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Multiple weight adjustments are common in surveys to account for ineligible units on a frame,
nonresponse by some units, and the use of auxiliary data in estimation. A practical question is
whether all of these steps need to be accounted for when estimating variances. Linearization
variance estimators and related estimators in commercial software packages that use squared
residuals usually account only for the last step in estimation, which is the incorporation of
auxiliary data through poststratification, regression estimation, or similar methods.
Replication variance estimators can explicitly account for all of the steps in estimation by
repeating each adjustment separately for each replicate subsample. Through simulation, this
article studies the difference in these methods for some specific sample designs, estimators of
totals, and rates of ineligibility and nonresponse. In the simulations reported here, the
linearization variance estimators are negatively biased and produce confidence intervals for a
population total that cover at less than the nominal rate, especially at smaller sample sizes.
The jackknife replication estimator generally yields confidence intervals that cover at or
above the nominal rate but do so at the expense of considerably overestimating empirical
mean squared errors. A leverage-adjusted variance estimator, which is related to the jackknife
estimator, has small positive bias and nearly nominal coverage. The leverage-adjusted
estimator is less computationally burdensome than the jackknife but works well in the
situations studied here where multiple weighting steps are used.

Key words: Ineligibility; jackknife; leverage; nonresponse; replication variance estimate.

1. Introduction

Multiple steps in weighting are common in survey estimation. Each step usually

introduces a source of variability in an estimator that it may be important to reflect when

estimating variances. A typical sequence of weighting steps in a probability sample is this:

1. Compute base weights.

2. Adjust weights to account for units with unknown eligibility.

3. Adjust weights for nonresponse.

4. Use auxiliary data.

Base weights in Step (1) are usually inverses of selection probabilities. In some surveys the

eligibility of all initial sample units cannot be determined. For example, in a telephone

survey of residential households, noncontacts may be businesses, nonworking numbers, or

eligible residences, but their actual status is undetermined. In Step (2) the weight of such

unknown cases is distributed among the cases whose eligibility is known.
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A nonresponse adjustment in Step (3) consists of spreading the weight of the eligible

nonrespondents over eligible respondents. The method studied here is to assign units to

classes that have different response rates and to make a ratio weight adjustment to each

unit within a class. Poststratification, raking, regression estimation, and more general

calibration estimation are examples of the use of auxiliary data in Step (4).

The variance of an estimator is affected by the population structure of the variables

being estimated, the complexity of the design used to collect data, and the form of the

estimator itself. Intuition may lead us to believe that a variance estimator that somehow

incorporates all of these complications is better than one that does not. However, literature

that directly addresses this question is limited.

The two major competitors in finite population variance estimation are replication and

linearization. There is a wealth of literature studying the model-based and design-based

properties of these alternatives. Generally, the situations covered are ones in which

different simplifying assumptions are made – e.g., sampling is with replacement, there is

no nonresponse, or the estimator is of a certain type. One reason for simplifying is that

theory is quite difficult to develop when all four weighting steps are used and the sample

design is complex.

For replication variance estimators there is evidence in particular cases that it is

necessary to repeat each step of estimation separately for each replicate subsample in order

to produce a consistent or approximately unbiased variance estimate. Empirical results,

however, are not uniform. Lemeshow (1979) and Ernst and Williams (1987) found that

recalculation of weights is necessary for the BRR method. Rust (1987) reports results for a

survey of student grant records in which a nonresponse adjustment and ratio estimation

were used along with BRR. For the estimates in that study, it made little difference

whether the nonresponse adjustments and ratio estimation were repeated for each half-

sample or not.

Valliant (1993) showed theoretically and empirically that poststratification factors must

be recomputed for every replicate in order for the BRR or jackknife estimators to be

consistent in two-stage sampling. Yung and Rao (1996; 2000) obtained similar results for

the jackknife in stratified, multistage sampling both with and without nonresponse and

poststratification.

There are a number of articles that cover some, but not all, of the four steps when

applying Taylor series variance estimators. Lundström and Särndal (1999) adapted a

linearization estimator for two-phase sampling to the situation where nonresponse is the

mechanism leading to the second phase. Rao (1996) derived a modified linearization

variance estimator that accounted for mean imputation. Rao’s estimator uses a standard

linearization variance formula but the deviates needed for the formula are specialized for

the case of mean imputation for the nonrespondents (see Rao 1996, expression (21)).

Expedient methods that ignore some complexities are often used in practice. For

example, in a survey that uses an unknown eligibility adjustment, a nonresponse

adjustment, and poststratification, a linearization estimator may be used that accounts for

design features like stratification and clustering but not for the other complexities of the

estimator. An improvement would be to account for stratification, clustering, and the

last step of poststratification while ignoring the unknown eligibility and nonresponse

adjustments. When such expedients give acceptable performance is an open question.
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An extreme case where a shortcut would clearly be incorrect would be an estimate of the

total number of units in a poststratum. The variance of this estimate would be zero, but a

linearization estimator that ignores poststratification would be nonzero.

Lago et al. (1987) compared linearization variance estimators that ignored

poststratification to replication estimators that properly accounted for it. For the Hispanic

Health and Nutrition Examination Survey, they found that the shortcut linearization

estimator was similar to a balanced repeated replication (BRR) estimator for most

statistics. However, for mean height, weight, and blood cholesterol level, which were

highly correlated with the age/sex poststratification variables, the linearization variance

was a severe overestimate. Smith et al. (2000) compared jackknife variance estimates that

reflected stratification and clustering plus nine separate weighting steps with Taylor series

variance estimates that accounted only for stratification and clustering. Although the

linearization estimates tended to be smaller than the jackknife, the authors did not assess

which was closer to the truth.

Shortcut implementations of linearization estimators are fairly common in practice for

at least two reasons. First, linearizing complex estimators is difficult and commercial

software packages limit how faithfully a user can reflect the complexities of a design and

an estimator. Few studies report direct comparisons of shortcut linearization estimators

and more elaborate replication estimators. This article attempts to fill that gap by

empirically comparing some alternative variance estimators systematically for various

combinations of eligibility rate, response rate, type of estimator, and sample size.

Section 2 defines notation. Section 3 introduces some alternative variance estimates.

Several simulation studies employing multiple weighting steps are reported in Section 4.

The last section is a brief conclusion.

2. Notation and an Estimator of a Total

For the illustrations in this article we consider only stratified and unstratified, single-stage

sampling but include all four of the weighting steps listed in Section 1. Suppose that the

strata are numbered h ¼ 1; : : : ;H; the frame size in stratum h is Nh, the number of initial

sample units is nh, and the set of initial sample units is sh. Denote the base weight for

sample unit hi as whi. Define the following sets of sample cases:

sER ¼ set of eligible sample respondents

sENR ¼ set of eligible sample nonrespondents

sIN ¼ set of sample units known to be ineligible

sUNK ¼ set of sample units whose eligibility status is unknown

The full sample s is the union of these four sets. The set of units whose eligibility status is

known is sKN ¼ sER < sENR < sIN :

Suppose that the sample is also divided into classes, c ¼ 1; : : : ;C; that are used for

the unknown eligibility adjustment. Another set of classes, d ¼ 1; : : : ;D; is used for the

nonresponse adjustment. Both of these sets of classes may cut across strata. In practice, the

eligibility adjustment and nonresponse adjustment classes may often be the same. Let sc

denote the set of sample units in class c and sc;KN ¼ sc > sKN the set with known eligibility
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in class c. Then, the unknown eligibility adjustment for sample units in class c is

a1c ¼

P
ðhiÞ[sc

whiP
ðhiÞ[sc;KN

whi

ð1Þ

and the eligibility-adjusted weight for a unit with known eligibility in class c is

w1hi ¼ whia1c; ðhiÞ [ sc;KN : The summations over ðhiÞ [ A for some set A means to sum

over all strata and the units within each stratum that are members of the set. After this step,

the units with unknown eligibility are eliminated.

Next, denote the set of cases in class d as sd, those that are known to be eligible in class

d as sd;E ¼ sd > ðsER < sENRÞ and the set of eligible respondents in class d to be

sd;ER ¼ sd > sER: The nonresponse adjustment for units in class d is

a2d ¼

P
ðhiÞ[sd;E

w1hiP
ðhiÞ[sd;ER

w1hi

ð2Þ

The nonresponse-adjusted weight is then

w2hi ¼
w1hia2d ðhiÞ [ sd;E

w1hi ðhiÞ [ sIN

(
ð3Þ

i.e., the weights for eligible respondents are adjusted while the weights for known

ineligibles remain the same as they were after the unknown eligibility adjustment. The

nonrespondents, sENR, are eliminated. After this step, the units with nonzero weight, which

are used in estimation, are sER and sIN. The known ineligibles are retained on the grounds

that their presence in the sample is a reflection of other nonsample ineligibles in the frame.

To illustrate the use of auxiliary data, we take the case of the general regression

(GREG) estimator (see e.g., Särndal, Swensson, and Wretman 1992) in single-stage

sampling. The GREG is motivated by a linear model in which the Y’s are independent

random variables with EMðYhiÞ ¼ x0
hib and varMðYhiÞ ¼ vhi; where xhi is a p-vector of

auxiliaries for unit hi and b is a p £ 1 parameter vector. The g-weight for unit hi is

ghi ¼ 1 þ ðTx 2 T̂xÞ
0A21xhi=vhi; where Tx is the vector of population totals of the

auxiliaries, T̂x ¼
P

ðhiÞ[ðsER<sIN Þ
w2hixhi is the estimator of the x-totals using the weights after

eligibility adjustment and nonresponse adjustment, and A ¼
P

ðhiÞ[ðsER<sIN Þ
w2hixhix

0
hi=vhi:

In the current context, we compute the g-weights using the eligible respondents, sER,

and the known ineligibles, sIN. Using sER < sIN presumes that the population control totals

Tx include some units that are actually ineligible but cannot be separated out. This can

occur if the population counts are made from a frame that is somewhat out-of-date. If the

population controls include only eligibles, then the g-weight would be computed on the

basis of only the eligible respondents, sER. After the g-weight adjustment, the weight for

sample unit i is w3hi ¼ w2highi; ðhiÞ [ sER < sIN :

The final weights after the three stages of adjustment would, thus, be defined by

w*
hi ¼

a1ca2dghiwhi ðhiÞ [ sc;KN > sd;ER

a1cghiwhi ðhiÞ [ sc;KN > sIN

0 otherwise

8>><
>>: ð4Þ
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Note that the final weight differs depending on the combination of eligibility and

nonresponse adjustment classes to which a unit belongs and the unit’s g-weight value, in

addition to which of the four eligibility classes (sER, sENR, sIN, or sUNK) the sample unit

belongs to. For estimation the eligibles are treated as a domain, and the ineligibles are

assigned data values of zero both for point estimation and for variance estimation

(see, e.g., Cochran 1977, Sections 2.13, 5A.14). After these sequential adjustments,

even an estimated total of the form T̂ ¼
P

ðhiÞ[sER<sIN
w*

hiYhi is nonlinear in the

design-based sense because the weights involve various sample-dependent ratio

adjustments.

We will cover two specific cases of the GREG in the simulations described later. The

linear regression estimator with a single auxiliary x in an unstratified design is

T̂LR ¼
X

i[sER<sIN

w2igiYi ð5Þ

where gi ¼ 1þðTx 2 T̂xÞ
0A21xi; T̂x ¼

P
sER<IN

w2ixi; x0
i ¼ð1xiÞ; and A¼

P
sER<sIN

w2ixix
0
i:

The second is the poststratified estimator denoted by T̂PS: If we let k ¼ 1; : : : ;K index the

poststrata and sPS,k be the set of population units in poststratum k, then the g-weight for a

unit is

ghi ¼
Nk=N̂k ðhiÞ [ sPS;k > ðsER < sINÞ

0 otherwise

(
ð6Þ

where Nk is the population count in poststratum k (which may include some ineligibles)

and N̂k ¼
P

ðhiÞ[sPS;k>ðsER<sIN Þ
w2hi; i.e., the estimate of the poststratum count based on

eligible responding sample units and the sample units that are known to be ineligible.

3. Variance Estimators

We will study several variance estimators that, in varying degrees, account for the

complexity of the design and the estimator of the total. The variation of the jackknife

studied here is to divide the units within a stratum into random groups and delete one

group at a time. If the initial sample is divided into Gh random groups within each stratum,

then the delete-one-group jackknife is defined as

vJ ¼
h

XGh 2 1

Gh

XGh

g¼1

�
T̂ðhgÞ 2 T̂

	2
ð7Þ

where T̂ðhgÞ is the estimated total based on deleting all initial sample units in group (hg)

and then repeating all weighting steps – base weight calculation, adjustment for

unknown eligibility, nonresponse adjustment, and use of auxiliary data. The total

number of groups is G ¼
P

hGh: If Gh ¼ nh and the groups are disjoint, then (7) is just the

standard delete-one jackknife. Many variants of the grouped jackknife may be used in

practice (see, e.g., Rust and Rao 1996). In the simulations, we will consider only the case

of disjoint random groups formed within each stratum with Gh ¼ �G; i.e., an equal

number of groups per stratum. The union of the groups in a stratum is the initial stratum

sample.

The subsamples created by deleting one group at a time are usually referred to as

replicates. In implementing the jackknife, each group is deleted one at a time to create the
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replicates. This is done without regard to the disposition of the initial unit as a respondent,

a nonrespondent, an unknown, or an ineligible. This procedure is available in WesVarw

(Westat 2000) and SUDAANw (Shah et al., 1996).

Several versions of linearization and related variance estimators might be used when the

basic design is single-stage stratified sampling. Use of some of the choices would simply

be a mistake but could be selected by a naı̈ve user of some software packages. Other

choices might be reasonable if some steps in weighting make small contributions to the

variance. The simplest variance estimator is one that would be appropriate for the Horvitz-

Thompson estimator in a stratified sample selected with varying probabilities and with

replacement (Särndal, Swensson, and Wretman 1992, Expression 2.9.9). If we interpret

the weight w*
hi as the inverse of an adjusted selection probability and add an ad hoc finite

population correction ( fpc) factor, this variance estimator is

vnaive1 ¼
X

h
ð1 2 f h;ER<INÞ

�
nh;ER<IN

nh;ER<IN 2 1

X
i[sh;ER<IN

w*
hiYhi 2

1

nh;ER<IN

X
i[sh;ER<IN

w*
hiYhi


 �2

ð8Þ

where

sh;ER<IN ¼ set of sample eligible respondents and known ineligibles in stratum h,

nh;ER<IN ¼ sample size in stratum h of eligible respondents and known ineligibles, and

f h;ER<IN ¼ nh;ER<IN=Nh:

This estimator is available in SUDAAN using the option DESIGN ¼ STWOR in a

procedure statement, in STATAw (Stata Corporation 2001) using the procedure

svytotal, and in SASw PROC SURVEYMEANS (SAS Institute 2001). Units that are in

sIN (known ineligibles) have their Y values set to zero so that the eligibles are appropriately

treated as a domain. We label this variance estimator “naı̈ve” because it treats the resulting

sample of eligible respondents and ineligibles as a with-replacement sample (but adds an

ad hoc fpc) and ignores the adjustments for unknown eligibility and nonresponse along

with the poststratification step (or other use of auxiliary data).

Another variant would be to exclude the sIN cases and treat sER as a stratified without-

replacement (stwor) sample. This estimator would be

vnaive2 ¼
X

h
ð1 2 f h;ERÞ

nh;ER

nh;ER 2 1

X
i[sh;ER

w*
hiYhi 2

1

nh;ER

X
i[sh;ER

w*
hiYhi


 �2

ð9Þ

where sh,ER, nh,ER, and fh,ER are defined in terms of the set of eligible respondents in

stratum h. This estimator will typically be smaller than vnaive1 since the ineligibles do not

enter the calculation as zeroes. It is possible to compute this estimator in SAS, STATA,

and SUDAAN by restricting the dataset to the eligible respondents only. Arguments can

sometimes be made to condition on achieved sample sizes rather than averaging over all

sizes that could be obtained under a design, in which case vnaive2 might be appropriate.

In this case, we assume that the distribution of the number of sample eligibles is unknown

and, thus, not an ancillary statistic that can be conditioned on.
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The variance estimator that is usually referred to as the linearization estimator is

vL ¼
X

h
ð1 2 f h;ER<INÞ

�
nh;ER<IN

nh;ER<IN 2 1

X
i[sh;ER<IN

w2hirhi 2
1

nh;ER<IN

X
i[sh;ER<IN

w2hirhi


 �2

ð10Þ

where rhi ¼ Yhi 2 Ŷhi with Ŷhi ¼ x0
hiB̂; B̂ ¼ A21

P
ðhiÞ[sER<IN

w2hixhiYhi=vhi; and w2hi is the

weight for unit i after adjustment for unknown eligibility and nonresponse. Although vL

uses a residual, rhi, appropriate to the GREG, it can have poor conditional properties since

the w2hi weights are used rather than w*
hi (see e.g., Valliant 1993). That is, in samples where

T̂x is not near Tx, vL has a conditional bias.

The jackknife linearization estimator is very similar to (10), but uses the w*
hi weights:

vJL ¼
X

h
ð1 2 f h;ER<INÞ

�
nh;ER<IN

nh;ER<IN 2 1

X
i[sh;ER<IN

w*
hirhi 2

1

nh;ER<IN

X
i[sh;ER<IN

w*
hirhi


 �2

ð11Þ

Use of w*
hi leads to better conditional performance when the ghi are not near 1. This

estimator approximates a jackknife in which the set sER<IN is treated as the initial sample,

which is assumed to be selected with replacement. As in (9), an ad hoc fpc is added in (11).

The jackknife linearization estimator does not make separate adjustments for unknown

eligibility and nonresponse for each replicate.

The special case of vJL that is appropriate for poststratification is available in SUDAAN,

using the POSTWGT and POSTVAR options of some procedures. For poststratification, the

difference between the linearization estimator vL and the jackknife linearization estimator

is that vJL includes a factor ðNk=N̂kÞ
2 for each unit that is in poststratum k. This inclusion

imparts better conditional properties to vJL in samples where Nk=N̂k is not near 1.

Accounting for poststratification does not appear to be possible in STATA v.7 or SAS v.8

unless the user writes his or her own code.

Another, related approximation to the jackknife was derived by Valliant (2002). This

estimator adjusts each weighted residual using a leverage, Dhi ¼ w2hix
0
hiA

21xhi=vhi;

associated with sample unit (hi):

v*
J ¼

X
h
ð1 2 f h;ER<INÞ

X
sh;ER<IN

w*
hirhi

1 2 Dhi

2
1

nh;ER<IN

X
sh;ER<IN

w*
hirhi

1 2 Dhi


 �2

ð12Þ

Since Dhi , 1; v*
J will be larger than vJL, which will typically give higher confidence

interval coverage rates. As the number of eligible respondents and known ineligibles

increases, Dhi ! 0 so that the difference between v*
J and vJL will diminish.

Särndal, Swensson, and Wretman (1992, Expressions 7.2.11 and 7.9.8) give an

estimator of the variance of the GREG based on weighted squared residuals. Adapted to

the situation here their estimator is

vSSW ¼
X

h
ð1 2 f h;ER<INÞ

nh;ER<IN

nh;ER<IN 2 1

X
sh;ER<IN

w*
hirhi

� 2
ð13Þ

Valliant: The Effect of Multiple Weighting Steps on Variance Estimation 7



If the sampling fraction is small, the sample is large, and the sample is selected with

replacement, then vSSW is about the same as the estimator V̂T in Särndal (1996). Since the

stratum mean of the w*
hirhi will be near zero under some reasonable conditions (see e.g.,

Valliant 2002), vSSW and the jackknife linearization estimator vJL will also be very similar.

In the linear regression literature, estimators like vSSW are known as sandwich estimators

and date from Horn, Horn, and Duncan (1975) and White (1982).

A variation on vSSW is had by setting all g-weights to 1, leading to

vp ¼
X

h
ð1 2 f h;ER<INÞ

nh;ER<IN

nh;ER<IN 2 1

X
sh;ER<IN

ðw2hirhiÞ
2 ð14Þ

(see Särndal et al., 1992, Expression 7.9.9). This estimator is very close to the linearization

estimator, vL, in (10) since the stratum mean of w2hirhi will be near zero. Thus, vp has the

same poor conditional properties as vL.

Table 1 summarizes the design and estimation steps accounted for by the different

variance estimators. Only the jackknife vJ explicitly accounts for stratification, unknown

eligibility adjustment, nonresponse adjustment, and use of auxiliary data in estimation.

The linearization estimator, vL, and the estimator vp are shown as partially accounting for

the use of auxiliary data because each uses the appropriate residual but uses the weights

w2hi rather than w*
hi: The only estimator that does not treat eligibles as a domain is vnaive2.

4. Empirical Evaluation

To compare the different variance estimators, we conducted simulation studies using two

populations. The first is a poststratified population similar to ones found in human

populations in which groups of units have different means. The second has a target

variable whose mean depends on a single auxiliary variable, as might be the case in some

business populations.

4.1. Poststratified population

A stratified population, with specifications shown in Table 2, was generated in which

poststratification was appropriate. The population has five design strata and five classes

Table 1. Design and estimation steps accounted for by different variance estimators

Variance
estimator

Stratification Unknown
eligibility
adjustment

Nonresponse
adjustment

Use of auxiliary data
(e.g., poststratification,
regression estimation)

Treatment
of eligibles
as a domain

vJ 3 3 3 3 3

vnaive1 3 3

vnaive2 3

vL 3 partial 3

vJL 3 3 3

v*
J 3 3 3

vSSW 3 3 3

vp 3 partial 3
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that are used as poststrata. The poststrata cut across the strata. The variable Y used in

estimation is a 0-1 Bernoulli variable with means, hk, ranging from 0.1 to 0.5 across the

poststrata. The proportion of the population in each poststratum ranges from 0.30 to 0.12.

For each unit in the population, a poststratum indicator was generated independently of

design stratum membership. Each design stratum has Nh ¼ 1,000 units and the stratum

means, Ph, of Y in the realized population range from 0.243 to 0.259. (The expected value

of Y in each stratum is
P5

k¼1hkNk=N ¼ 0:256: The range of Ph is due to random

variation.) In other words, there is little difference among the design strata in the means

of the estimation variable while there is considerable difference in the poststrata.

Consequently, the use of the poststratified estimator will be effective in reducing

variances.

Parameters in the simulation, shown in Table 3, were the proportion by design-stratum

whose status was known, the proportion eligible among those with known status, and the

proportion responding among those with known status that were eligible. For each unit in

the population Bernoulli random variables were generated with probabilities given in

Table 3 to determine whether a unit had a known status, was eligible, and was a

respondent. This procedure was repeated for every sample that was selected. In addition to

the response probabilities shown in the last line of Table 3, we ran simulations with rates of

0.40, 0.45, 0.50, 0.55, and 0.60 across the design strata. Results were qualitatively similar

to the ones we report here.

Stratified simple random samples (stsrs) of size n ¼ 100; 250, and 500 were selected

without replacement. An equal number of sample units was allocated to each of the five

design strata. Four versions of the grouped jackknife were computed: G ¼ 10; 25, 50, 100.

In each case, the initial sample within each stratum was divided into G/5 random groups.

Note that the combination ðn ¼ 100; G ¼ 100Þ corresponds to the standard delete-one

jackknife. For the variance estimators, other than the jackknife, 4,000 samples were

Table 2. Specifications for the poststratified population

Design stratum or poststratum

1 2 3 4 5

Nh 1,000 1,000 1,000 1,000 1,000
Ph 0.247 0.259 0.256 0.248 0.243
Nk /N 0.30 0.24 0.18 0.16 0.12
hk 0.1 0.2 0.3 0.4 0.5

Table 3. Simulation parameters for the proportions known, eligible, and

responding in the poststratified population

Design stratum

1 2 3 4 5

Known status 0.70 0.75 0.80 0.85 0.90
Eligible 0.70 0.75 0.80 0.85 0.90
Responding 0.60 0.65 0.70 0.75 0.80
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selected for each sample size. Because substantially more computing was needed for the

jackknife, 1,000 stsrs’s were selected for that variance estimator.

The adjustment for unknown eligibility, defined by (1), and the nonresponse adjustment,

defined by (2), were made within each design-stratum. The eligible responding units and

the known ineligible units were then poststratified as shown in (6).

4.2. HMT population

Hansen, Madow, and Tepping (1983) used a population in which Y depended on a single

auxiliary x. In their population EðYjxÞ ¼ 0:4 þ 0:25x and varðYjxÞ ¼ 0:0625x 3=2 with both

x and Y having particular gamma distributions. We generated an HMT population of size

N ¼ 5,000; details of the construction are in HMT (1983). The probability of response was

modeled as logistic. The following function was developed through some experimentation

and led to an average response rate of about 60% in simple random samples and 77% in

probability proportional to x samples:

pðxÞ ¼ {1 þ exp½2ð22:1972 þ 0:3081xÞ	}21

This logistic function with these parameters leads to an increasing probability of response

as x increases. In an establishment survey, for example, this corresponds to units having

more employees being more likely to respond. No ineligibles were used for the simulation

using the HMT population.

The estimator of the population total was the linear regression estimator defined in (5).

Two types of samples were selected: simple random samples selected without replacement

(srswor) and probability proportional to size ( pps) samples where the size was x. We

selected the pps samples by first randomizing the order of the population and then

selecting a systematic pps sample with a random starting point. Samples of size n ¼ 100,

200, and 500 were selected using both srswor and pps. Four versions of the grouped

jackknife were computed: G ¼ 10; 25, 50, 100. In each case, the initial sample was

randomly divided into G groups with each group having n/G units. As for the poststratified

population, 1,000 samples were selected for each sample size for the jackknife. For the

other variance estimators, 4,000 samples were selected.

The nonresponse adjustment, defined by (2), was made within groups formed by sorting

the initial sample based on x. Groups were formed that had about 10 respondents each for

n ¼ 100; 20 respondents when n ¼ 200; and 50 when n ¼ 500:

4.3. Simulation results – ignorable nonresponse

Figure 1 summarizes results for the poststratified population for ignorable nonresponse.

The figure gives columns for the relative bias (relbias) of a variance estimator, coverage of

95% confidence intervals (CI’s), mean half-width of the confidence intervals, and the

standard error of the half-widths. The relbias of a variance estimator v is computed as

100ð�v 2 mseðT̂ÞÞ=mseðT̂Þ where mseðT̂Þ ¼
PS

s¼1ðT̂s 2 TsÞ
2=S: S is the total number of

samples, T̂s is the estimated total from sample s, and Ts is the total of Y for the eligible units

across the whole population. Note that we take the empirical mse as the target for variance

estimation, rather than the empirical variance of T̂: The population total Ts varies from one
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sample to another because the population indicator variables for whether a unit is eligible

were regenerated independently for each sample.

In all the simulations using ignorable nonresponse, the estimates of the totals are

approximately unbiased after adjustment for ineligibility, nonresponse, and use of auxiliary

data through poststratification or linear regression estimation. Thus, the relbiases and

confidence interval coverages reported in this section are unaffected by any bias in the T̂’s.

The 95% confidence interval using a variance estimate v was calculated as T̂s ^ tDF

ffiffiffi
v

p

where tDF is a multiplier from the t-distribution with DF degrees of freedom, and DF is

the degrees of freedom associated with v. The half-width of an interval is tDF

ffiffiffi
v

p
: For the

jackknife variance estimates, we used DF ¼
P

hðGh 2 1Þ ¼ G 2 H: For vnaive2,

we used DF ¼
P

hðnh;ER 2 1Þ ¼ nER 2 H: For the other variance estimators, we used

DF ¼
P

hðnh;ER<IN 2 1Þ ¼ nER<IN 2 H: Use of multipliers from the t-distribution, rather

than 1.96 from the standard normal, makes a considerable difference in the width of

intervals for the jackknife with G ¼ 10 or 25, but is less important for the other variance

estimators.

Fig. 1. Comparisons of the relbias, coverage rates and mean half-widths of 95% confidence intervals, and

standard error of half-widths of different estimators of variance for the post stratified estimator of a total.

Key to row labels: VL ¼ vL ; VJ.L ¼ vJL ; V.Pi ¼ vp ; v.SSW ¼ vSSW ; VJ (G ¼ nnn) ¼ vJ with G ¼ nnn groups ;

V.naive2 ¼ vnaive2 ; VJ.star ¼ vJ
*; V.naive1 ¼ vnaive1

Table 4. Sample sizes used in estimation in poststratified population

Number of eligible respondents þ
known ineligibles, nER<IN

n Mean Range

100 61.5 (42, 77)
250 153.6 (126, 181)
500 307.2 (270, 345)

Valliant: The Effect of Multiple Weighting Steps on Variance Estimation 11



Table 4 lists the mean and range of the number of eligible respondents plus known

ineligibles across the samples. There is a substantial reduction from the initial sample size

because of cases that had unknown status or were nonrespondents. Thus, a major source of

variation is the number of sample units used in evaluating both the estimate of the total and

the variance of that estimate.

The variance estimators are sorted in Figure 1 by the relbias obtained for samples of size

n ¼ 100: For n ¼ 100 vL, vJL, vp, and vSSW all have negative biases with the linearization

variance estimator being the worst at 215.7%. The relbiases for the other estimators range

from 8.4% for vJ ðG ¼ 10Þ to 20.4% for vJ ðG ¼ 100Þ: The full delete-one jackknife, thus,

has the largest relbias when n ¼ 100: The biases diminish for n ¼ 250 and 500 although

the pattern persists of negative biases for vL, vJL, vp, and vSSW and positive biases for the

other variance estimators.

Underestimation by vL, vJL, vp, and vSSW leads to CI’s that cover at less than the nominal

rate. When n ¼ 100; the coverage rate with these choices is at most 92%. For n ¼ 500

coverage for these estimators is near 95%. For the jackknife choices, overestimation of the

mse does not necessarily lead to overcoverage by the CI’s. When n ¼ 100; 15–20% relbias

produces coverage rates of 93.9% to 94.6% for vJ ðG ¼ 25; 50; 100Þ. The least biased of the

grouped jackknife choices, vJ ðG ¼ 10Þ; has the worst CI coverage at 91.5% for n ¼ 100:

For the two larger sample sizes, vJ ðG ¼ 25; 50; 100Þ all have at least 95% coverage. The

approximate jackknife, v*
J ; performs well, having relbias less than 5% for n ¼ 250 and 500

and having coverage rates of 94.0, 94.9, and 95.2 at the three sample sizes.

The average half-widths and standard errors of the half-widths show some differences

between the variance estimates. Average lengths are somewhat longer for the jackknife

estimates and the related estimate v*
J ; especially for n ¼ 100: Longer intervals are due to

the variance estimates and the multipliers from the t-distribution being larger for the

jackknife estimates. The estimate that stands out for its high variability is vJ ðG ¼ 10Þ:

The stability of the grouped jackknife increases as the number of groups increases – a

phenomenon that is well known among practitioners (see also Wolter 1985, Section 4.2.5).

The estimators, vnaive1 and vnaive2, are theoretically incorrect for the poststratified

estimator but are included here since users of some software packages might select them.

Both are overestimates since each uses the wrong residual for the poststratified estimator.

The relbias of vnaive1 ranges from about 18% at n ¼ 100 to 14.6% at n ¼ 250: Note that

there is no decrease in relbias when moving from n ¼ 250 to n ¼ 500: vnaive2 is smaller

than vnaive1 and is actually less biased because it ignores the fact that the eligibles are a

domain. The positive bias of vnaive1 leads to overcoverage by the confidence intervals,

although the problem is not severe. At n ¼ 250 and 500, for example, the empirical

coverage rate using vnaive1 is 96.4%.

As a point of comparison, we ran the simulations with no unknowns, no ineligibles, and

no nonresponse. Results are shown in Table 5 for n ¼ 100: The outcomes for n ¼ 250

and 500 have similar patterns but the differences among the variance estimators are less

pronounced. There is a difference between the relbiases with and without the complications

of unknowns, ineligibles, and nonrespondents. With these complications the relbiases

generally become more extreme in both the positive and negative directions, but this effect

is larger for the jackknife estimators. For example, the relbias of vJ ðG ¼ 100Þ is 6.25%

without the complications but is 20.45% with them. Of course, much of the difference
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between the two columns in Table 5 is due to the fact that the samples without unknowns,

ineligibles, and nonresponse are the full size of n ¼ 100 while the samples with these

complications average 61.5 respondents plus known ineligibles (see Table 4).

Figure 2 summarizes the results for the HMT population using the linear regression

estimator, defined by (5), along with simple random samples. The same summary statistics

are graphed as in Figure 1-relbias, coverage of 95% coverage, mean half-width of CIs, and

Table 5. Comparison of relbiases for samples of n ¼ 100 from the poststratified population with and without

unknowns, ineligibles, and nonresponse. Results for the grouped jackknife are based on 1,000 samples; results for

the other estimators use 4,000 samples

Relbias (%)

Variance estimator Without unknowns,
ineligibles, nonresponse

With unknowns,
ineligibles, nonresponse

vL 210.16 215.68
vJL 26.27 213.32
vp 26.42 28.85
vSSW 22.36 26.44
vJ ðG ¼ 10Þ 4.68 8.46
vnaive2 – 9.06
vJ ðG ¼ 25Þ 5.27 15.54
v*

J 5.92 16.31
vnaive1 12.21 17.99
vJ ðG ¼ 50Þ 5.79 19.86
vJ ðG ¼ 100Þ 6.25 20.45

Fig. 2. Comparisons of the relbias, coverage rates and mean half-widths of 95% confidence intervals, and

standard error of half-widths of different estimators of variance for the linear regression estimator of a total

in the HMT population. Simple random samples. Key to row labels: VL ¼ vL; V.SSW ¼ vSSW; VJ.star ¼ vJ
*;

VJ (G ¼ nnn) ¼ vJ with G ¼ nnn groups; V.naive1 ¼ vnaive1
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standard error of CI half-widths. For the linear regression estimator, vL ¼ vp sinceP
sER

w2iri ¼ 0; and vSSW ¼ vJL since
P

sER
w*

i ri ¼ 0: The degrees of freedom used for the

CIs were G 2 1 for the grouped jackknife and nER 2 1 for the other estimators. Table 6

lists the mean and range of respondents for the three sample sizes. As in the simulations

using the poststratified population, there is considerable variation in the size of the

simulated samples.

The estimators vLð¼ vpÞ and vSSW ð¼ vJLÞ are negatively biased at n ¼ 100 but the biases

are less than 5%. At n ¼ 200 and 500 these estimators are nearly unbiased. The grouped

jackknife estimators and v*
J are overestimates at all sample sizes, with v*

J having the

smallest positive bias at all three sample sizes. The estimator vnaive1 was again included

because it is easy to select in some survey software packages. It is extremely biased at all

three samples (32.4 to 54.2%) and should not be used in this situation.

Confidence interval coverage is near the nominal 95% for vLð¼ vpÞ and vSSW ð¼ vJLÞ:

The coverage rates for the grouped jackknife vary depending on the number of groups used

and range from 94.5 to 96.3% across the three sample sizes. Although vnaive1 is a severe

overestimate, this results in overcoverage by CIs of only two to three percent. For n ¼ 200;

for example, the relbias is 40.1% but the confidence interval coverage is 97.4%.

Differences in average half-widths are not particularly remarkable. The standard errors of

half-widths are clearly smaller for vLð¼ vpÞ; vSSW ð¼ vJLÞ; and v*
J : The leverage-adjusted

estimator v*
J is again one of the better choices since it combines small positive bias, good

confidence interval coverage, and CI widths that are not too variable.

Figure 3 shows the results for the pps samples. When n ¼ 100; vL and vSSW have

negative biases of 217.1 and 213.7%; their bias remains negative but approaches zero

for the larger sample sizes. The grouped jackknife estimators all have positive biases that

diminish with increasing sample size. When n ¼ 100, the biases range from 33.2 for

vJ ðG ¼ 50Þ to 52.2% for vJ ðG ¼ 100Þ; and the range is 13.1–14.9% when n ¼ 500:

Notice that at the smallest sample size, the full delete-one jackknife, vJ ðG ¼ 100Þ; has the

largest bias, which was also true for the n ¼ 100 srswor samples from HMT and the

n ¼ 100 stsrs samples from the poststratified population. As in the other simulations, v*
J is

conservative but its positive bias is not so large as for the grouped jackknife estimators.

Underestimation by vL and vSSW leads to undercoverage by the confidence intervals,

especially at n ¼ 100: The grouped jackknife estimators have better CI coverage for

n ¼ 100 and 200, which is obtained at the cost of overestimation. The empirical coverage

of v*
J is again near the nominal 95% at all sample sizes. As might be expected, vL and vSSW

Table 6. Sample sizes used in estimation in the HMT population

Number of respondents
—srswor samples

Number of respondents
—pps samples

n Mean Range Mean Range

100 59.1 (43, 76) 77.1 (62, 90)
200 118.4 (92, 142) 154.2 (131, 175)
500 296.0 (258, 335) 385.8 (348, 417)
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give the shortest and most stable interval lengths at all sample sizes while v*
J is

intermediate in width and stability.

We also ran the pps simulations with complete response. Results are shown in Table 7

for n ¼ 100: The biases of the estimators are affected substantially by whether there is

nonresponse. As in the poststratified population, the relbiases with nonresponse generally

become more extreme in both the positive and negative directions. For example, vL is

almost unbiased with full response ðrelbias ¼ 20:49%Þ but its relbias is 217.11% with

nonresponse. The relbias of vJ ðG ¼ 100Þ is 8.44% with full response, but is 52.30% with

Fig. 3. Comparisons of the relbias, coverage rates and mean half-widths of 95% confidence intervals,

and standard error of half-widths of different estimators of variance for the linear regression estimator

of a total in the HMT population. Probability proportional to size samples. Key to row labels:

VL ¼ vL; V.SSW ¼ vSSW; VJ.star ¼ vj
*; VJ (G ¼ nnn) ¼ vJ with G ¼ nnn groups.

Table 7. Comparison of relbiases for pps samples of n ¼ 100 from the HMT population with

and without nonresponse. Results for the grouped jackknife are based on 1,000 samples;

results for the other estimators use 4,000 samples

Relbias (%)

Variance estimator With full response With nonresponse

vL 20.49 217.11
vSSW 2.71 213.67
v*

J 7.41 19.16
vJ ðG ¼ 50Þ 8.83 33.34
vJ ðG ¼ 10Þ 5.43 41.46
vJ ðG ¼ 25Þ 10.46 38.14
vJ ðG ¼ 100Þ 8.44 52.30
vnaive1 23.93 199.00
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nonresponse. The changes are much more extreme than those in Table 5 for the (stsrs,

n ¼ 100Þ samples.

The estimator vnaive1 is extremely biased at all sample sizes for the linear regression

estimator, regardless of whether there is nonresponse, since the residual it uses is incorrect.

For example, the relbiases for n ¼ 100 in Table 7 are 23.93% with full response and

199.00% with nonresponse. Results for vnaive1 were omitted from Figure 3 since its biases

at all sample sizes were so large.

We also conducted simulations using the poststratified population where the

nonresponse was not ignorable. Parameters in Table 3 were used for units with Y ¼ 0;

while units with Y ¼ 1 had response probabilities of 0.9 times the values on the third line

of the table. Other features of the simulations were the same as described earlier. This led

to T̂PS having a bias of 28.82%. Because none of the variance estimators accounts for the

bias of T̂PS; the relbiases were all shifted in the negative direction as compared to those in

the third column of Table 5. Consequently, confidence interval coverage deteriorated as

compared to the simulations with ignorable nonresponse. The grouped jackknife fared

better in this regard since it tends to overestimate the variance. For example, for n ¼ 100

vJ ðG ¼ 100Þ covered 92.4% of the time while the coverage rate for vL was 87.7%. Non-

ignorable nonresponse led to degraded performance by all of the variance estimators and

none of them can be strongly recommended.

5. Conclusion

Two general types of variance estimators used in survey sampling are ones based on

squared residuals, like linearization variance estimators, and replication variance

estimators. The former are computationally less demanding since explicit variance

formulas are evaluated. However, the linearization and related estimators require a

separate derivation for each type of statistic. Special case theory and programming may be

needed if existing software packages do not meet users’ needs.

The replication estimators are more intensive computationally since they involve

repeated calculation of an estimate based on subsamples of the full sample. However, the

computational algorithm is fairly simple in the full-response case: compute the estimate,

no matter how complicated, separately for the full sample and each replicate, and combine

the results using a variance formula appropriate to the replication method. For many types

of (differentiable) estimators no special case theoretical formulas are required.

Theory for the two types of estimators shows that asymptotically there is little

difference in large samples with full response. The basic design-based or model-based

theory does involve some strong assumptions, e.g., the first-stage is selected with

replacement or the first-stage units are independent. More importantly, the possibilities

that there are ineligible units and that some units will not respond are often not considered

when comparing the variance estimators. For the replication variance estimators, there is

literature showing that adjusted data values can be used to create consistent variance

estimators. However, these adjustments may vary depending on the form of the basic

estimator (total, mean, ratio, etc.) and are not included in the commercial software

packages now available.
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In the simulations presented here, the linearization estimators and several other variance

estimators based on squared residuals are underestimates. This problem is considerably

worse when there are ineligible units and ignorable nonresponse, as opposed to full

response, and leads to confidence intervals that cover at less than the nominal rate. The one

exception among the squared-residual estimators is a leverage-adjusted estimator that

approximates the jackknife and tends to be somewhat of an overestimate. The leverage

adjustment does successfully compensate for the weight adjustments for ineligibility and

nonresponse without being excessively conservative.

The contention that replicate estimators are superior to linearization estimators because

they facilitate accounting for various stages of weight adjustment is true but only in a

limited sense. The grouped jackknife estimator, which recomputes weight adjustments for

every replicate, tends to be an overestimate and the degree of overestimation can be

substantial with smaller sample sizes. This overestimation is accompanied by some

overcoverage by confidence intervals, although the excess above the nominal level is

small. Thus, nominal coverage is obtained but at the expense of potentially large

overestimation.

In summary, when there is ignorable nonresponse, the only estimator in this study that

combines reasonably small positive bias with near-nominal confidence interval coverage

is the leverage-adjusted estimator v*
J : Although the linearization and related estimators and

the jackknife estimator may converge to the same value in large samples, the convergence

can be slow and is adversely affected by ineligibility and nonresponse even when the

nonresponse mechanism is ignorable. Plus, the two types of estimators converge to the

desired value from opposite sides, so that neither is ideal. The leverage-adjusted estimator

is only slightly more complicated to calculate than a linearization estimator and is much

less computationally burdensome than a replication estimator. Of course, no simulation

study can cover all possibilities. However, the populations and steps in weighting

adjustment used here are realistic, and we expect these findings will be germane to a

variety of surveys.
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