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The Heligman-Pollard Formula as a Tool
for Expanding an Abridged Life Table

Anastasia Kostaki'

Abstract: Proposed in this paper is a new
method of computing a complete life table
from an abridged one. An estimation pro-
cedure is demonstrated for calculating the
one-year probabilities of dying from the
five-year ones given in an abridged life table.
This question is primarily of great interest
when the abridged life table is the only one
that can be constructed on the basis of avail-
able empirical mortality data in a given
country. The main tool of our expansion

1. Introduction

In demography, a common method of com-
pletely describing a country’s mortality
pattern is to present it as a life table. In a
complete life table the data are presented for
every single year of age. An abridged life
table contains data tabulated in wider age
intervals, most often five-year ones, except
for the first five years, which are usually
presented in two intervals, [0, 1) and [1, 5).

There may be two different reasons for
preparing an abridged life table rather than
a complete one. The first reason is that, for
many purposes, an abridged life table is
sufficiently accurate and more convenient to
use. The second is that in countries with
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technique is the Heligman-Pollard formula.
An evaluation of this technique and com-
parisons with two other expansion tech-
niques are also provided here. Used for these
purposes are Swedish national mortality
data for the period 1976-1980 and for both
sexes.
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incomplete and unstable documentation of

. vital statistics, the quality of the data may

not permit computation of a complete life
table.

Thus, it often happens that only an
abridged life table is available when a com-
plete one is needed; hence it is an important
problem to construct a full table, given the
abridged one. A conventional method is to
obtain the values of the survival function
that are missing in the abridged life table
through straightforward polynomial inter-
polation between those values that are given
there. One such method and some other
ones, using more complicated computations,
are reviewed in Section 2. The purpose of
the present paper is to present and evaluate
the new technique. The main tool is an eight-
parameter formula proposed by Heligman
and Pollard (1980), which is described in
Section 3.

In Subsection 4.1, we describe the main
procedure for estimating the one-year
probabilities of dying. It was first presented



312

by Kostaki (1987) and also developed
independently, within the MORTPAK and
MORTPAK-LITE software packages pub-
lished by the United Nations (1988a, 1988b).
In Subsection 4.2, we present a new adjust-
ing procedure which may be applied to the
results of the main expansion technique.
Section 5 illustrates the results of our
applications using Swedish national mortal-
ity data and provides an evaluation of our
technique. Finally, Section 6 provides some
concluding remarks.

2. Conventional Methods for Expanding
an Abridged Life Table

A complete life table can be constructed
with the knowledge of any one of

d_\' b l.\' b q.\'

where d, is the number of deaths in the age
interval [x, x + 1), /. is the number of sur-
vivors at exact age x out of the radix /,, and
g, is the conditional probability of dying in
the age interval [x, x + 1) for a person alive
at age x.

A widely used method of computing a
complete life table having an abridged table
as a starting point is to use interpolation
techniques on the existing survival prob-
abilities /(x). An efficient and extensively
used technique is a six-point Lagrangian
interpolation formula (see Elandt-Johnson
and Johnson 1980). This formula expresses
each nontabulated value of /(x) as a linear
combination of six particular polynomials
in x, each of degree five

6 n (x — ;)
I(x) = 2 (x). 2.1
i=1 n (x; — xj) @1
j#i
Here x, x,,..., x, are the tabular ages

nearest to x. This technique provides good
approximations for adult mortality; however,
it is less accurate for the early childhood
ages.
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An alternative procedure for breaking
abridged life tables into one-year age groups
was developed by Reed. A description of
this procedure is provided by Valaoras
(1984) who used it in order to produce the
official complete life tables for the Greek
male and female populations. This technique
is based on the five-year mortality rates

sdy

sm, =
5 M\'

where ;d, represents the number of deaths in
the age interval [x, x + 5) and M, repre-
sents the mean population of the same ages.
Then, the one-year probabilities of dying ¢,,

412> 417, - - - are calculated by the use of the
approximate formula
_ 2m, 22)
G = 5 o .

In order to estimate the complete set of
q.-values (x > 5), the formula

qx

- = g 4 bx + cx* + dX°
K.\

is used, where a, b, ¢, and d are parameters
to be estimated by least squares using the
calculated one-year probabilities of dying
47,412, G17» - - - . The formula is fitted twice,
first using ¢,, g5, q17, and g, with K =
0.989943 and the fitted model is used to
calculate ¢, for 5 < x < 20. Forx > 25a
new set of estimates of a, b, ¢, and d is cal-
culated using ¢, ¢», ¢s, now with
K = 1.0251234. This model is used to cal-
culate the values of ¢, for x > 25. Finally,
for the ages 21 to 24, a linear combination of
the two fitted equations is used in order to
estimate the one-year ¢, -values:

g = 0.8g5 + 0.2¢5,

g4n = 0.6g5 + 0.4q5,

g» = 0.4g5 + 0.6¢%

G = 0.2¢5 + 0.8¢",,
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where the first and second terms in the right
hand side of the above equations are the
fitted values of ¢, for K equal to 0.989943
and 1.0251234, respectively.

This technique is not adequate for approxi-
mating early childhood mortality (for x < 5)
and its accuracy is poor at the earlier adult
ages as well. Nevertheless, it provides an
effective means of approximating later adult
and senescent mortality.

Recently, Mode and Busby (1982) have
developed a formula which represents the
survival probabilities, /(x), as a parametric
function of age. They determine the values
of /(x) according to the expression

lh(x), 0 < x < 9,

I(x) = { I3 (x — ), 8y < x < 5,
L8 (B — Bg)h(x — B)), x = §,

where

ly(x) = exp (ay(exp (= Byx) — 1))

L(x) = exp(Bl;l? —ox + %(x - y,)3>

L(x) = exp (—ax — By(exp (v2x) — 1)).

Here, /;(x) is the probability that an indi-
vidual is alive at age x, 0 < x < §, and §,
is a positive parameter to be chosen. Further,
li(x — §,) is the conditional probability
that an individual aged §, > 0, is alive at
age x, where §, < x < 9, and §, is a positive
parameter to be chosen. Finally, /,(x — §,)
is the conditional probability that an indi-
vidual who survived to age §, is alive at age
x = 9,.

In addition to the two parameters §, and
d,, the formula contains eight parameters to
be estimated by a nonlinear least-squares
procedure. This formula can be useful for
performing interpolations of abridged life
tables. However, a technical difficulty limits
its use. Attempts made by Mode and Busby
(1982) to estimate the eight parameters sim-
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ultaneously have been unsuccessful. They
propose an alternative estimation procedure.
They start by choosing permissible values of
the two parameters 8, and 3, (§, = 10,
5, = 30), and then they estimate the remain-
ing parameters by the use of a nonlinear
stepwise least-squares procedure, where at
each step at most three parameters are esti-
mated. However, the fact that they empiri-
cally determine the values of the two par-
ameters 9, and &, limits the flexibility of the
model.

3. The Heligman-Pollard Model

A recent attempt to represent mortality over
the course of the entire life span, using a
single analytical expression, has been made
by Heligman and Pollard (1980). The idea
underlying the Heligman-Pollard (H&P)
model is that the causes of death can be
divided into three classes, namely those
affecting childhood, early and middle adult
life, and old age.

The mathematical function H&P suggest
is given by the formula

&=

; A(.\'+B)(' + D exp (—E(ln (X/F))z)

+ GH* 3.1)

where the right hand side is interpreted as
A®C 4+ G for x = 0. Here g, is the model
probability that an individual who has
reached age x will die before reaching age
x + 1, while p, = 1 — ¢,. The quotient
q./p, thus represents the odds that an indi-
vidual of age x will die before he attains age
x + 1. The positive parameters 4, B, C, D,
E, F, G, and H are to be estimated. An
interpretation of these parameters are given
in Heligman and Pollard (1980).

The first term in (3.1), a rapidly decreasing
exponential, reflects the fall in mortality at
the infant and early childhood ages. This
term dominates at these ages, while the
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other two make insignificant contributions
to the total expression. The second term in
(3.1), a function similar to the lognormal
density, reflects the middle life mortality. It
reflects the accident mortality for the male
population as well as the accident and, in
developing countries, puerperal mortality
for the females, often referred to in the
demographic literature as the accident
hump. Finally, the third term in (3.1), an
exponential term as that of Gompertz,
reflects the exponential rise in mortality at
the later adult ages, i.e., at the ages greater
than 40.

Several applications of this formula on a
wide variety of mortality experiences in
Australia (Heligman and Pollard 1980),
in the U.S.A. (Mode and Busby 1982), and
in Sweden (Hartmann 1987) have shown
that the model provides quite a satisfactory
representation of the age pattern of mortal-
ity. In a previous paper (Kostaki 1985), we
applied this formula to Swedish and Greek
national mortality schedules. Also in our
applications the model has proved very
efficient in describing the age pattern of
mortality, providing very close fits to these
mortality experiences.

In order to fit the H&P formula to the
empirical g,-values in a complete life table,
the parameters of the model can be estimated
by least squares. In all the applications men-
tioned above the sum of squares to be mini-
mized has been taken as

£(Z-1)

where §. is the model probability that a
person who has reached age x will die before
reaching the age x + 1, and ¢, is the corre-
sponding empirical quantity. This version of
the classical least-squares procedure has
been proposed by Heligman and Pollard
(1980). The expression (3.2) can also be

3.2)
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regarded as the weighted sum of squares

Z w.\‘(é.\ - q.\')z

where w, = 1/g%.

4. Application of Heligman-Pollard
Model to Expansion of Abridged
Life Tables

4.1. The main procedure

Let us use the notation C for the coefficients
in the H&P formula,

C = (4,B,...,H)

and let us use F(x; C) to denote the right
hand side of the H&P expression (3.1) for
g./p.. Then our technique for expanding
an abridged life table can be described as
follows.

From the model

I = Fx 0

X

@.1)

for the one-year odds of dying, we get

F(x; C

q. = ————( .) 4.2)
1 + F(x; C)
= G(x; O)
say, and hence the relation

n—1
g = 1 =110 —=q.0) (4.3)

i=0

implies the following model for the death
probabilities in the abridged life table

n—1

ndy = I — 1—[ (1 - G(X + i’ C))
i=0

= ,G(x; €)
say, where ,G(x; C) is an explicit but com-
plicated function of C, x, and n.

Given an abridged life table one starts by
estimating C through minimization of

. 2
Z (IIG(X7 C) _ l> -

X n q.\'

4.4
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where the summation is over all relevant
values of x (and where, in fact, n may
depend on x). Then one inserts this C into
the function G (x; C), and takes as expanded
life table the one containing the probabilities
of dying so calculated.

4.2.  An additional adjustment

The one-year probabilities of dying, §,, con-
structed by our expansion procedure can be
described as that set of Heligman-Pollard
probabilities whose corresponding n-year
probabilities

n—1

T- 10 -4 4.5)
most closely approximate those, say ,¢,, in
the abridged life table that was our point of
departure. However, it will not be true that
the quantities (4.5) agree exactly with ,q. . If
that is considered as a drawback, a simple
adjustment can be made.

If, for a certain x, the quantity defined by
(4.5) is, say, smaller than the original ,q,
then ¢, §.y1» - .-, §esn_, are, at least on
the average, too small and it seems natural
to increase them in some way to §., §..,,

. §%in_1 SO as to make

n—1
1 — 1:10 (1 - q~\+1) = nqx- (46)

There are clearly several possible ways of
doing that; the simplest is to choose

Gori = 1= = 4¢)f
where

In(l1 — ,q.
K - a-.4)
> In(l - 4.
i=0

It is a simple matter to check that the §,_; so
defined satisfy (4.6). It is also easy to explain
the rationale behind this particular choice of
adjustment. It amounts to assuming that the
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force of mortality p’(x) underlying the orig-
inal abridged life table is, in each n-year age
interval [x, x + n), a constant multiple, say
Ku(-), of one, say pu(-), of those infinitely
many forces of mortality which produce the
complete life table that we obtained through
our expansion process.

5. Some Comparisons

In order to evaluate our technique, we chose
as a test material the empirical one-year
probabilities of dying ¢,, for the male and
female populations of Sweden, for the
period 1976-1980. The data are taken from
Statistics Sweden (1984).

We started by computing the abridged
»q-values using the formula (4.3). Then we
fitted the H&P model to these ,q.-values.
The sum of squares to be minimized was
(4.4). A nonlinear least squares algorithm
with the capability of approximating numeri-
cally all derivatives was used in order to
estimate the parameters of the model. This
algorithm (EO4FDF), part of NAG library
of computer programs, is based upon a
modification of the Gauss—Newton iteration
procedure. A detailed description of the
algorithm is provided in Gill and Murray
(1978). Displayed in Table 5.1 are the result-
ing parameter estimates.

By inserting these estimates into (4.2) we
calculated the one-year probabilities of
dying. Tables Al and A2 in Appendix illus-

Table 5.1. Parameter estimates

Males Females
A 0.0005893 0.0004600
B 0.0043836 0.0047785
C 0.0828424 0.0801688
D 0.000706 0.000185
E 9.927863 12.968394
F 22.197312 19.515942
G 0.00004948 0.00003236
H 1.10003 1.09534
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Fig. 1.
main expansion technique (solid line)

trate the empirical g .-values (column 1)
and the corresponding calculated §,-values
(column 2), for males and females respect-
ively. The results of our computations are
also presented graphically in Figures 1 and
-2. These results indicate a very close agree-
ment between ¢, and §, in both cases. In the
vast majority of ages, the empirical and the
calculated ¢,-values agree to four decimal
places.

Then, we applied our adjusting procedure
to the §.-values as described in Subsection
4.2. The resulting §'.-values are presented in
column 3 in Tables Al and A2 for males and
females respectively. In Figures 3 and 4, we
illustrate the results of our computations.
Comparing these figures with Figures 1 and
2, we can easily observe that the new adjusted
sets of g.-values show much closer agree-
ment to the empirical g,-values.

40 50 60 70 80 x

Empirical q.-values for Swedish males, 1976-80 (crosses) and computed q.-values,

Let us now apply the standard inter-
polation technique as proposed by Elandt-
Johnson and Johnson (1980) to the empirical
abridged /(x)-values for the same popu-
lations and the same period as before. Using
(2.1), we calculated a complete set of /(x)-
values for each sex. Then, we transformed
these interpolated values of /(x) to prob-
abilities of dying by the use of the formula
q. = 1 — I(x + D/l(x).

The results, denoted ¢\“', L for Lagrange,
are presented in column 4 of Tables Al and
A2, for males and females respectively.
Comparing these values with those obtained
by our main technique, we observe that the
performance of our technique is superior at
the beginning of the age interval, and for the
young adult ages, while for the later adult
ages the Lagrange interpolation gives some-
what better results. This is natural because



Kostaki: Expanding an Abridged Life Table Using the Heligman-Pollard Formula

~1.50 1

log (gx)

-2.00 1

-2.50 1

-3.00 1

-3.50 |

-4.00 1

317

0 10 20 30

40 50 60 70 80 M

Fig. 2. Empirical q.-values for Swedish females, 1976-80 ( crosses) and computed q.-values,

main expansion technique (solid line)

in our technique we estimate the parameters
of the H&P formula through minimization
of (4.4). This sum can also be regarded as
weighted with weights equal to 1/,4%. Thus,
minimizing (4.4) the algorithm takes mostly
into consideration the younger ages, where
the weights are heavier as they correspond
to smaller ,q.-values. However, the perform-
ance of our technique after the additional
adjustment is much superior at the younger
ages and equally good at the later ages.

- Now we turn to Reed’s procedure. The
probabilities of dying, ¢,., (x = 5, 10, ...)
were calculated by means of the approxi-
mative formula (2.2) using the empirical
five-year mortality rates for the same popu-
lations and the same periods as before. Reed’s
procedure was performed, as described
before, for both males and females. The
resulting probabilities of dying, ¢®, R for
Reed, are displayed in Tables Al and A2

(column 5), for males and females respectively.
Comparing these values with those obtained
using our main expansion technique we can
easily observe that our technique gives much
better results for both populations.

One natural criterion for judging the
appropriateness of our expansion technique
is the sum of squares of the relative devi-
ations between the empirical and the cal-
culated ¢, -values

(2-1)

where 4. is the calculated quantity, and ¢, is
the corresponding empirical one. As an
alternative criterion one can also use

3 E

X q\(] - q\)

5.1

where E. is the number of persons exposed
to risk at exact age x, the quantities
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Fig. 3. Empirical q.-values for Swedish males, 1976-80 (crosses) and computed q-values,

after additional adjustment (solid line)

E./(g.(1 — g.)) are equal to the reciprocals
the binomial distribution variances of the
empirical ¢, while ¢, and §, are as before.
The reason for using (5.2) as an alternative
criterion is that the weighted sum in question
takes into consideration mostly those residuals
which correspond to ¢.-values with low
variances, i.e., to those empirical measures
which are least affected by stochastic fluc-

Table 5.2. Goodness-of-fit criteria

tuations. The values of the two goodness-of-
fit criteria are given in Table 5.2. It is easily
seen that the additional adjustment gives
better results than the other three methods.
We shall discuss these comparisons in more
detail.

The values of (5.1) for the Lagrange inter-
polation are equal to 0.969 and 0.876 for
males and females, respectively. These values

Values of (5.1)

Values of (5.2)

Males Females Males Females
for x equal to 0-74 5-74 0-74 5-74 0-74 5-74 0-74 5-74
Main expansion technique 0.410 0.370 0.795 0.684 2069 202.2 521.6 513.5
Additional adjustment 0.197 0.591 82.8 99.7
Lagrange interpolation 0.969 0.876 147.1 86.9
Reed’s technique 1.540 1.928 372.2 = 545.6
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Fig. 4. Empirical q.-values for Swedish females, 1976-80 ( crosses) and computed q.-values,

after additional adjustment (solid line)

are somewhat higher than the correspond-
ing values obtained using our main expan-
sion technique (0.410 for males and 0.795
for females) and much higher than those
obtained after the additional adjustment
being equal to 0.197 and 0.591 for males and
females, respectively. The values of (5.2) for
our main expansion technique (206.9 for
males and 521.6 for females) are higher than
the corresponding values for the Lagrange
interpolation for both sexes. However the
values of (5.2) for the resulting ¢ -values of
our technique after the additional adjust-
ment have been essentially reduced, being
equal to 82.8 for males and 99.7 for females
and thus much lower than the correspond-
ing value (147.1) for Lagrange interpolation
for males and only somewhat higher than
the corresponding value (86.9) for Lagrange
interpolation for females. Turning now to
Reed’s technique, the values of (5.1), for

x = 5, are equal to 1.540 for males and
1.928 for females. These values should be
compared with the values of (5.1) for our
technique, for x > 5, which are much
lower, being 0.370 and 0.684 for males and
females, respectively. The values of (5.2) for
x = 5 are also lower for our expansion
technique, being equal to 202.2 for males
and 513.5 for females, than the correspond-
ing values for Reed’s technique which are

equal to 372.2 and 545.6 for males and

females respectively. These results speak for
the superiority of our technique.

6. Some Concluding Remarks

In this paper we have outlined and demon-
strated a technique for expanding an
abridged life table. This technique provides
a new way to expand a life table through
direct estimation of the complete set of
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probabilities of dying, ¢, having as starting
point the abridged ,g,-values. This is done
in a controlled and specified way using a
formula which efficiently describes the age
pattern of mortality. This might be the main
advantage of our procedure in comparison
with conventional interpolation formulae
applied to tabulated /(x)-values, formulae
which do not take advantage of the fact that
the function to be interpolated is of a special
type, viz., a survivor function.

The additional adjustment applied to
the results of our main expansion technique
has proved very efficient. The resulting g, -
values exhibit a much closer agreement with
the empirical ones than the results of the
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main expansion technique. Nevertheless we
should also mention that the adequacy of
this additional adjustment is in some way
dependent on the quality of the empirical set
of ,q.-values. If this empirical set is incom-
plete or unstable, the g.-values resulting
from the main expansion technique might
be more accurate in the sense that they are
free from irregular fluctuations which affect
the empirical measures and therefore more
precise and realistic, the real mortality under-
lying the observations being a smooth curve.

A technical point that is worth empha-
sizing is that the procedure can easily be
carried out by the use of a well-known NAG
algorithm.
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Appendix
Table Al. Swedish mortality data, q.-values, males, 1976-80, multiplied by 100,000
m @ 6 @ 6 (M (2 3 “4) (%)
X g, q. q. @ ¢ x g q. q. i q°
0 869 869 869 40 232 230 235 239 234
1 58 64 63 37 41 245 252 257 260 250
2 40 44 43 45 42 296 276 282 283 268
3 37 36 35 47 43 315 302 309 308 290
4 36 31 30 45 44 335 331 339 335 314
5 35 28 32 41 64 45 356 . 364 358 362 341
6 32 27 30 35 43 46 405 400 393 395 372
7 28 26 29 29 29 47 438 439 432 432 407
8 29 25 28 24 21 48 445 482 474 473 447
9 23 25 28 20 17 49 535 530 521 520 492
10 24 25 22 12 17 50 594 582 571 573 542
11 22 26 23 17 20 Sl 623 639 627 629 598
12 24 28 25 25 26 52 693 702 689 690 661
13 28 31 28 34 34 53 749 771 757 756 731
14 33 37 33 45 4 54 816 848 831 829 810
15 52 45 50 57 54 55 915 931 904 906 897
16 57 56 62 68 65 56 994 1023 993 994 993
17 77 68 76 78 76 57 1128 1123 1091 1091 1099
18 93 81 90 87 8 58 1172 1234 1198 1197 1217
19 103 93 104 95 94 59 1294 1356 1316 1315 1346
20 103 104 97 100 101 60 1473 1489 1452 1442 1488
21 109 112 105 105 102 61 1544 1635 1595 1587 1644
22 105 117 110 110 103 62 1721 1796 1751 1749 1815
23 114 120 113 113 105 63 1967 1971 1923 1930 2001
24 108 121 114 116 108 64 2129 2164 2111 2130 2205
25 112 121 122 117 116 65 2331 2375 2383 2345 2427
26 119 120 121 119 123 66 2559 2606 2615 2593 2669
27 125 119 120 120 129 67 2901 2860 2869 2865 2933
28 117 118 119 122 134 68 3203 3136 3147 3166 3218
29 127 118 119 124 140 69 3470 3439 3451 3498 3528
30 125 120 125 125 146 70 3782 3770 3927 3866 3864
31 134 123 128 129 152 71 4348 4143 4304 4267 4227
32 134 128 133 134 158 72 4714 4525 4715 4706 4620
33 131 134 140 141 164 73 5245 4955 5163 5186 5044
3 152 143 149 149 171 74 5646 5424 5651 5712 5502
35 179 153 159 160 179
36 173 164 171 172 187
37 182 178 185 186 197
38 199 193 201 201 207
39 203 211 219 219 220




322 Journal of Official Statistics

Table A2. Swedish mortality data, q.-values, females, 1976-80, multiplied by 100,000

m @ 6 @ 6 (M @ €) 4) ©)

R 9 qx @ qP
0 668 668 668 40 134 125 136 139 129
1 53 49 49 39 41 154 138 149 152 136
2 28 33 33 35 42 157 151 163 165 145
3023 27 27 3l 43 186 165 178 178 154
4 29 23 23 W 4 190 181 194 190 165
S 25 21 21 24 30 45 201 197 192 196 177
6 17 20 20 21 23 46 201 216 210 211 191
7 17 19 19 19 19 47 232 236 230 229 207
8 15 18 18 17 16 48 255 258 251 250 226
9 22 18 18 16 15 49 268 282 275 274 247

10 13 18 17 11 16 50 305 309 304 306 270
11 20 18 18 15 17 51 344 338 333 335 297
12 21 19 19 20 19 52 363 370 364 366 327
13 18 21 20 25 22 53 409 405 398 398 361
14 25 23 23 29 26 54 414 443 436 432 400

15 38 27 28 31 29 55 467 484 459 467 443
16 29 32 32 34 33 56 495 530 503 507 491
17 31 36 37 37 36 57 541 580 550 550 544
18 44 40 40 40 39 58 607 635 602 599 604
19 38 42 43 42 42 59 662 695 659 651 670

20 45 44 43 42 43 60 701 760 714 711 743
21 44 45 44 43 39 6l 811 832 781 778 824
22 43 45 44 44 38 62 829 910 855 853 913
23 44 44 44 45 39 63 928 996 935 937 1011
24 42 44 44 46 43 64 1038 1089 1023 1032 1119

25 41 45 45 46 50 65 1150 1192 1182 1135 1238
26 47 45 46 47 56 66 1280 1304 1293 1260 1367
27 50 47 48 48 62 67 1385 1426 1414 1404 1509
28 48 49 50 51 68 68 1579 1560 1547 1570 1665
29 56 52 53 54 7369 1733 1706 1691 1760 1834

30 54 55 56 59 78 70 1995 1865 2114 1957 2018
31 61 60 61 62 83 71 2262 2039 2311 2209 2218
32 68 64 66 66 87 72 2486 2229 2525 2502 2436
33 74 70 71 71 92 73 2812 2436 2760 2837 2672
34 76 76 77 76 9% 74 3168 2662 3015 3219 2928

35 82 82 82 80 101
36 85 89 89 88 106
37 92 97 97 97 111
38 109 106 106 108 116
39 121 116 115 120 122
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