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Microaggregation is one of the most important statistical disclosure control techniques for
continuous microdata. Observations in a data set are grouped and replaced by their
corresponding group means, so that identification of sensitive observations is unlikely.
However, microaggregation is also known to affect the results of statistical analyses. In this
article we investigate the impact of microaggregation on the least squares estimation of a linear
model in continuous variables. It is shown that least squares estimators are not necessarily
consistent if the groups of observations are formed by means of a sorting variable. Using this
result, we develop a consistent estimator that removes the aggregation bias. Moreover, we
derive the asymptotic covariance matrix of the corrected least squares estimator.
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1. Introduction

A problem statistical offices are increasingly faced with is guaranteeing the confidentiality

of respondents when releasing microdata sets. This problem is usually solved by

anonymizing confidential data with the help of disclosure control techniques. One of the

most important disclosure control techniques for continuous data is microaggregation, a

method where observations are grouped and replaced by their respective group means

(Defays and Nanopoulos 1993; Defays and Anwar 1998; Domingo-Ferrer and Mateo-Sanz

2002). Each group is forced to contain a minimum number of at least K observations.

Thus, as each observation in the microaggregated data set appears at least K times,

observations cannot be identified, and the disclosure risk of the anonymized data is kept

low. This concept, which is commonly referred to as “K-anonymity” (Samarati 2001;

Sweeney 2002), is one of the key concepts of modern data protection and has recently been

extended by Machanavajjhala et al. (2006) and Li et al. (2007).

In the literature, various suggestions have been made as to how to form the groups for

microaggregation (Defays and Nanopoulos 1993; Defays and Anwar 1998; Mateo-Sanz

and Domingo-Ferrer 1998; Domingo-Ferrer and Mateo-Sanz 2002; Laszlo and Mukherjee

2005; Domingo-Ferrer et al. 2006; Solanas et al. 2006; Solanas and Martinez-Balleste

2006; Domingo-Ferrer et al. 2008). We consider one of the most popular microaggregation

techqniques, namely microaggregation by single-axis sorting (Mateo-Sanz and Domingo-

Ferrer 1998). With this technique, the observations in a data set are first sorted by a
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prespecified sorting variable (such as the first principal component projection of the data or

the sum of z-scores). The sorted data set is then subdivided into small groups consisting of

K consecutive observations each.

While microaggregation has turned out to be an effective tool for protecting sensitive

observations in a data set (Ronning et al. 2005; Lenz 2006, Section 8), the technique also

affects the results of statistical analyses. This is particularly true for microaggregation

by single-axis sorting: Empirical analyses and simulation studies have shown that

parameter estimates might be biased and/or less efficient if computed from the

microaggregated data (Schmid and Schneeweiss 2005). Investigating the impact of

microaggregation on the results of statistical analyses is thus an important task, as the

release of microaggregated data sets only makes sense if statistical analyses based on these

data sets are analytically valid.

In this article we carry out a theoretical analysis of the effect of single-axis sorting on

the least squares (LS) estimation of a linear model in continuous variables. The starting

point of the article is the work of Schmid et al. (2007), who considered the case where the

dependent variable in the linear model is used as the sorting variable. Schmid et al. have

shown that in this case the LS estimator of a linear model is asymptotically biased but

can be corrected such that the estimation procedure becomes consistent. In the following,

we will generalize the results of Schmid et al. (2007) to the case where an arbitrary

sorting variable H is used for microaggregation. Considering the case of an arbitrary

sorting variable H instead of the dependent variable of the linear model is important

because data holders often use sorting variables which are linear combinations of the

variables contained in a data set (such as the first principal component projection) or even

sorting variables which are not contained in the linear model at all. As a consequence, the

results derived in this article can be more widely applied than the results presented in

Schmid et al. (2007).

We will first derive the asymptotic properties of the standard LS estimators when

applied to a data set that has been microaggregated with respect to H. After having shown

that the LS estimators are asymptotically biased, we will develop a new estimation

procedure that corrects for the bias, leading to a consistent estimator of the linear model.

The asymptotic covariance matrix of the corrected LS estimator of the slope parameter

vector b will also be derived.

Section 2 starts with a brief description of microaggregation by single-axis sorting.

In Section 3 we derive theoretical results on the effect of this technique on the LS

estimation of a linear model. Furthermore, a method for correcting the aggregation bias is

developed. Section 4 deals with the asymptotic covariance matrix of the corrected LS

estimator. Section 5 contains a simulation study on the results derived in Sections 3 and 4.

A summary of the article is given in Section 6.

2. Microaggregation by Single-axis Sorting

An obvious question arising from the concept of K-anonymity is how to form the groups

that are used for microaggregation. Clearly, disseminating the group means instead of the

original data values will almost always result in a loss of information. In the context of

microaggregation it is common to use the trace of the empirical within-group covariance
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matrix as a measure of information loss (see Domingo-Ferrer and Mateo-Sanz 2002). This

implies that the optimal partition of the data consists of “homogeneous” groups of at least

K observations each, where the data values in each group deviate as little as possible from

the corresponding group means.

Since finding the optimal partition has proved to be NP-hard if there are more than two

variables in a data set (Oganian and Domingo-Ferrer 2001), a variety of heuristic

microaggregation techniques have been proposed in the literature. Some of these

techniques, such as nonhierarchical K-partitioning (Defays and Nanopoulos 1993) and

microaggregation based on Euclidean distances (Domingo-Ferrer and Mateo-Sanz 2002),

work with a fixed group size K. On the other hand there are a number of microaggregation

techniques that result in variable-sized groups with minimum cardinality K. These

techniques, which are termed “data-oriented microaggregation techniques,” include

K-Ward microaggregation (Domingo-Ferrer and Mateo-Sanz 2002), MST partitioning

(Laszlo and Mukherjee 2005), microaggregation based on genetic algorithms

(Solanas et al. 2006), multivariate extensions of the Hansen-Mukherjee method for

optimal one-dimensional microaggregation (Hansen and Mukherjee 2003; Domingo-

Ferrer et al. 2006), variable-size MDAV (Solanas and Martinez-Balleste 2006), and the

m-Approximation algorithm (Domingo-Ferrer et al. 2008). Microaggregation techniques

with variable-sized groups usually result in a close approximation of the optimal partition

of a data set. However, their computational cost is typically higher than the cost of

fixed-size microaggregation techniques.

In this article we consider microaggregation by single-axis sorting (Mateo-Sanz and

Domingo-Ferrer 1998), which is one of the most popular and computationally most

efficient microaggregation techniques. Single-axis sorting microaggregation uses a fixed

group size K, as well as a prespecified sorting variable for partitioning the observations in a

data set. The technique works as follows: First, the data set is sorted with respect to the

sorting variable. After a fixed group size K has been chosen, the sorted data set is

subdivided into small groups consisting of K consecutive observations each. If the sample

size n is not a multiple of K, it is a common strategy to assign K þ mod(n/K) observations

to the group around the median of the sorting variable. In the following, we assume that the

sample size n is a multiple of K (the asymptotic results presented in Sections 3 and 4 are

not affected by a slightly larger “median” group containing K þ mod(n/K) observations).

After the groups have been formed, the data in each of the n/K groups are averaged, and

the averages are assigned to the observations of the respective groups. In practice, K is

usually chosen to be 3 or 5. The sorting variable should be chosen such that it reflects the

multivariate structure of the data set. This requirement ensures that groups of consecutive

observations are homogeneous, so that the loss of information due to averaging the data is

kept small.

Microaggregation is most often used as a disclosure control technique for continuous

data, so we exclusively consider continuous data sets in this article (disclosure control

techniques for discrete data can be found in e.g., Willenborg and de Waal 2001 and Doyle

et al. (2001); microaggregation techniques for discrete data have been developed by

Domingo-Ferrer and Torra (2005)).

As an example of single-axis sorting we consider a data set with six observations and

three variables X1, X2, and Y:
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Assume the sorting variable H to be the first principal component projection based on

the correlation matrix of the data and set K ¼ 3. Then the data values of H are given by

h ¼ ð20:38; 0:20; 0:54; 2:16;21:32;21:20Þ. Sorting with respect to H yields the sorted

data set

and the microaggregated data set

3. Consistent Estimation of the Parameters of a Linear Regression Model

3.1. Notation

We consider the effect of single-axis sorting on the LS estimation of the linear regression

model

Y ¼ b0 þ b1X1 þ · · ·þ bpXp þ 1 ð1Þ

Y denotes the continuous response variable with variance syy. X1 , : : : ,Xp denote the

continuous regressors with variances s11,: : : ,spp, respectively, and 1 denotes the random

error with zero mean and variance s2
1. b0 is the intercept and b :¼ ðb1; : : :; bpÞ

0 is the

vector of slope parameters in Model (1). Further consider a continuous random variable H

with variance shh. We assume Y, X1, : : : ,Xp, and H to be jointly normally distributed.

Then 1 is also normally distributed and is independent of (X1, : : : ,Xp). The objective is to

estimate b and s2
1 from an i.i.d. sample with n observations ( yv, xv1 , : : : , xvp),

v ¼ 1 , : : : , n, that has been microaggregated with respect to the sorting variable H. As

noted before, we assume that n is a multiple of the group size K.

Let y :¼ ð y1; : : : ; ynÞ
0 and xi :¼ ðx1i; : : : ; xniÞ

0; i ¼ 1; : : : ; p, contain the original data

values. Further let h :¼ ðh1; : : : ; hnÞ
0 contain the original data values of H. The vectors

containing the aggregated data are denoted by ~y, ~x1; : : : ; ~xp, and ~h. Note that the empirical

means �y; �x1; : : : ; �xp; �h of y; x1; : : : ; xp; h are the same as the empirical means

ȳ̃, x̄̃1 , : : : , x̄̃p, h̄̃ of ~y; ~x1; : : : ; ~xp; ~h, respectively.

x1 2.00 1.00 5.00 9.00 3.00 4.00
x2 1.00 3.00 4.00 2.00 8.00 6.00
y 2.00 7.00 6.00 8.00 3.00 1.00

x1,sort 3.00 4.00 2.00 1.00 5.00 9.00
x2,sort 8.00 6.00 1.00 3.00 4.00 2.00
ysort 3.00 1.00 2.00 7.00 6.00 8.00
(hsort) (21.32) (21.20) (20.38) (0.20) (0.54) (2.16)

~x1 3.00 3.00 3.00 5.00 5.00 5.00
~x2 5.00 5.00 5.00 3.00 3.00 3.00
~y 2.00 2.00 2.00 7.00 7.00 7.00
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Throughout this article we use the following notations: The covariance of two arbitrary

random variables U and V is denoted by suv and the variance of U by suu ¼ s2
u.

IfW :¼ ðW1; : : : ;WpÞ
0 is a vector of random variables, the column covariance vector with

elements swiu; i ¼ 1; : : : ; p, is denoted by swu. The covariance matrix of W is denoted

by Sww. In caseW ¼ ðX1; : : : ;XpÞ
0, we use the abbreviations sij :¼ sxixj and siu :¼ sxiu.

The corresponding empirical concepts for the n-tupels u ¼ ðu1; : : : ; unÞ
0,

v ¼ ðv1; : : : ; vnÞ
0, and wi ¼ ðw1i; : : : ;wniÞ

0, i ¼ 1; : : : ; p, are the empirical covariance

of u and v: suv :¼ 1=n
Pn

n¼1 ðun 2 �uÞðvn 2 �vÞ, the empirical variance of u: s2u :¼ suu, the

empirical covariance vector swu with elements swiu
, and the empirical covariance matrix

sww with elements swiwj
. In case wi ¼ ðx1i; : : : ; xniÞ

0, the abbreviations sij :¼ sxixj and

siu :¼ sxiu are used.

The corresponding expressions for microaggregated data are denoted by a tilde on top

of u and v. For example, the empirical covariance of the n-tupels ~u ¼ ð~u1; : : : ; ~unÞ
0 and

~v ¼ ð~v1; : : : ; ~vnÞ
0 containing the microaggregated values of u and v, respectively, is

denoted by s~u~v. We also use the abbreviations s~xi ~xj ¼: s ~i~j and s~xi ~y ¼: s ~i~y. Finally, we

denote the probability limits (n ! 1) of s~u~v, s ~w~u, and S ~w ~w by s~u~v, s ~w~u, and S ~w ~w,

respectively.

3.2. Examples of Sorting Variables

Due to the joint normality of Y ;X1; : : : ;Xp, and H, the sorting variable can be expressed

as

H ¼ cyY þ c1X1 þ · · ·þ cpXp þ w ð2Þ

where c :¼ ðcy; c1; : : : ; cpÞ
0 is a vector of coefficients and w is a normally distributed error

variable with zero mean that is independent of Y ;X1; : : : ;Xp. (Alternatively, it could have

been assumed in Section 3.1 that (2) holds and that Y ;X1; : : : ;Xp are jointly normally

distributed. This would imply the joint normality of Y ;X1; : : : ;Xp, and H).

In practice, the sorting variable will most often be a linear combination of the variables

in Model (1), implying that w ; 0. Popular choices for the sorting variable include (1) the

dependent variable Y (where w ; 0, cy ¼ 1, c1 ¼ : : : ¼ cp ¼ 0), (2) a regressor Xi (where

w ; 0, cy ¼ 0, c1 ¼ : : : ¼ ci21 ¼ 0, ci ¼ 1, ciþ 1 ¼ : : : ¼ cp ¼ 0), (3) the first principal

component projection of Y;X1; : : : ;Xp (where w ; 0 and c is the eigenvector associated

with the largest eigenvalue of the covariance or correlation matrix of Y;X1; : : : ;Xp),

(4) the sum of z-scores of the variables in the linear model (where w ; 0, cy ¼ s21=2
yy ,

c1 ¼ s
21=2
11 ; : : : ; cp ¼ s21=2

pp ), and (5) an arbitrary variable H which is included in the

original data set (and possibly also in the released data set) but not in the linear regression

model (1) (in this case, typically, w – 0).

Concerning the effect of single-axis sorting on the LS estimation of Model (1), the

following results have been derived in the literature: The LS estimator of b is unbiased if a

regressor (or any function that solely depends on the regressors) is used as the sorting

variable (Feige and Watts 1972). By contrast, if the dependent variable Y is used as the

sorting variable, the LS estimator of b is asymptotically biased (Schmid et al. 2007).

Schmid et al. also derived a consistent estimator of b that corrects for the aggregation bias.
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In the following sections we generalize these results to the case where an arbitrary sorting

variable H is used for single-axis sorting.

3.3. Consistent Estimation of b

We focus on the estimation of the vector of genuine regression coefficients

b ¼ ðb1; : : :;bpÞ
0. When we know how to estimate b consistently, it will be clear how

to estimate b0 and s2
1 as well. We denote the least squares estimator of b by ~b, which

is given by

~b :¼ S21
~x~x s~x~y ð3Þ

In order to study the bias of b̃ and to construct a consistent estimator of b, we need the

following lemma:

Lemma 1. Consider the set of inverse linear regressions

Xi ¼ ai þ giH þ di; i ¼ 1; : : : ; p ð4Þ

Y ¼ ay þ gyH þ dy ð5Þ

with E(di) ¼ 0, i ¼ y, 1, : : : , p. Then the following probability limits exist:

aÞ
n!1
plims~h~h ¼ shh

bÞ
n!1
plims~x~h ¼ sxh

cÞ
n!1
plim s~y~h ¼ syh

dÞ
n!1
plim S~x~x ¼ S~x~x ¼

1

K
Sxx þ 12

1

K

� �
sxhs

0
xh

shh

eÞ
n!1
plim s~x~y ¼ s~x~y ¼

1

K
sxy þ 12

1

K

� �
syh

shh

sxh

Proof. As H is a sorting variable related to Y;X1; : : : ;Xp by the linear regression

Models (4) and (5), Lemma 1 follows directly from Lemma 1 in Schmid et al. (2007).

The basic idea of the proof is to decompose the variances/covariances computed from the

original data into the variances/covariances between the groups (which are equal to the

variances/covariances computed from the aggregated data) and the variances/covariances

within the groups. Relations a) to c) can then be derived by showing that the latter

expressions converge to zero in probability as n ! 1. The probability limits in d) and

e) can be derived with the help of the inverse regressions (4) and (5), which exist because

of the joint normality of Y ;X1; : : : ;Xp, and H. The key role of (4) and (5) in the proof

of d) and e) is understandable when one remembers that microaggregation with respect to

a regressor – and in (4) and (5), H is the regressor variable – does not result in any bias of

the LS estimator (Feige and Watts 1972). A

With Lemma 1, the probability limit of ~b and hence its asymptotic bias can

be determined:
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Theorem 1. Under the assumptions of Section 3.1, the probability limit of the LS

estimator ~b of the parameter vector b in Model (1) is given by

~b :¼
n!1
p lim ~b

¼ S
21
xx 2 S

21
xx

ðK 2 1Þ=shhsxhs
0

xh

1þ ðK 2 1Þ=shhs
0

xhS
21
xx sxh

S
21
xx

 !
sxy þ

K 2 1

shh

syhsxh

� �
ð6Þ

Proof. Define a :¼ ðK 2 1Þ=shh. By Lemma 1 and from the definition of b̃ in (3), it

follows that

~b ¼ S
21
~x~x s~x~y ¼ ðSxx þ asxhs

0
xhÞ

21ðsxy þ asyhsxhÞ

¼ S
21
xx 2 S

21
xx

asxhs
0

xh

1þ as
0

xhS
21
xx sxh

S
21
xx

 !
ðsxy þ asyhsxhÞ

ð7Þ

which proves the theorem. Note that in order to obtain (7), we used the Sherman-Morrison

matrix inversion formula (cf. Dhrymes 1984, Corollary 5). A

Using b ¼ S
21
xx sxy, it follows from (7) that

~b ¼ bþ asyhS
21
xx sxh 2

as
0

xhS
21
xx sxy

1þ as
0

xhS
21
xx sxh

S
21
xx sxh 2

a2syhs
0

xhS
21
xx sxh

1þ as
0

xhS
21
xx sxh

S
21
xx sxh

¼ bþ
aðsyh 2 s

0

xhS
21
xx sxyÞ

1þ as
0

xhS
21
xx sxh

S
21
xx sxh

ð8Þ

From (8) we obtain the important result that the LS estimator ~b is not necessarily a

consistent estimator of b. As expected, in case of the nonaggregated data (i.e., K ¼ 1), the

asymptotic bias of ~b is equal to 0. In addition, if H is uncorrelated with 1 (which is the case

if one of the regressors or a function of the regressors is the sorting variable), we have

syh ¼ b 0sxh. Thus, in this case, the numerator in (8) becomes

a syh 2 s
0

xhS
21
xx sxy

� �
¼ a b 0sxh 2 s

0

xhb
� �

¼ 0 ð9Þ

implying that the LS estimator ~b is a consistent estimator of b. This result confirms the

work of Feige and Watts (1972), who showed that ~b is an unbiased estimator if H is equal

to one of the regressors (or a function of the regressors). Similarly, the bias term in (8)

disappears if sxh ¼ 0, i.e., if the sorting variable H is independent of the regressors

X1; : : : ;Xp.
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Finally, from (8), a consistent estimator of b based on the aggregated data can be

constructed:

Theorem 2. Under the conditions of Theorem 1, a consistent estimator of b based on the

microaggregated data is given by

~bc :¼ ~bþ
ðK 2 1Þ s

0

~x~h
S21
~x~x s~x~y 2 s~y~h

� �
Ks~h~h 2 ðK 2 1Þs

0

~x~h
S21
~x~x s~x~h

S21
~x~x s~x~h ð10Þ

Proof. We start from b ¼ S
21
xx sxy and replace Sxx by

Sxx ¼ KS~x~x 2 ðK 2 1Þ
sxhs

0

xh

shh

� �
ð11Þ

from Lemma 1d). In addition, we replace sxy by

sxy ¼ Ks~x~y 2 ðK 2 1Þ
syh

shh

sxh

� �
ð12Þ

from Lemma 1e). This yields

b ¼ KS~x~x 2 ðK 2 1Þ
sxhs

0

xh

shh

� �21

Ks~x~y 2 ðK 2 1Þ
syh

shh

sxh

� �

¼
1

K
S
21
~x~x þ a

1

K
S
21
~x~x sxhs

0

xh

1

K
S
21
~x~x

12
a

K
s

0

xhS
21
~x~x sxh

0
B@

1
CAðKs~x~y 2 asyhsxhÞ

¼ ~b2
a

K
syhS

21
~x~x sxh þ

a

K

s
0

xhS
21
~x~x s~x~y

12
a

K
s

0

xhS
21
~x~x sxh

S
21
~x~x sxh

2
a2

K 2

syhs
0

xhS
21
~x~x sxh

12
a

K
s

0

xhS
21
~x~x sxh

S
21
~x~x sxh

¼ ~bþ
ðK 2 1Þ s

0

xhS
21
~x~x s~x~y 2 syh

� �
Kshh 2 ðK 2 1Þs

0

xhS
21
~x~x sxh

S
21
~x~x sxh ð13Þ

where ~b ¼ S
21
~x~x s~x~y was used. According to Lemma 1, shh, sxh, and syh can be consistently

estimated by s~h~h, s~x~h, and s~y~h, respectively. A consistent estimator ~bc is thus given by

~bc ¼ ~bþ
ðK 2 1Þ s

0

~x~h
S21
~x~x s~x~y 2 s~y~h

� �
Ks~h~h 2 ðK 2 1Þs

0

~x~h
S21
~x~x s~x~h

S21
~x~x s~x~h ð14Þ

A

Note that the computation of (10) requires the aggregated data values of the sorting

variable H to be known to the data users. This either implies that data holders provide the

aggregated data values of H or that ~h can be reconstructed from the aggregated data values
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~y; ~x1; : : : ; ~xp. Reconstruction of ~h is, for example, possible for the sorting variables (1) to

(4) presented in Section 3.2: Since these sorting variables are exact linear combinations of

X1, : : : ,Xp, and Y, the data values of H can be reconstructed from ~y; ~x1; : : : ; ~xp and from

the coefficients cy , c1, : : : , cp:

~h ¼ cy ~yþ c1 ~x1 þ · · ·þ cp ~xp ð15Þ

It can be seen from (15) that data users only have to know (or estimate) the values of the

coefficients cy, c1, : : : ,cp instead of the full vector ~h. Consequently, if one of the variables

in the linear model is the sorting variable (i.e., sorting variables (1) or (2) from Section 3.2

are used), it is sufficient to tell data users which variable has been used to sort the data. As

in this case all coefficients are equal to 0 except one coefficient (which is associated with

the sorting variable and is equal to 1), ~h is equal to the vector of aggregated values of the

variable in the linear model that was used to sort the data. If the first principal component

projection of Y, X1, : : : ,Xp or the sum of z-scores is the sorting variable (i.e., sorting

variables (3) or (4) from Section 3.2 are used), the coefficient vector c can be consistently

estimated from the microaggregated data by solving a system of nonlinear equations

depending on the first and second empirical moments of ~y; ~x1; : : : ; ~xp. For details on how

to reconstruct ~h, see Schmid (2007, Section 4.3.3).

A consistent estimator of the intercept b0 based on the aggregated data is given by

~b0c :¼ ~y� 2 ð~b1c ~x�1 þ · · ·þ ~bpc ~x�pÞ ð16Þ

where ~b1c; : : : ; ~bpc are the elements of ~bc.

Furthermore, from (11) and from a corresponding formula for syy, we obtain a

consistent estimator of the residual variance s2
1 ¼ syy 2 b 0Sxxb based on the aggregated

data:

~s21;c :¼ Ks~y~y 2 ðK 2 1Þ
s2
~y~h

s~h~h

 !
2 ~b

0

c KS~x~x 2 ðK 2 1Þ
s~x~hs

0

~x~h

s~h~h

 !
~bc ð17Þ

4. Asymptotic Covariance Matrix of ~bc

In this section we derive the asymptotic covariance matrix of the corrected estimator ~bc.

The following conventions are used: Two random vector sequences an and bn are said to be

“asymptotically equivalent,” written an , bn, if
n!1
plim

ffiffiffi
n

p
ðan 2 bnÞ ¼ 0. The asymptotic

covariance matrix of a random vector sequence an is said to be “equal to Saa/n” if

n!1
plim an ¼: a1 exists and if

ffiffiffi
n

p
ðan 2 a1Þ converges in distribution to N(0,Saa) as n ! 1.

First note that by (3) and (10)

~bc ¼ Fð~sÞ ð18Þ
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where F is a continuously differentiable function of

~s :¼

vechðS~x~xÞ

s~x~y

s~x~h

s~y~h

s~h~h

0
BBBBBBBB@

1
CCCCCCCCA

ð19Þ

The vector vechðS~x~xÞ contains the lower triangular elements of the symmetric matrix S~x~x.

Denote the probability limit of ~s, which is known from Lemma 1, by ~s. Then

~s ¼

vechðS~x~xÞ

s~x~y

sxh

syh

shh

0
BBBBBBBB@

1
CCCCCCCCA

ð20Þ

The idea is to show that

~s2 ~s , GðsÞ þ D ð21Þ

where G is a continuously differentiable function of the second-order moments

s :¼

vechðSxxÞ

sxy

sxh

syh

shh

0
BBBBBBBB@

1
CCCCCCCCA

ð22Þ

based on the nonaggregated data. The probability limit of ~s is

s :¼
n!1
plim s ¼

vechðSxxÞ

sxy

sxh

syh

shh

0
BBBBBBBB@

1
CCCCCCCCA

ð23Þ

As will be shown, the “residual vector” D is a function of the di’s defined in (4) and (5).

Moreover, as will also be shown, D is asymptotically independent of s. Thus, by

computing the covariance matrices of s and D and by using the delta method, the

asymptotic covariance matrix of ~s can be derived from (21). From (18), by using the delta

method once more, we can finally obtain the asymptotic covariance matrix of ~bc.

To prove (21), we introduce the following fundamental lemma:
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Lemma 2. Consider the inverse linear regression Models (4) and (5), which exist by the

joint normality of Y,X1, : : : ,Xp, andH. Denote the empirical variances and covariances of

the non-aggregated and aggregated data values of di and dj , i, j, ¼ y, 1, : : : , p, by sdidj and

s ~di ~dj
, respectively. Then the following relations hold for i, j, ¼ y, 1, : : : , p:

aÞ s~i~h 2 sih , sih 2 sih

bÞ s~h~h 2 shh , shh 2 shh

cÞ s~i~j 2 s~i~j ,
1

K
ðsij 2 sijÞ þ 12

1

K

� �
sihsjh

shh
2

sihsjh

shh

� �
þ s ~di ~dj

2
1

K
sdidj

� �

Proof. As H is a normally distributed random variable related to Y,X1, : : : ,Xp by

the inverse linear regressions (4) and (5), Lemma 2 is a direct consequence of Lemma 2

in Schmid et al. (2007). Again, the variances/covariances computed from the original

data can be decomposed into the variances/covariances between the groups (which are

equal to the variances/covariances computed from the aggregated data) and the

variances/covariances within the groups. Relations a) to c) can then be derived by

multiplying the variance/covariance components with
ffiffiffi
n

p
and by analyzing the probability

limits of the differences between the left-hand sides and the right-hand sides of a) to c).

For a detailed proof we refer to Schmid et al. (2007) and Schmid (2007). A

Lemma 2 can be used to define the elements of D: Let

Sd;xx :¼ s ~di ~dj
2

1

K
sdidj

� �
i; j¼1; : : : ; p

ð24Þ

sd;xy :¼ s ~di ~dy
2

1

K
sdidy

� �
i¼1; : : : ; p

ð25Þ

Then

D :¼

vechðSd;xxÞ

sd;xy

0

0
BB@

1
CCA ð26Þ

where 0 is a ( p þ 2)-dimensional vector of zeros. From Lemma 2 and from the definition

of the elements of D, it is now clear that Equation (21) holds: The function G is implicitly

given by the right-hand sides of the relations a), b), and c) of Lemma 2, but without the

term s ~di ~dj
2 1=Ksdidj . We next show that G(s) and D are asymptotically independent and

that the asymptotic covariance matrix of D can be evaluated:

Lemma 3. Under the conditions of Lemma 2:

a) Let s and s be as in (22) and (23). Then the vector
ffiffiffi
n

p
ðD 0; ðs2 sÞ0Þ is asymptotically

normally distributed. Moreover, the vectors D and s are asymptotically independent.
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b) Let Dij :¼ ðs ~di ~dj
2 sdidj=KÞ, i, j ¼ y, 1, : : : , p. Then the asymptotic covariance of Dij

and Dlm, i, j, l, m ¼ y, 1, : : : , p, is given by

sDijDlm
:¼

1

n

K 2 1

K 2
ðsdidlsdjdm þ sdidmsdjdlÞ ð27Þ

Proof. Lemma 3 follows directly from Lemma 3 in Schmid et al. (2007), where H was

set equal to the (normally distributed) dependent variable Y. As Y is related to X1, : : : ,Xp

in the same way as H is related to Y,X1, : : : ,Xp (see (2)), the same proof techniques as in

Schmid et al. (2007) can be applied. For details on the proof we refer to Schmid et al.

(2007) and Schmid (2007). A

With the help of Lemma 3, the covariance matrix ofD (denoted by SD) can be evaluated.

Note that the elements of SD corresponding to the zero subvector of D are equal to 0.

By applying the delta method, we obtain from (21) and from Lemma 3 that

cov ð~sÞ ¼ DG cov ðsÞD
0

G þ SD ð28Þ

where DG is the Jacobian of G(s) evaluated at
n!1
plims ¼ s.

The covariance matrix of s in (28) can be derived as follows: Denote the covariance

matrix of (Y,X1, : : : ,Xp,H) by SY,X,H and the empirical covariance matrix of

(Y,X1, : : : ,Xp,H) by SY,X,H. Now, as n·SY,X,H follows a Wishart ( p þ 2, n 2 1,SY,X,H)

distribution, we have

cov ðsij; slmÞ ¼
1

n
ðsilsjm þ simsjlÞ; i; j; l;m ¼ y; 1; : : : ; p; h ð29Þ

(cf. Evans et al. 1993, p. 158).

From (18) and (28), by applying the delta method once more, we finally obtain

Theorem 3. Under the conditions of Lemma 2, the asymptotic covariance matrix of the

corrected estimator ~bc is given by

cov ð~bcÞ ¼ DFðDG cov ðsÞD 0
G þ SDÞD

0
F ð30Þ

where DF is the Jacobian of Fð~sÞ evaluated at ~s. cov ð~bcÞ can be estimated by replacing

. sih, i ¼ y,1, : : : , p, with their consistent estimators s~i~h, i ¼ y,1, : : : , p,

. shh with its consistent estimator s~h~h,

. sdidj , i, j ¼ y,1, : : : , p, with their consistent estimators (see Equation (A.21) in

Schmid 2007)

s ~di ~dj;c
:¼ K s~i~j 2

s~i~hs~j~h

s~h~h

� �
i; j ¼ y; 1; : : : ; p ð31Þ

. sij, i, j ¼ y,1, : : : , p, with their consistent estimators (see (11) and (12))

s~i~j;c :¼ Ks~i~j 2 ðK 2 1Þ
s~i~hs~j~h

s~h~h
i; j ¼ y; 1; : : : ; p ð32Þ

. S~x~x with S~x~x

. s~x~y with s~x~y

Journal of Official Statistics540



5. Finite Sample Behavior of ~bc

In this section we check whether the asymptotic results derived in Sections 3 and 4 hold in

realistic data situations. To this end, a simulation study was carried out using the statistical

software R, version 2.7.0 (R Development Core Team 2008). The model we studied was a

linear regression with two normally distributed regressors X1 and X2. The variance

parameters were s11 ¼ 1, s22 ¼ 4, and s12 ¼ 1, which corresponds to a correlation of 0.5

between the two regressors.

5.1. Bias of ~bc for Finite Samples

To study the bias of ~bc, we took K ¼ 3 (which is the group size commonly used in

practice) and b0 ¼ 0. For simplicity, we kept b2 ¼ 21 fixed. The residual variance s2
1 was

set to 9, which is a rather large value if compared to the values of s11 ¼ 1 and s22 ¼ 4.

Now, for various values of b1, we estimated the bias of ~b ¼ ð~b1; ~b2Þ
0 and

~bc ¼ ð~b1;c; ~b2;cÞ
0 from 1,000 randomly generated data sets ðxn1; xn2; ynÞ, n ¼ 1; : : : ; n.

The sorting variables we used were (1) the first principal component projection using the

empirical correlation matrix of (Y,X1,X2), (2) the sum of z-scores using the empirical

variances of Y, X1, and X2, (3) the dependent variable Y, and (4) the regressor X1.

In Figures 1 to 4, biasð~b1Þ and biasð~b1;cÞ are plotted vs. b1 for n ¼ 150 and n ¼ 600.

Obviously, the finite sample bias of ~b1;c is close to zero if n $ 150. Moreover, it can be

seen from Figures 1 and 3 that the bias of ~b1 does not converge to 0 as n increases. As

expected, the only exception is the case where X1 is the sorting variable (since in this case

Fig. 1. Bias of ~b1 for various sorting variables and n ¼ 150. The dotted lines correspond to the true asymptotic

bias curves
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Fig. 2. Bias of ~b1;c for various sorting variables and n ¼ 150. The dotted lines correspond to the true asymptotic

bias curves (which are equal to zero since ~b1;c is a consistent estimator of b1)

Fig. 3. Bias of ~b1 for various sorting variables and n ¼ 600. The dotted lines correspond to the true asymptotic

bias curves
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~b1 is a consistent estimator of b1). The estimators ~b2 and ~b2;c show a similar behavior as ~b1
and ~b1;c, respectively, but are omitted here due to space limitations.

5.2. Variance of ~bc for Finite Samples

Figures 5 and 6 contain the variances of
ffiffiffi
n

p
~b1;c, which were estimated from the simulated

data for n ¼ 150 and n ¼ 600. Moreover, Figures 5 and 6 show the averages of the

estimated asymptotic variances of
ffiffiffi
n

p
~b1;c, as well as the corresponding true asymptotic

variances. We see that if the sample size is small (n ¼ 150), varð~b1;cÞ is underestimated by

its asymptotic counterpart. For larger sample sizes (n ¼ 600) the asymptotic variance of
~b1;c is a good approximation of the true variance of ~b1;c. The variance of ~b2;c and the

covariance of ~b1;c and ~b2;c show a similar behavior as the variance of ~b1;c but are omitted

here due to space limitations.

6. Summary and Conclusion

We have analyzed the effect of single-axis sorting microaggregation on the least squares

estimation of a linear regression model in continuous variables. In Section 3 we have

shown that the LS estimators of the linear model (computed from the microaggregated

data) are not necessarily consistent estimators of the true model parameters. It is only in

the special case where the sorting variable is a linear combination of the regressors that the

LS estimator of the slope parameter vector b turns out to be consistent. Although

aggregating with respect to a linear combination of the regressors therefore seems to be

Fig. 4. Bias of ~b1;c for various sorting variables and n ¼ 600. The dotted lines correspond to the true asymptotic

bias curves (which are equal to zero since ~b1;c is a consistent estimator of b1)
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more convenient for statistical analysis, it has to be pointed out that data holders usually do

not know before anonymization which variables will later serve as the regressors in a

linear model. Thus, investigating microaggregation with respect to an arbitrary sorting

variable H is a relevant case.

The main result of the article is the development of a corrected estimator that removes

the aggregation bias of the LS estimator of b. We also derived the asymptotic covariance

matrix of the corrected estimator. The simulation study in Section 5 has shown that the

correction procedure already works well if the sample size is moderately high (n $ 150).

It should be noted, however, that the finite sample behavior of the corrected estimator ~bc
also depends on the number of covariates in the linear model (“curse of dimensionality,”

see Aggarwal 2005). For the simulation study p ¼ 2 covariates were used. Further

empirical work conducted by Schmid (2007) suggests that the (finite sample) bias and

variance of ~bc are likely to increase as p gets larger. However, for any value of p, ~bc seems

to perform better than the LS estimator ~b. From a numerical point of view it is possible

that the computation of the corrected estimator may cause problems in some situations,

since it cannot be ruled out completely that the denominator in (10) becomes close to zero.

When computing the corrected estimator from our real-world and simulated data sets,

however, no numerical problems have ever been encountered.

It should further be noted that, in order to prove the results presented in this article, we

assumed the variables in the linear model and the sorting variable to be jointly normally

distributed. This assumption was needed to guarantee the existence of the inverse linear

regression Models (4) and (5), where the independence of the residuals dy, d1, : : : , dp

Fig. 5. Variance of
ffiffiffi
n

p
~b1;c, as estimated from simulation (solid lines: true variances, dashed lines: averages of

the estimated asymptotic variances, dotted lines: true asymptotic variances, n ¼ 150)
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and the sorting variable H was used for deriving the probability limits of the empirical first

and second moments computed from the microaggregated data. Clearly, in many data

situations, the normality assumption is unlikely to hold. For this reason, an analysis of the

robustness of ~bc against deviations from the normality assumption is needed. Empirical

studies presented by Schmid et al. (2007) and Schmid (2007) suggest that skewed and

fat-tailed distributions can indeed lead to an asymptotic bias of the corrected estimator ~bc.

However, small or moderate deviations from normality do not seem to have a large effect

on the behavior of ~bc.

In order to enable data users to carry out the estimation procedure developed in

Sections 3 and 4, data holders are required to provide the aggregated data values of the

sorting variable. In most cases, this requirement will not severely affect the disclosure risk

of a data set, as the K-anonymity of the data will still be guaranteed. If the sorting variable

is a linear combination of the variables in the linear model, data holders only have to

provide the coefficients cy, c1, : : : , cp of this combination. Data users are then able to

reconstruct the aggregated data values of H from cy, c1, : : : , cp and from the

microaggregated data. Moreover, there are special types of sorting variables where

the coefficients cy, c1, : : : , cp can be consistently estimated from the microaggregated data

(see Schmid 2007, Section 4.3.3). Simulations presented in Schmid (2007) suggest that the

additional variance induced by the estimation of cy, c1, : : : , cp is negligible.

A limitation of the correction procedure presented in this article is that it only applies to

a linear model with continuous regressors. If discrete regressors had been included in the

linear model, the following problems would have occurred: (1) As mentioned in Section 2,

discrete variables are usually not microaggregated but anonymized by means of other

Fig. 6. Variance of
ffiffiffi
n

p
~b1;c, as estimated from simulation (solid lines: true variances, dashed lines: averages of

the estimated asymptotic variances, dotted lines: true asymptotic variances, n ¼ 600)
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disclosure control techniques. As a consequence, we would not have been able to analyze

the effect of microaggregation on the LS estimators, but a mixture of effects caused by

bothmicroaggregation and the disclosure control techniques for the discrete data. (2) With

discrete regressors in the model equation, additional assumptions regarding the

distribution of the discrete variables would have been necessary. With these assumptions,

the data would not have been normally distributed any more. As the normality assumption

plays a key role in the proofs of the lemmas in Sections 3 and 4, it will be challenging to

develop a correction procedure for ~b in case of a linear model with both discrete and

continuous regressors.

It should finally be pointed out that single-axis sorting techniques are related to a clearly

specified mathematical model which is based on the theory of order statistics. This model

made it possible to carry out the analytical investigation in Sections 3 and 4. The methods

presented in this article can therefore be regarded as a contribution to the analytical

understanding of microaggregation by single-axis sorting and its effect on statistical

estimation techniques. However, it is not guaranteed that the correction techniques

developed in the article will also work if other microaggregation techniques (such as

iterative techniques with variable-sized groups) are applied to a data set, since the

mathematical assumptions made in this article may not hold if other microaggregation

techniques than single-axis sorting are used. Specifying appropriate mathematical

assumptions for microaggregation techniques with variable-sized groups will therefore be

the basis of an investigation of the effect of these techniques on statistical model estimation.
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