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Petitions are a relatively widespread international phenomenon. In some countries, including
New Zealand, and in several U.S. states, they have legal status and there is legislation which
obligates the legislature to react to petitions which have widespread popular support. Normal
practice at present is to check a sample of the signatures and from that estimate the number of
eligible electors who have signed a petition, making allowance for signatories who are not
eligible and multiple signatures from eligible electors.

The problem is related to a number of others, e.g., number of species in an ecosystem, but
was found via a simulation study to be sufficiently different that a universally best estimator
does not exist. The simulation drew samples from artificial petitions with known distributions
of multiple signatures to assess the performance of several estimators described in the
literature. The effect of sampling fraction on bias, distribution, variability and estimated
variance of the estimators was also investigated. Bias adjustment factors previously proposed
in the literature were investigated and found not to be particularly useful.

Ineligible and duplicate signatures often occur in the same petition. Extending the
simulation to include ineligible signatures showed that estimating their number added to the
variability of the overall estimate of number of eligible signatories. Although the estimated
number of multiple signatures and the estimated number of ineligible signatures are
correlated, the simulations suggest the correlation is small and can generally be ignored.

Key words: Biased estimators; number of classes; population size; referendum; duplicate
signatures; multiple signatures.

1. Background

A number of countries, including New Zealand, and U.S. states including Washington,

Oregon, and California have legislation which obliges the legislature to react to petitions

which have widespread popular support. The New Zealand Citizens’ Initiated Referenda

Act, 1993, states that if a petition presented to the Clerk of the House of Representatives

has been signed by at least 10 percent of registered voters, then the House of

Representatives is required to hold an indicative referendum on the petition.
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Clearly, it is important to establish reliably the number of electors who have signed a

petition. The task of checking the number of signatories is substantial: the petition is bound

to be large (approximately 250,000 electors’ signatures are needed to trigger a referendum),

and checking for multiple signatures requires some effort. Because of this, normal practice

at present is to take a sample (between 8 and 10 percent) of the signatures and check them for

eligibility and multiple signatures, and to estimate the number of eligible signatories based

on this. In New Zealand, this last task falls to the Government Statistician.

For example, a recent petition on tougher sentencing for violent criminals had 252,336

signatures. A sample of 28,704 (11%) was taken; of these, 4,454 could not be confirmed as

registered voters, 23,842 were those of registered voters who appeared once in the sample,

402 were those of registered voters who appeared twice in the sample (i.e., 201 people), and

six were those of registered voters who appeared three times in the sample (i.e., two people).

This was the first petition in recent years where the sample contained triple signatures.

The problem of estimating the number of individuals in a population based on a sample

arises in a wide range of contexts from archaeology to database management and ecology,

and a wide variety of solutions have been suggested. Bunge and Fitzpatrick (1993) review

the problem and various proposed solutions.

More recently, Haas and Stokes (HS) (1998) used simulation to test the performance of

a number of estimators on a range of problems; Brutlag and Richardson (2002) looked at

estimators used in the database field, and cite an interesting result on the distributions

for which specific estimators will perform best; and Smith-Cayama and Thomas (SCT)

(1999) specifically consider the problem of estimating the number of eligible signatories to

a petition.

This article starts with a review of the estimators, describing them using a common

notation for clarity; it then reports the results of two simulation studies based on samples

from three synthetically generated petitions. The first investigates the performance of the

estimators, the method for estimating variance proposed by HS, and the bias adjustments

proposed by SCT. The second simulation study investigates how estimating the number of

ineligible signatures (i.e., those which cannot be confirmed as belonging to registered

electors) in the petition affects the overall variability of the estimate of the number of

signatories.

2. The Problem, Formally

Following HS notation, the problem can be stated as:

We have a population of size N, whose members can each be classified as falling into

one (and only one) of D classes. In this application, each person constitutes a single class.

These classes are labelled Cj (1 # j # D), and the jth, class has Nj members (i.e., Nj

signatures) in the population. Because the classes are disjoint,

XD

j¼1

Nj ¼ N

A simple random sample of size n is drawn without replacement from the population.

This sample contains nj members of Cj. The problem is to estimate the value of D, given

the {nj} and knowledge of N.
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In the petition problem, the sizes of the individual classes are not important; we are

more concerned with how many classes of a given size there are (the “frequency of

frequencies”). The number of classes of size i in the population will be written Fi; this

means that S
N
i¼1Fi ¼ D; and S

N
i¼1iFi ¼ N.

Similarly, the number of classes appearing exactly i times in the sample is written fi, and

the total number of classes in the sample is written d. This means that S
n
i¼1f i ¼ d and

S
n
i¼1if i ¼ n:

Because we have sampled without replacement, the probability of the sample consisting

of a particular vector (n1, n2,: : :, nD) is multivariate hypergeometric:

pððn1; n2; : : :; nDÞjD; ðN1;N2; : : :;NDÞÞ ¼
N1

n1

 !
N2

n2

 !
· · ·

ND

nD

 !� N

n

 !

Obviously, (n1, n2,: : :, nD) is unobservable; we know the values of the nj $ 1, but

knowing how many nj ¼ 0 would be equivalent to knowing D. All we can observe is the

vector ( f1, f2,: : :, fn). The probability mass function of ( f1, f2,: : :, fn) is the sum of the

p((n1, n2,: : :, nD)jD, (N1, N2,: : :, ND)) over all combinations of (n1, n2,: : :, nD) which

correspond to ( f1, f2,: : :, fn); in other words, those combinations which have exactly

(D-d ) of the ni’s equal to 0, f1 of the ni’s equal to 1, f2 of the ni’s equal to 2, etc.

2.1. Goodman’s estimator

Most of the estimators discussed by SCT are variants of Goodman’s (1949) estimator,

which they state as:

DGoodman ¼ N 2
Xn

i¼2

ci

pii

f i

where

pij ¼

j

i

 !
N 2 j

n 2 i

 !

N

n

 ! ¼ p
a sample of n from N will contain i members

of a class with a total of j members

 !

and

c2 ¼ 1 and cj ¼ ð j 2 1Þ2
Xj21

i¼2

ci

pij

pii

for j ¼ 3; 4; : : :; n

If the sample is larger than the largest class in the population (i.e., n . max {N1,

N2,: : :, ND}), this is the only unbiased estimator of D. If n , max {N1, N2,: : :, ND}, no

unbiased estimator exists. Unfortunately its variance can be very large. Because the weight

given to fi is approximately N2n
n

� �i
(see Kish 1965), the size of the estimate can be very

heavily influenced by the high-i classes (i.e., multiple signatures) in the sample. When the

sampling fraction is small, the chances of a class appearing several times in the sample are

low, so the number of classes appearing several times can be subject to proportionally
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quite large sampling variation, and the large weights mean this variability can have a

considerable influence on the estimate. Goodman was aware of this problem and suggested

several alternative estimators which were not as susceptible to it but not (generally)

unbiased. The simplest

DGoodman2 ¼ N 2
NðN 2 1Þ

nðn 2 1Þ
f 2

is DGoodman with the very large weights removed, just leaving the term for f2. SCT also

suggest a DGoodman3

DGoodman3 ¼ N 2
NðN 2 1Þ

nðn 2 1Þ
f 2 þ

NðN 2 1ÞðN 2 3n þ 4Þ

nðn 2 1Þðn 2 2Þ
f 3

the first three terms of DGoodman.

HS observe that estimators like these will not work well when the number of classes in

the population, D, is small and so the sample contains comparatively few single and

duplicate observations, but more higher multiples. However, one would expect large

public petitions to have large D; samples from recent CIR petitions in New Zealand have

consisted overwhelmingly of single and duplicate signatures, with only a handful of

triplicate signatures in one petition.

SCT mention two other variations on Goodman’s estimator. One, used by the state of

Washington Elections Division Office, is simply DGoodman2 with f2 replaced by the total

number of people who have multiple signatures in the sample

DGoodman2þ ¼ N 2
NðN 2 1Þ

nðn 2 1Þ

Xn

i¼2

f i

The second is an extension of this, replacing the number of people who have signed

multiple times, S
n
i¼2 f i; with the number of duplicate signatures, S

n
i¼2ði 2 1Þf i (by

“duplicate” they mean any signatures beyond that person’s first; so a person who has

signed twice has one valid signature and one duplicate; a person who has signed 17 times

has one valid signature and 16 duplicates)

DGoodmanDup ¼ N 2
NðN 2 1Þ

nðn 2 1Þ

Xn

i¼2

ði 2 1Þ f i

One point to note is that if the sample contains only single and double signatures (which

has been the case with most recent CIR petitions), then Goodman’s estimator and all its

variants are equivalent.

2.2. Haas and Stokes’ estimators

One way to improve biased estimators is to apply bias-reduction techniques to them. HS

use two jackknife approaches to bias reduction (the generalized jackknife, and Horvitz-

Thompson jackknife estimators) to develop a range of estimators.

To test the various estimators, HS created a number of data sets and ran simulation

studies, drawing samples of between 5% and 20% of the observations. They group the data

sets by g2, the coefficient of variation of the class sizes N1, N2, : : : ND. Judging by the fully
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enumerated Washington state petitions cited in SCT, g2 ! 1. The estimator which had the

lowest RMSE under those conditions was

Duj2 ¼ 1 2
f 1ð1 2 qÞ

n

� �21

d 2
f 1ð1 2 qÞlnð1 2 qÞg2ðDuj1Þ

q

� �

where q ¼
n

N
; the sampling fraction,

g2ðDÞ ¼ max 0;
D

n2

Xn

i¼1

iði 2 1Þ f i þ
D

N
2 1

 !

and

Duj1 ¼ d 1 2
ð1 2 qÞ f i

n

� �21

; an initial estimate of D

2.3. Variance of the estimates

HS also present a way of estimating the asymptotic variance of an estimator, which is a

function of the frequency of frequencies and the population size, and which is

continuously differentiable. Using the delta method, the general form is:

Asymptotic Var ½D̂ð f ;NÞ� <
XM

i¼1

A2
i var½ f i� þ

XM

i¼1

XM
j–i
j¼1

AiAjcov½ f i; f j�

where D̂ is the estimator

N is the size of the population

Ai is the partial derivative of D̂ with respect to fi
and M ¼ maxðN1; N2, : : : , ND), i.e., the size of the largest class in the population.

They derive approximate values for var( fi) and cov( fi, fj) by assuming that all classes are

of equal size (N/D). In this case the frequency of frequencies is approximately

multinomial, and so:

vâr½ f i� ¼ f i 1 2
f i

D̂

� �

and

côv½ f i; f j� ¼ 2
f i f j

D̂

2.4. The structure of the petition

The performance of an estimator, in particular its sampling variability, is likely to be

influenced by the distribution of the number of times each individual appears in the

population, i.e., what proportion of the people who have signed the petition have signed

only once, what proportion have signed the petition twice, three times, etc. This may
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explain why the estimator that HS found performed best (over a wide range of data sets of

different sizes with different distributions) performed so poorly in SCT’s study (which was

based on data from fully enumerated petitions from Washington state), and why initial

tests of several estimators used in the database field (Jeffries’s, Chao and Lee’s, and

Shlosser’s; see Brutlag and Richardson 2002) found that they were either badly biased or

far more variable than those proposed by SCT.

Unfortunately, it is not possible to conclude much about the proportions of single,

duplicate, triplicate, etc signatures in petitions solely on the basis of an 8% – 10% sample;

there are simply too many unknowns. The sample contains fi signatures which appear

i times in the sample (in New Zealand petitions, signatures typically appear only once or

twice in the sample; the “tougher sentencing” petition was unusual in having signatures

which appear three times in the sample); the petition contains Fj signatures which appear

j times. Obviously, max{jjFj . 0} $ max{ij fi . 0}, but we do not know how much

larger. Presumably, if one assumes a suitable tightly-defined structure for {Fj} and a value

for max{jjFj . 0}, the {Fj} most likely to generate the actual sample could be determined;

but such assumptions are difficult if not impossible to check in practice.

None of the New Zealand Citizens’ Initiated Referenda petitions have been completely

checked for the number of single, duplicate, triplicate etc signatures, so there is no firm

information on the structure of New Zealand petitions. However, SCT present data on four

petitions from Washington which were completely checked, because it was not possible to

conclusively decide that they were above or below the threshold on the basis of a sample.

In all four, the distribution of the number of signings is roughly geometric. This is in

contrast to many other applications, such as estimating the number of species, where the

distributions tend to have much longer tails.

3. First Simulation Study

To check the performance of the estimators described by SCT, and HS’s Duj2, computer

simulation was used to generate samples from six petitions with a known number of

signatories. The petitions either had 100,000 or 250,000 signatories, and one of three

“structures” (proportions of duplicate, triplicate etc signatures). These were:

. One with a genuine geometric distribution, with an r of 0.95 (i.e., 95% of the

signatories had signed once, 95% of the signatories who had signed more than once

had signed twice, 95% of the signatories who had signed more than twice had signed

three times, and so on; in the four petitions cited by SCT, r ranged from 93% to 98%).

This meant individuals signed up to five times. With 100,000 signatories the petition

had 105,264 signatures; with 250,000 signatories, the petition had 263,157 signatures.

. One with fewer multiple signatures than the geometric, 95% of the signatories had

signed once, the remaining 5% had signed twice. With 100,000 signatories this meant

the petition had 105,000 signatures; with 250,000 signatories the petition had 262,500

signatures.

. One with more multiple signatures than the geometric: 95% of the signatories had

signed once and the remaining 5% were equally likely to have signed twice, three

times, four times or five times. With 100,000 signatures this meant the petition had

112,500 signatures; with 250,000 signatories, the petition had 281,250 signatures.

Journal of Official Statistics26



The computer was used to repeatedly draw random samples; on the basis of each sample,

the number of signatories was estimated using Goodman’s estimator, D2, D3, D2þ , Dd, and

Duj2. The program (written in SAS) drew 500 samples at sampling fractions of 5%, 10% and

20% (for the 100,000-signature petition) and 5%, 8% and 10% (for the 250,000-signature

petition). These levels were chosen so that two matched for the different petition sizes, while

the third ensured that it was possible to make comparison between samples of

approximately the same size. The code is available from the authors on request.

3.1. Results

3.1.1. Point estimates

Table 1 shows summaries of the samples drawn. They indicate that, given a set of samples

from one of these petitions, it should be reasonably easy to decide which petition they are

from, largely on the proportion of samples with triplicate signatures. Unfortunately, in

practice, only one sample is taken and checked; in which case, even deciding between

three alternatives is difficult, let alone the much wider range of possible structures.

Table 2a and 2b summarises the estimates from the petitions. Clearly, Duj2 performs much

worse than the other estimators, having substantial bias and also greater sampling variability.

Despite the warnings about the variability of Goodman’s estimator, it produced a very similar

set of estimates to the modified Goodman’s estimators (95,000 to 108,000 and 241,000 to

266,000 from the 5% sampling fractions; 94,000 to 103,000 and 245,000 to 258,000 from the

10% samples) for the geometric petition. The estimates were identical for the singles-and-

doubles petition. The 5% sample from the uniform petition did produce the occasional absurd

estimate (the lowest was 2166,200 for the 100,000 signatory petition and 226,500 for the

250,000 signatory petition; the highest 139,000 and 2,756,000 respectively); the ranges with

the 8%, 10%, and 20% samples were large but not as extreme (79,000 to 164,000 and 210,000

to 354,000 for the 10% samples). For comparison, D2, D2þ and Ddup gave much narrower

Table 1. Number of samples containing duplicate, triplicate, etc signatures

Petition Geometric Singles-and-
doubles

Uniform

100,000 Signatories
Sampling fraction 5% 10% 20% 5% 10% 20% 5% 10% 20%
Number of samples

with duplicates
500 500 500 500 500 500 500 500 500

Triplicates 16 115 453 0 0 0 452 500 500
Quadruples 0 1 13 0 0 0 19 250 500
Quintuples 0 0 0 0 0 0 0 3 179

250,000 Signatories
Sampling fraction 5% 8% 10% 5% 8% 10% 5% 8% 10%
Number of samples

with Duplicates
500 500 500 500 500 500 500 500 500

Triplicates 47 148 274 0 0 0 497 500 500
Quadruples 0 0 2 0 0 0 57 252 405
Quintuples 0 0 0 0 0 0 3 2 19
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ranges of estimates, but were heavily biased; the D3 estimates showed less bias than the D2

estimates, and a narrower range than the unmodified Goodman estimates (93,000 to 114,000

and 245,000 to 276,000 with the 10% sample).

As for the other estimators, they perform much better with the geometric and singles-and-

doubles petitions than for the uniform one; and for those petitions, increasing the sampling

fraction has a substantial effect on the RMSE. Since the bias is not consistently reduced, the

improvement must reflect considerable reduction in the sampling variability, in most cases

much more than would be expected simply on the basis of the increase in the sample size (see

Figure 1); presumably, as the sample size increases, the composition of the sample becomes

more stable.

The distribution of the estimates is roughly normal in most cases; however, Goodman’s

estimator with the uniform petition produces a distribution which tends to have wider tails

than would be expected of a normal distribution. Even with this distribution, the 95%

confidence interval calculated assuming the distribution of the estimates is normal and the

empirical 95% confidence interval give results which are close (in the worst case, with the 5%

Table 2a. Summary of estimates for first simulation study: bias*

Goodman D2 D3 D2 þ Ddup Duj2

100,000 Signatories
Geometric petition
5% Sample 210.8 207.0 210.8 219.8 232.6 4,203.2
10% Sample 34.0 197.3 20.8 222.7 248.3 3,836.8
20% Sample 5.6 117.7 21.6 177.9 238.8 2,970.5

Singles-and-doubles petition
5% Sample 67.1 ** ** ** ** 3,600.8
10% Sample 27.2 ** ** ** ** 3,367.8
20% Sample 14.5 ** ** ** ** 2,697.8

Uniform petition
5% Sample 386.2 9,656.5 24,835.7 10,524.7 11,408.8 18,575.5
10% Sample 218.4 7,349.2 23,812.3 9,010.3 10,739.1 15,669.6
20% Sample 3.9 2,953.5 22,351.8 5,870.2 9,062.0 9,751.0
250,000 Signatories

Geometric petition
5% Sample 2107.3 559.4 2107.3 598.6 637.8 10,661.9
8% Sample 276.3 484.9 276.3 544.0 603.1 9,974.4
10% Sample 2112.4 469.6 286.3 549.4 629.6 9,569.9

Singles-and-doubles petition
5% Sample 182.5 ** ** ** ** 9,634.1
8% Sample 232.5 ** ** ** ** 8,987.7
10% Sample 230.4 ** ** ** ** 8,415.7

Uniform petition
5% Sample 211,128.7 24,272.1 211,916.2 26,450.8 28,682.3 46,692.4
8% Sample 1,730.6 20,490.6 210,387.4 23,856.4 27,338.4 42,113.8
10% Sample 7.5 18,274.8 29,039.8 22,355.3 26,618.9 39,049.2

*Bias ¼ True number of signatories–mean estimate

**D2, D3 D2 þ and Ddup are equivalent to Goodman for singles-and-doubles petition
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sample, the normal theory interval is 2121,937.3 to 644,195.3, while the empirical interval,

based on percentiles, is 2121,547.4 to 643,804.8).

3.1.2. Estimates of variability

Similarly, one can compare HS’s variance estimates with the actual variability of the

estimators (Tables 3a and 3b). Given the poor performance of Duj2, estimated standard

errors were not calculated for it.

Figure 2 shows the mean of the estimated standard errors and the actual variability for

Goodman’s estimator, D2 and D3 on each petition based on sampling fractions of between

5% and 20% (for the 100,000-signatory petition) and 5% to 15% (for the 250,000-signatory

petition). D2þ and Ddup performed similarly to D2, and so were excluded for clarity.

For the uniform petition, the estimates appear reasonable; for Goodman’s estimator

nominal 95% confidence intervals based on them have a coverage of 89% to 95%. The bias

of D2, D2þ and Ddup meant coverage ranged from 0% to 7%. For D3, coverage ranges

from 30% to 94%.

Table 2b. Summary of estimates for first simulation study: RMSE

Goodman D2 D3 D2 þ Ddup Duj2

100,000 Signatories
Geometric petition
5% Sample 1,853.3 1,455.7 1,853.3 1,460.9 1,469.5 4,784.2
10% Sample 852.9 769.6 812.6 778.7 791.6 4,003.8
20% Sample 371.5 377.5 367.7 401.8 437.1 3,015.3

Singles-and-doubles petition
5% Sample 1,347.2 ** ** ** ** 4,201.2
10% Sample 671.4 ** ** ** ** 3,526.6
20% Sample 348.7 ** ** ** ** 2,744.9

Uniform petition
5% Sample 27,974.8 10,063.3 10,838.3 10,913.2 11,808.8 18,806.6
10% Sample 7,575.9 7,473.2 4,884.4 9,117.0 10,848.8 15,741.4
20% Sample 1,288.3 3,003.1 2,477.4 5,897.8 9,090.5 9,775.0
250,000 Signatories

Geometric petition
5% Sample 3,268.5 2,363.9 3,268.5 2,365.1 2,373.5 11,266.3
8% Sample 1,732.8 1,501.5 1,732.8 1,523.1 1,553.2 10,217.5
10% Sample 1,365.5 1,237.0 1,286.5 1,274.6 1,322.1 9,730.4

Singles-and-doubles petition
5% Sample 2,224.7 ** ** ** ** 10,274.4
8% Sample 1,399.9 ** ** ** ** 9,255.5
10% Sample 1,073.6 ** ** ** ** 8,580.5

Uniform petition
5% Sample 195,563.4 24,712.5 20,188.1 26,864.8 29,104.6 46,938.9
8% Sample 21,818.8 20,685.8 12,682.7 24,033.6 27,521.1 42,224.9
10% Sample 16,440.0 18,393.7 10,372.1 22,459.2 26,729.7 39,117.7

**D2, D3 D2 þ and Ddup are equivalent to Goodman for singles-and-doubles petition
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For the geometric and singles-and-doubles petitions, the estimated standard errors are

slightly too high, the overestimation being more marked with the 250,000-signatory

petitions and with higher sampling fractions. Nominal 95% confidence intervals for these

petitions using the estimated standard errors have 99% þ coverage.

3.2. Bias adjustment strategies

SCT propose the use of Bias Adjustment Factors (BAFs) to improve the biased estimators

such as D2, D3, D2þ and Ddup. These factors are calculated assuming a distribution for the

data (SCT use the data from the four fully-enumerated Washington petitions to produce

estimates for each BAF) and then applied to the estimate. The result, assuming that the

distribution used to derive the BAF is similar to the distribution of the actual signatures in

the petition, should be to make the mean adjusted estimate equal to the true number of

eligible signatories to the petition.

As can be seen from comparing the RMSE and SD around own mean values in Table 3

(which differ only by the bias squared), bias is not a particularly large component of the error

Fig. 1. Plots of RMSE against sampling fraction (with reference lines indicating 1/
p

n)
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for the geometric and singles-and-doubles petitions; thus reducing the bias does not

necessarily reduce the variability of the estimate much. Bias is a large component in

the RMSE of the estimators with the uniform petition, although even if it could be

completely eliminated, the variability of the estimators about their own mean is larger than

for the geometric and singles-and-doubles petitions. To eliminate the bias, it would be

necessary to have a good guess-timate of the true distribution of the numbers of signatures in

the petition. Often this is not available, and any assumption could be difficult to justify in a

legal context.

The results of estimating BAFs based on the four fully-enumerated Washington petitions

and then applying them to the results from the simulation study are shown in Table 4.

Although the bias adjustment reduces the sampling variation, the reduction is not large. For

the geometric and uniform distributions, bias is also reduced, producing a 9%–11% reduction

in the RMSE for the geometric petition, and a 7%–8% reduction in the RMSE for the uniform

petition. The bias-adjusted results for the singles-and-doubles petition are slightly more

biased than the original results (because the bias adjustment factors were calculated from

Table 3a. Summary of estimates for first simulation study: SD about own mean

Goodman D2 D3 D2 þ Ddup

100,000 Signatories
Geometric petition
5% Sample 1,853.3 1,440.9 1,853.3 1,444.2 1,451.0
10% Sample 852.3 743.9 812.3 746.2 751.7
20% Sample 371.4 358.7 367.7 360.3 366.1
Singles-and-doubles petition
5% Sample 1,345.6 ** ** **
10% Sample 671.4 ** ** **
20% Sample 348.4 ** ** **
Uniform petition
5% Sample 27,972.1 2,832.2 9,699.7 2,886.1 3,047.4
10% Sample 7,572.8 1,355.6 3,053.5 1,390.5 1,538.8
20% Sample 1,288.3 543.5 779.0 570.2 719.6
250,000 Signatories
Geometric petition
5% Sample 3,270.0 2,299.0 3,270.0 2,290.4 2,288.5
8% Sample 1,732.8 1,422.4 1,732.8 1,424.0 1,432.8
10% Sample 1,362.3 1,145.5 1,284.8 1,151.3 1,163.7
Singles-and-doubles petition
5% Sample 2,219.4 ** ** ** **
8% Sample 1,399.5 ** ** ** **
10% Sample 1,073.2 ** ** ** **
Uniform Petition
5% Sample 195,442.0 4,649.2 16,312.4 4,703.1 4,944.7
8% Sample 21,771.8 2,837.9 7,284.2 2,915.5 3,168.3
10% Sample 16,456.5 2,090.0 5,090.7 2,159.7 2,434.5

**D2, D3 D2 þ and Ddup are equivalent to Goodman for singles-and-doubles petition
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petitions which contained triplicate etc signatures), although the increase in RMSE is only

about 2%.

4. Second Simulation Study

One distinctive aspect of applying these estimation procedures to petitions is that there are in

fact two estimation problems: under the New Zealand Citizens’ Initiated Referenda Act, only

people eligible to vote (i.e., on the electoral roll) qualify, so the number of ineligible signatures

in the petition must be estimated, as well as the number of multiple signatures from eligible

individuals. The first problem is simple, so most attention has focused on the second,

especially as solutions to it can be applied to a wide variety of fields. However, as SCT

observe, the two estimates are not independent: if 100x% of the signatures in the sample are

ineligible, a point estimate of the number of unique eligible signatures can be obtained by

applying one of the existing estimators with a population size of Nð1 2 xÞ; however, the

standard error of the estimate will not simply be the standard error of the number of unique

signatures (nor even the square root of the sum of their squared standard errors).

Table 3b. Summary of estimates for first simulation study: Mean estimated SE

Goodman D2 D3 D2 þ Ddup

100,000 Signatories
Geometric petition
5% Sample 2,098 1,932 2,098 1,932 1,932
10% Sample 1,193 1,128 1,182 1,128 1,128
20% Sample 680 671 679 671 671

Singles-and-doubles
5% Sample 1,891 ** ** ** **
10% Sample 1,122 ** ** ** **
20% Sample 678 ** ** ** **

Uniform petition
5% Sample 14,584 3,029 9,926 3,028 3,027
10% Sample 5,683 1,478 3,252 1,476 1,473
20% Sample 1,271 727 984 721 714
250,000 Signatories

Geometric petition
5% Sample 3,500 3,069 3,500 3,071 3,073
8% Sample 2,303 2,124 2,303 2,127 2,128
10% Sample 1,926 1,796 1,907 1,796 1,796

Singles-and-doubles petition
5% Sample 3,012 ** ** ** **
8% Sample 2,092 ** ** ** **
10% Sample 1,774 ** ** ** **

Uniform petition
5% Sample 44,192 4,822 16,203 4,895 4,968
8% Sample 15,580 2,979 7,519 3,041 3,104
10% Sample 11,609 2,375 5,128 2,376 2,375

**D2, D3 D2 þ and Ddup are equivalent to Goodman for singles-and-doubles petition
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The estimated number of unique eligible signatures is:

N 2 Û 2 D̂

where N ¼ Number of signatures in petition,

Û ¼ Estimated number of ineligible signatures,

D̂ ¼ Estimated number of multiple signatures (beyond the first),

which clearly has a variance of

VarðÛÞ þ VarðD̂Þ þ 2CovðÛ; D̂Þ

If the sampling can be treated as approximately Bernoulli, then

VarðD̂Þ ¼
uðn 2 uÞ

q2n

where u is the number of ineligible signatures in the sample.

Since we already have expressions for the variance of the number of signatories

(N 2 D̂) derived in the situation when N is a constant, and there are no ineligibles, these

can be used to calculate VarðD̂Þ.

Fig. 2. Comparing estimated standard errors with sampling variability
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Table 4. Summary of bias-adjusted estimates for 8% sample from 250,000 signatories petitions

RMSE D2 Bias D2þ Bias Ddup Bias
Adjusted D2 Adjusted D2þ Adjusted Ddup

Geometric 1,501.5 1,385.0 1,523.1 1,381.1 1,553.2 1,384.1
Singles-and-doubles 1,399.9 1,412.8 1,399.9 1,421.8 1,399.9 1,432.4
Uniform 20,685.8 19,240.3 24,033.6 22,272.2 27,521.1 25,413.1
Bias*
Geometric 484.9 103.0 544.0 105.6 603.1 107.7
Singles-and-doubles 232.5 2381.6 232.5 2431.5 232.5 2481.3
Uniform 20,490.6 19,041.9 23,856.4 22,093.0 27,338.4 25,229.3
SD about own mean
Geometric 1,422.4 1,382.6 1,424.0 1,375.5 1,432.8 1,381.2
Singles-and-doubles 1,399.5 1,361.7 1,399.5 1,356.1 1,399.5 1,350.5
Uniform 2,837.9 2,758.5 2,915.5 2,822.2 3,168.3 3,054.2

*Bias ¼ 250,000 – Mean (estimate)

Jo
u

rn
a

l
o

f
O

ffi
cia

l
S

ta
tistics

3
4



SCT present a formula for the covariance term when one is using a linear estimator.

However, to get a feel for the relative importance of the three terms, we modified the program

used in the first simulation study to generate a random number of ineligible signatures before

randomly selecting the rest of the sample from the set of eligible signatures.

4.1. Results

The results of the simulations are shown in Figure 3. The correlation is significant at p ¼ 0.05

for n ¼ 500 if jrj . 0.0895. Clearly, none of the correlations are particularly strong, but as the

proportion of invalid signatures or the sampling fraction increases, the strength of the

correlation also tends to increase; and with the uniform petition, the correlation is stronger for

D2 than for Goodman or D3.

Figure 4 shows mean calibrated standard error estimates (derived from Figure 2),

estimates of standard error based on
p

(VarðÛÞ þ VarðD̂ÞÞ, and estimates based on
p
ðVarðÛÞ þ VarðD̂Þ þ 2CovðÛ; D̂ÞÞ for the 250,000-signatory petitions. Clearly, for the

geometric and singles-and-doubles petitions, as the sampling fraction increases and

the proportion of invalid signatures increases, including the estimated standard error of the

number of invalid signatures has an appreciable effect on the overall standard error of

the estimate. Making allowance for the covariance has no appreciable effect; in fact, the

difference between
p
ðVarðÛÞ þ VarðD̂ÞÞ and

p
ðVarðÛÞ þ VarðD̂Þ þ 2CovðÛ; D̂ÞÞ was less

than one signature in all cases.

The variability of Goodman’s estimator and D3 with the uniform petition was so large

that even the difference between the mean calibrated standard error estimates and
p
ðVarðÛÞ þ VarðD̂ÞÞ is only minor.

5. Conclusions

The simulations have provided useful quantitative information on the performance of the

various estimators, allowing an assessment of various issues such as the degree to which

D2, D2þ , D3 and Ddup are biased, how much more variable the results of Goodman’s

estimator are than alternatives like D2, and the importance of allowing for the variability of

the estimate of the number of ineligible signatures.

On the geometric petition, Goodman’s estimator was ,20% more variable than D2 at an

8% sampling fraction, and ,8% more variable at a 10% sampling fraction. The bugbear of

absurdly high or low estimates only arose with the 5% sample from the uniform petition.

Given that no one estimator clearly performs better than the others, it may be best to

calculate confidence intervals for the number of signatures using several estimators

(Goodman’s, D3, and D2 or one of its variants). If all three agree as to whether the petition

is sufficiently large or not, use that conclusion. If there is no consensus, then simulations

based on a number of scenarios about the actual distribution of signatures may be

informative; or it may be necessary to increase the sample size; or even completely

enumerate the entire petition.

The biased variants of Goodman’s estimator (D2, D2þ , Ddup and D3) were only slightly

biased on the geometric and singles-and-doubles petitions. This meant that adjusting for

their estimated bias produced only minor improvements in their performance, while

adding a number of extra assumptions about the distribution of the number of signatures in
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Fig. 3. (a) Correlation between Estimates of U and D – Geometric Petition; (b) Correlation between Estimates

of U and D – Singles and Doubles Petition; (c) Correlation between Estimates of U and D – Uniform Petition
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Fig. 4. (a) Estimated Standard Errors – Geometric Petition (250,000 Signatories); (b) Estimated Standard

Errors – Singles and Doubles Petition; (c) Estimated Standard Errors – Uniform Petition (250,000 Signatories)
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the petition. On the uniform petition the bias was much more marked. Bias adjustment

actors based on petition with a different structure (the fully enumerated Washington

petitions, which are roughly geometric) only produced minor improvements.

Haas and Stokes’s variance estimates appear to have a rather complex relationship with

the actual variability of estimators, the exact nature of which depends on the size of the

petition and the distribution of the number of signatures. This is presumably because of

HS’s assumption that all classes are the same size (i.e., everyone has signed the petition the

same number of times), which seems unlikely but makes the problem tractable. Any other

assumption about the distribution of the number of signatures complicates the problem

considerably, and still leaves open the question of whether it is appropriate for a particular

sample. By making some assumptions about the likely structure of a petition, it might be

possible to run simulations and obtain a graph similar to Figure 2, which could be used to

improve the estimated standard errors produced by HS’s formula. A conservative

alternative might be to use HS’s variance estimates, since if they err, they are likely to err

on the high side.

Including the variability of the estimate of ineligible signatures in the estimate of the

variability of the overall result appears wise. Although the estimate of the number of

ineligible signatures and the estimate of the number of eligible but duplicated signatures in

the petition are correlated, the correlation appears to be small and does not alter the

estimate of the variability appreciably.

6. References

Brutlag, J.D. and Richardson, T.S. (2002). A Block Sampling Approach to Distinct Value

Estimation. Journal of Computational and Graphical Statistics, 11, 389–404.

Bunge, J. and Fitzpatrick, M. (1993). Estimating the Number of Species in a Population: A

Review. Journal of the American Statistical Association, 88, 364–373.

Goodman, L. (1949). On the Estimation of the Number of Classes in a Population. Annals

of Mathematical Statistics, 20, 572–579.

Haas, P.J. and Stokes, L. (1998). Estimating the Number of Classes in a Finite Population.

Journal of the American Statistical Association, 93, 1475–1487.

Kish, L. (1965). Survey Sampling. John Wiley.

Smith-Cayama, R.A. and Thomas, D.R. (1999) Estimating the Number of Distinct Valid

Signatures in Initiative Petitions. Proceedings of the American Statistical Association,

Section on Survey Research Methods, 38–243.

Received March 2003

Revised September 2004

Journal of Official Statistics38


