.158 0.127 0445 0275 0.573
0.05 0.120 0.103 0.083 0325 0152 0437
0.025 0.072 0.078 0.065 0245 0080  0.327
0.01 0.043 0.058 0.052 0.167  0.042 0222

Difference estimator (equation 9) and the Ratio estimator (equation 10), respectively. The
values of the auxiliary variable-X, used for the construction of the Difference and Ratio
estimators were taken to be the corresponding values of the design variable Z, defined
in equations (22) and (23).
W2(H-T), Wiy(D), W4(R) — The modified chi-squared statistics of Rao and Scott (1981),
defined by equations (4) and (5), with the interval probabilities estimated by the Horvitz-
Thompson estimator, the Difference estimator and the Ratio estimator, respectively.
W2(H-T), W2(D), WZ(R) — The modified chi-squared statistics of Rao and Scott (1981),
defined by equations (4) and (6), with the interval probabilities estimated by the
Horvitz-Thompson estimator, the Difference estimator and the Ratio estimator, respectively.
CSQ - The Pearson chi-squared statistic (equation 17).
K-S - The Kolmogorov-Smirnov statistic (equation 18).
UNIF — The uniform moments based test statistic (equation 20).

To save space we omit from the tables the results obtained for the test statistics based on
the Bonferroni probability bounds (equations 7 and 19). As expected, the use of these test

Table 5. Proportion of significant results, m = 1, linear relationship, K = 10

Nominal ~W2*(H-T) WZ(H-T) W2(H-T) WD) WH(D) WD)
levels

0.15 0.290 0.233 0.203 0233  0.100 0.057
0.10 0.230 0.172 0.150 0.168  0.057 0.020
0.05 0.150 0.102 0.075 0.098  0.030 0.007
0.025 0.102 0.065 0.048 0.063  0.017 0.003
0.01 0.058 0.043 0.025 0.027  0.003 0.000

WA(R) W2 (R) W2(R) CsSQ K-S UNIF
0.15 0.305 0.228 0.168 0.173  0.152 0.180
0.10 0.248 0.203 0.127 0.127  0.115 0.125
0.05 0.150 0.153 0.087 0.070  0.068 0.060
0.025 0.095 0.128 0.068 0.032  0.032 0.033

0.01 0.058 0.117 0.047 0.012 0.012 0.020
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Table 6.  Proportion of significant results, m = 1, logistic relationship, K = 10
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Nominal ~ W?(H-T) Wi (H-T) W2(H-T) WD) WD) WD)
levels
0.15 0.237 0.192 0.187 0247  0.100  0.050
0.10 0.182 0.127 0.115 0.180  0.045 0.025
0.05 0.105 0.067 0.065 0.097  0.020 0.005
0.025 0.065 0.035 0.033 0.055  0.005 0.002
0.01 0.040 0.020 0.017 0.027  0.003 0.000
W2(R) WZ(R) W2(R) CSQ K-S UNIF
0.15 0.273 0.073 0.053 0.150  0.173 0.168
0.10 0.205 0.055 0.042 0.102  0.102 0.100
0.05 0.143 0.045 0.025 0.050  0.065 0.055
0.025 0.085 0.033 0.023 0.027  0.028 0.032
0.01 0.053 0.027 0.022 0.015  0.008 0.011

statistics is very conservative with much too low rejection probabilities in all cases.
The main conclusions from the eight tables are as follows:

1) The three design-based Wald statistics W>(H-T), W*(D) and W(R) perform poorly
under H,, yielding proportions of significant results that are way too high in all
cases. The powers of these statistics are high in the case of ten intervals but very
low in the case of five intervals.
The modified chi-squared statistics of Rao and Scott yield proportions of significant
results that are close to the nominal levels in the case of the Horvitz-Thompson and
the Difference estimators and five intervals, but not in the case of ten intervals where
the proportions of significant results of Wi (H-T) and WSZ(H-T) are in most cases
still too high and those of W2(D) and WSZ(D) are always way too low. The
statistics Wi (R) and WZ(R) show an even more erratic behavior, yielding extremely
high proportions of significant results in the linear case with five intervals and

2)

Table 7. Proportion of significant results, m = 0.7, linear relationship, K = 10

Nominal ~ W*(H-T) Wi (H-T) W2(H-T) WX D) Wx(D) WD)
levels
0.15 0.748 0.487 0.452 0.753 0.252 0.163
0.10 0.678 0.403 0.358 0678  0.172 0.072
0.05 0.577 0.278 0.227 0.567  0.067 0.022
0.025 0.480 0.193 0.142 0477  0.032 0.005
0.01 0.355 0.122 0.080 0.343 0.015 0.000
WA(R) W2 (R) W2(R) CSQ K-S UNIF
0.15 0.708 0.377 0.287 0.788  0.565 0.710
0.10 0.632 0.323 0.217 0718  0.430 0.625
0.05 0.522 0.272 0.165 0.597  0.258 0.502
0.025 0.413 0.232 0.138 0.505  0.165 0.397
0.01 0.308 0.203 0.102 0.383  0.085 0.270
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Table 8. Proportion of significant results, m = 0.7, logistic relationship, K = 10.

Nominal ~ W*(H-T) W2(H=T) W2(H-T) WD) WHD) WD)

levels
0.15 0.733 0.592 0.577 0617 0238  0.153
0.10 0.668 0.495 0.488 0.543  0.155  0.085
0.05 0.548 0.370 0.362 0403  0.075  0.020
0.025 0.440 0.275 0.252 0285  0.025  0.003
0.01 0.352 0.177 0.150 0207  0.008  0.000
W2(R) Wi (R) W2(R) CSQ K-S UNIF
0.15 0.550 0.202 0.133 0543 0410  0.648
0.10 0.470 0.158 0.080 0450 0275 0573
0.05 0.345 0.095 0.043 0345  0.152 0437
0.025 0.238 0.063 0.023 0253  0.080  0.327
0.01 0.150 0.037 0.017 0.153  0.042 0222

3)

4)

extremely low proportions in the logistic case with ten intervals. The statistic WSZ(R)
performs well under Hj in the other two cases.

The most striking outcome regarding the use of the modified chi-squared statistics is
their very low powers in all the cases considered. These powers are lower, and in
many cases much lower, than the powers of the corresponding design-based Wald
statistics.

The overall poor performance of the design-based test statistics is mainly attributed
to the erratic behavior of the estimated randomization V-C matrices Cy of the
interval probabilities estimators. These matrices are occasionally ill conditioned,
although when comparing their arithmetic mean over the 600 simulations with the
corresponding empirical V-C matrices calculated from these simulations, the differ-
ences are in most cases very mild and do not indicate any systematic biases. We ran
the same simulations with sample size n = 500. Increasing the sample size increases
the power of all the design based test statistics, (the powers are still very low for the
case of five intervals) but has little effect on their behavior under Hy. To save space
we do not report the detailed results obtained for the larger sample sizes.

Another possible explanation for the overall bad performance of the design-based
test statistics is occasional biases of the estimators IA’k,HﬁT, IA’k,D and IA’k,R of the inter-
val probabilities. For example, for the case of five intervals and the linear relation-
ship, (m = 1, n = 300), ten out of the 15 differences [Au(f’k) — 0.2] are positive and
most of the differences are larger than twice the corresponding standard errors. (The
averages are over the 600 samples.) The biases are, however, very small and except
for the first interval where for the Ratio estimator Av(i’LR) = 0.212 with standard
error of 0.003, for all other estimators and intervals [Av(P,) — 0.2] = 0.006.

In contrast to the use of the design-based test statistics, the use of the standard test
statistics for testing the extracted hypothesized sample distribution, as described in
Section 4, seems to perform well in the simulation study. For all three test statistics
considered, the proportions of significant results under Hj, are sufficiently close to the
nominal levels and except in a few cases, the differences are not significant. (For a
given nominal level «, the standard error of the differences is [a(l — oe)/600]”2.)
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The three statistics perform equally well in the case of a linear relationship and the
case of a logistic relationship, indicating that the use of the polynomial approximation
to the conditional expectation of the inclusion probabilities defined by (14) works
well in this case. We mention also that the differences between the empirical and
nominal significance levels of the three estimators become even smaller, under both
relationships, when increasing the sample size to n = 500.

5) The powers of CSQ and UNIF are high in the case of a linear relationship but lower

for the logistic relationship. The powers of all three test statistics increase, however,
quite substantially when increasing the sample size to n = 500. For the logistic
relationship with a nominal significance level under Hy of 0.15, for example, the
powers of CSQ, K-S and UNIF are 0.738, 0.678 and 0.857, respectively. The powers
for the other nominal levels increase accordingly. (Unlike the case of the design
based Wald statistics, the powers of CSQ do not increase when increasing the
number of intervals from five to ten.)
The relatively high powers of UNIF are quite surprising. This statistic yields higher
powers than K-S in all the cases and it outperforms even CSQ in the case of the
logistic relationship. (CSQ yields higher powers in the case of a linear relationship.)
The relatively low powers of K-S on the other hand are not surprising, as this
property of the K-S is known from other empirical studies.

6. Concluding Remarks

The results of our study illustrate that it is possible in principle to extract the distribution of
measurements, for units selected with unequal selection probabilities which are related to
the response variable. The prominent advantage of extracting the sample distribution is
that it permits the use of efficient inference tools like maximum-likelihood estimation
and hypothesis testing as considered in the present article.

The practical implementation of the proposed approach requires a specification of the
distribution of the population measurements and the modelling of the conditional expecta-
tions of the inclusion probabilities, given the values of the response variable. We mention
with respect to the first issue that we have assumed in this article that the population
distribution is fully specified, including all its parameters. In practice, it is often the
case that only the family of distributions is specified under the null hypothesis without
further specification of the parameter values. This is a well known problem in the classical
theory of hypothesis testing and we plan to investigate the use of various modifications
proposed in the literature to deal with this case like, for example, reducing the number
of degrees of freedom by the number of estimated parameters in the case of the chi-squared
statistic.

The modelling of the conditional expectations of the sample inclusion probabilities is
more unique to our approach. The results obtained for the case of a logistic relationship
between the size variable and the response variable suggest that the use of a polynomial
relationship for modelling the conditional expectation is robust, but this property needs
to be investigated further. Notice in this respect that in practice, it is often the case that
the selection of the sample is carried out in several stages, with the final inclusion
probabilities obtained as products of the selection probabilities at the various stages. As
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discussed in Pfeffermann, Krieger, and Rinott (1997), approximating the log of the
conditional expectation by a polynomial relationship is more appropriate in such
situations.

Appendix

In this Appendix we establish the approximate independence of pairs of sample measurements
under the following conditions:

a. The population distribution, prior to sampling, satisfies
A IHOES G H ) ACTH)

b. The size variable Z, used for the sample selection is of the form Z; = g(Y;, ¢;) where
the ¢; are iid and Z; > O for all i.

c. The sample is selected by systematic PPS sampling, (Cochran 1977, Section 9.A.10),
such that m; = Pr(i € S) = nZ/NZ where Z = £ N,Z/N is the population mean

d. Z; has all moments and limy_,.., EQ1/Z% = ;fk, for all k, where p = E,(Z;). This
condition requires interchange of limit and integral.

Hartley and Rao (1962) show that under condition ¢ and some mild conditions on the
first order sample selection probabilities, the joint inclusion probabilities
w;; = Pr(i,j € S) can be approximated as

;= n(n — DIpip;(1 = p®) + pipi(p; + p)] + OWN ) (A1)

where p; = m/n = ZJ(NZ) and p® = LY, p?
Following similar arguments to (3) and (4) in Section 2, the joint sample density can be
written as

Ey(miilyi y)fp (i ;5 0)
o Eo(Tijlyi Y1 (i vy 0) dy; dy;

LGuyp N =f(nylij €S = I (A2)
)%

Substituting (A1) in (A2) (ignoring the last term of equation Al) and multiplying the
numerator and denominator by N 2 yields

Z,Z;
5o (i ¥ OE, (?J‘ )’i,)’j>
[y h) = S +OWN™ (43)
[ ACTRH ) (72—’ Vi yj) dy;dy;
It can be shown that under condition d,
Z,Z; 2 -1
E, 72 Yoy | = Ep(ZiZjb’i,}’j)/M +OWN ") (A4)
Denoting Ep(Z,-| y;) = m(y;), it follows from (A4) and conditions a and b that
i Om(y; 5 Om(y; _
£y 0) = Tpo(yis O)m(y;) Fo(j; 0Om(y;) o

505 Om(ydy; [, £,(vj: Om(y)dy;
= (s NLGEN + O ™) (A5)
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