
The Organization of Information in a Statistical Office

Tjalling Gelsema1

A theoretical framework for statistical data and metadata is presented using well-known
techniques from computer science. It is shown that many kinds of statistical information are
best represented by a function. The relationships between different pieces of statistical
information, such as the dependency between aggregated data and the underlying microdata,
are explained using transformations of functions. A modest set of such transformations is
considered and the identities that hold between them are shown. Thus they describe a class of
algebras, and, according to the theory of initial algebra semantics, the initial algebra in the
class is the natural candidate for recording metadata.

Key words: Metadata; aggregation; semantics; information modeling.

Introduction

This article aims to combine results and techniques from computer science theory with

the efforts and the objectives of the statistical metadata field.

One of the challenges National Statistical Institutes (NSIs) face is to cope with

huge amounts of statistical information. While obvious for large amounts of data, the

raw material of the statistical production process, this also holds true for statistical

metainformation. Because of the wide range of different social phenomena addressed, an

NSI is increasingly dependent on the proper management of metainformation to assist in

the retrieval, the understanding and the processing of statistical data. To claim that an

NSI’s main asset is not its data, but the knowledge to interpret that data is therefore less

controversial than it seems on first thought.

In a similar way that a pharmacist relies on a well-organized cabinet to store and retrieve

its medicines, proper metainformation management depends on a well-structured model.

To extend the pharmacist analogy, such a model lays down the organization of the drawers

in which different pieces of information will be placed, such as variable descriptions,

elements of classification structures, estimation procedures etc.; in short: all the

information that is collected during the design phase of a statistical production process.

The reality within many NSIs though is that during the design phase such information

becomes scattered across many different information systems which seem hard to

integrate, and as a result of which the chance of information divergence is substantial.

q Statistics Sweden

1 Statistics Netherlands, Henri Faasdreef 312, 2492 JP Den Haag. Email: te.gelsema@cbs.nl
Acknowledgments: The author is grateful to Erik van Bracht for his careful review of an earlier version of this
article, and for his many useful comments. Also, the author received many instructive and detailed comments on
Gelsema (2010) from two anonymous references. These comments were highly appreciated during the
completion of this article.

Journal of Official Statistics, Vol. 28, No. 3, 2012, pp. 413–440

For instance, within Statistics Netherlands (SN), the identification and nomination of

intermediate and output variables is handled through an information system, the main task

of which is to aid the design of a statistical process. The description of such variables

however is stored via SN’s Data Service Center (DSC), a separate information system for

the office-wide storage and retrieval of SN’s statistical data. Worse, one of the products of

process design closely related to the identification of variables is the so-called domain

model: a model expressed in the Unified Modeling Language (UML) of the statistical

domain under consideration, which is usually documented separately (in document form)

and which is used in the design of statistical databases that handle the local storage of data.

Each of these three ways of storing information uses a different technique and language

to capture the information, taking its own point of view as predominant. With the

exception of the second (the information model supporting the DSC), whether it is a

language for process design, the UML, or a modeling technique in the Entity Relationship

(ER) style, none of them is developed specifically with the capturing of statistical

information in mind and each has therefore ambiguous semantics of typical statistical

notions, such as the concept of aggregated data. For instance, in the ER case, a relation

with entities activity, size class, and turnover containing information about enterprises

can be interpreted as an aggregate –– in which case activity and size class form the

dimensions of the aggregate and turnover is interpreted as a total or an average–– or it

can be interpreted as a microdata set –– in which case activity, size class and turnover

describe the result of measurements from each enterprise individually. Because of these

ambiguities, exchange of statistical information between information systems is

cumbersome and hence system integration becomes difficult to achieve.

Even more, despite efforts such as the infological approach (Sundgren 1973) the

problem of “reality ! data mapping”, which we interpret as the translation between the

conceptual design of a statistical domain of interest and database design, is still

approached in an ad hoc fashion. While members of the first discipline speak of variables,

populations, class parameters and classification systems, members of the second use

entities, attributes, data sets and records to express themselves; the exact translation

between the two frames of reference is seldom enunciated however. This is especially

manifest for aggregation, the process of transforming data about individual entities of

interest into data about classes of entities, the core business of an NSI nota bene. In this

respect it is remarkable that while NSIs have become increasingly dependent on relational

databases for the processing of data, notwithstanding the fact that most commercial

database query languages support various aggregation operators, aggregation was

excluded (and still is, to our knowledge) from the theory (Codd 1969; 1970) upon which

today’s relational database management systems rely.

Existing information models that do focus on capturing statistical information are often

problematic for other reasons. Of these, we can mention the Statistical Data and Metadata

eXchange initiative (SDMX 2011), a standard for the automated exchange of aggregated

statistical data, and the Common Metadata Framework (CMF 2011), a model that supports

information systems managing statistical variables and classification systems. They fail to

meet the following four requirements (and, in fact, we know of no other model capturing

statistical information that meets them all). While the argument is made against SDMX,

similar arguments can just as well be contrived against CMF.

Journal of Official Statistics414

Clear relationship between data and metadata: In SDMX, the (structural) metadata for

an SDMXData Set is given by a so-calledData Structure Definition (DSD, also called Key

Family). Though the relationship between a Data Set and its DSD is given on SDMX

(2011, p. 77) the class diagram that captures it is complex, comprising approximately 30

classes and 40 relations between them. This is probably due to the fact that data can be

described in four essentially different ways: by a PrimaryMeasure, by a nontime

Dimension, by a time Dimension and by a DataAttribute, respectively. While XML

schemas exist that, given a DSD, validate a Data Set, checking these schemas for

correctness is problematic due to the complex relationship between data and metadata.

SDMX does not provide correctness proofs of their XML schemas.

Correct semantics: SDMX does not give a clear understanding of basic statistical

concepts, such as the concept of a variable or the mechanism of aggregation (in fact, the

term variable is encountered only twice in the documentation (SDMX 2011)). Instead,

SDMX seems to be designed according to what is believed to be aggregated statistical

information based on examples frequently encountered in official statistics. Thus SDMX

could be called an inductive model, which can lead to incorrect semantics as we will see

shortly, rather than a deductive model. As an example, because classifications in NSIs

often exhibit a tree-like structure, SDMX describes them as hierarchical. In contrast, the

observation that a classification is meant to subdivide a population into classes naturally

leads to the use of Boolean algebras for that purpose –– because a finite Boolean algebra

is the structure of a finite set of subsets of a population–– which are richer than hierarchical

structures. In fact, it is easy to imagine a classification structure that is not hierarchical

(Gelsema 2008) and, in particular, the regional classification used by SN is an example of a

nonhierarchical classification. This is because water board districts often cross province

and region borders.

Avoidance of synonyms: In SDMX basically equivalent data sets can be described in a

variety of essentially different ways. Of course, this counteracts the use of SDMX in providing

standards for aggregated data exchange. One example in which SDMX stimulates the

occurrence of synonyms is the distinction between time series and cross-sectional data: an

arbitrary data set can be described using either format. Also, irrespective of format, a DSD

designer has a choice in which he can describe multiple aggregated variables either as separate

PrimaryMeasures, or he can use a single PrimaryMeasure (usually labeled OBS_VALUE in

that case) and put in an extra Dimension to differentiate between the variables. How to

transform Data Sets between either modes (in a general sense) remains an unsolved problem.

Avoidance of nonsense: Finally, a DSD designer meets few constraints in constructing

and describing an SDMX Data Set. Thus it becomes possible that, for instance, a Concept

(say NACE) used to designate a Dimension in one Data Set can be reused to designate a

PrimaryMeasure in another. Also, any choice ofDimensions and PrimaryMeasures can be

combined in a DSD, even if this makes no sense with respect to statistical content. Thus,

e.g., total turnover of classes of enterprises grouped by sex does not meet any complaint as

far as SDMX is concerned. Of course, nonsense (especially nonsense from the point of

view of statistical content) cannot always be avoided through an information model (and

our model is no exception). However, especially when large collections of metadata need

to be maintained and might be chosen from when designing a statistical data set, some

restrictioning based on statistical content is required.

Gelsema: The Organization of Information in a Statistical Office 415

It seems fair to say then that today’s techniques of modeling statistical information are

not in optimal shape. What we propose in this article as a remedy is a framework for

statistical information that meets the above requirements and that (unlike the models

above) is guided by techniques well-rooted in computer science. The strategy to construct

such a framework reads as follows.

i) Give a natural and precise (mathematical) meaning to basic concepts involving

statistical data, such as the concept of a statistical variable;

ii) Give natural meaning to derived concepts, such as that of a microdata set and an

aggregated data set. Give proper preconditions to avoid constructing data sets that

make no sense;

iii) Identify and prove equalities between (different) constructions of identical data sets;

iv) Finally, let the metadata of a data set be one specifically selected construction (a so-

called normal form term) among all (equal) constructions of that data set.

Techniques from computer science enter the scene in the fourth step above, where the

precise (mathematical) relationship between statistical data and metadata is given.

Formal semantics (Goguen et al. 1978;Wirsing 1994) has been a disciplinewithin computer

science theory for decades and has been successful in particular in the field of programming

language design (Gunter 1992). Of particular interest is initial algebra semantics (Goguen et al.

1977; Goguen and Malcolm 1996), the relevance of which for statistical metadata we will

sketch next. For completeness’ sake, we give the definition of an initial algebra from Goguen

et al. (1977): in a class of algebras D, an algebra T is initial if for every D in D there exists a

unique homomorphism hD : T ! D. This will only be used tacitly in the sequel however.

In a statistical office, two of the functions of statistical metadata are to describe and to

retrieve statistical data. Putting these to work, we imagine having at our disposal an office-

wide mapping h that takes a metadata term t –– expressed in some format or (formal)

language –– and that returns the data item (the data set, or the variable, or the statistic) d of

interest that is described by the term t. Thus, we envisage that through h we find the data

h(t) ¼ d that corresponds to the metadata term t, as for instance suggested by the

expression h(GDP in bln. euros) ¼ 415. At SN such a mapping is currently in operation: it

is the office-wide DSC mentioned earlier.

For simple deterministic data manipulations, such as aggregation or the ‘column-wise’

combining of two data sets, one could argue that the metadata of the result of the

manipulation should completely (and automatically) be determined by the metadata of its

argument(s). Thus, e.g., if h(GDP in bln. euros) ¼ 415 and h(debt as a % of GDP) ¼ 68,

and if k415,68l is the column-wise combination of the two statistics, then we can conceive

a corresponding manipulation kGDP in bln. euros, debt as a % of GDPl on their metadata

terms such that h(kGDP in bln. euros, debt as a % of GDPl) ¼ k415,68l. This suggests
that h is a homomorphism from metadata terms t to data items d, since then we have

h(kt1, t2l) ¼ kh(t1), h(t2)l in general. Further, it makes sense to demand that if two

metadata terms t and t0 are equivalent –– in the sense that they use two different ways of

describing the same thing –– then h(t) and h(t0) should point to the same data. For

instance, one could require that h(debt as a % of GDP) and h(kdebt as a % of GDPl)
(a single column) should both be 68. In a nutshell, these requirements portray the initial

algebra approach to formal semantics translated to the domain of statistical metadata.

Journal of Official Statistics416

Initial algebras have many desirable properties, we can just mention here that 1) they are

basically unique, 2) they have a canonical representation (the so-called term algebra, or

rather, the algebra which we obtain from the term algebra if we identify terms that can be

transformed into each other, given a set of equations) and 3) the homomorphism h sketched

above is immediate once we have a view of our manipulations (“zap!”, according to

Goguen et al.). The first property is desirable because it takes away any unnecessary

discussion about which metadata model suits best: basically, there is just one. The other

two imply that we may concentrate on the intended semantics (Goguen et al. 1977), i.e.,

step (i) through (iii) of our strategy –– the initial algebra, if it exists, along with our map h,

then follows more or less immediately, which completes step (iv). The existence of the

initial algebra is shown in Appendix A, where the material developed in this article is

translated to the framework of equational logic (Meinke and Tucker 1992).

So we now turn to our view of statistical data. The simple idea developed here is that

statistical information, throughout the process from data collection to publishing, is of a

functional nature. For instance, a series of numbers that is the result of a measurement

(taking the variable number of years employed in current job as an example) on a

population of 6 employees and informally denoted by

V ¼ 6; 4; 7; 4; 3; 7

is more accurately represented as a function v : p ! x, with p the population of employees

and x a set of possible outcomes. If we let the set p ¼ {e1; : : : ; e6} be (a representation of)

the population, and we take x ¼ {0; : : : ; 60}, then the variable V above is given by

vðe1Þ ¼ 6; vðe2Þ ¼ 4; : : : ; vðe6Þ ¼ 7. The accuracy added is the explicit specification of

the domain and the codomain of v that allows us to distinguish it from the result of another

measurement

W ¼ 6; 4; 7; 4; 3; 7

that happens to produce the same series (but was actually the result of measuring the

number of car accidents on 6 notorious crossings during one week). More importantly, the

domain and codomain are essential in formulating proper preconditions for the operations

that we have in mind. For instance, as we will see in the sequel, we allow two variables to

be combined ‘column-wise’ only if they have a common domain, thus excluding the

formation of data sets that make no sense because, e.g., they include the variable number

of years employed in current job defined on a set of employees together with the variable

turnover generated defined on a set of business transactions (we do allow such a

combination though, if a relation between the employees and the transactions exists and

can be made explicit through a function).

As another example, the statistic average number of years employed in current job by

income bracket apparently returns an average for each income group that it considers.

Hence it is a function w : q ! y with q a set of income groups and y a set of possible

average results.

Also, any model of the subject domain of a statistic (used, e.g., for statistical database

modeling) can be represented as a set of functions. For instance, the knowledge that a

person is a member of a household is contained in a function z : p ! r with p a set of

persons and r a set of households. The fact that database modeling techniques are often

Gelsema: The Organization of Information in a Statistical Office 417

based on relations instead of functions does not alter our claim: any relation can be

represented by suitably chosen functions. We feel that this observation is important

because it allows the (automated) permeation through the statistical process of the

information contained in subject domain models.

Finally, as will become clear in the sequel of the article, a statistical data set (either

containing microdata or aggregated data) is properly represented as a function having a

Cartesian product of value sets as a codomain. We also claim that time series data are

accurately represented as a higher-order function u : t ! y q –– where y q denotes the set of

functions having domain q and codomain y –– that produces a data set w : q ! y –– i.e., a

member of y q –– for each time period considered in t.

Thus, what we propose is to represent statistical data as functions, and manipulations of

statistical data as operations that transform functions into functions. We indicate how this

is done for aggregation.

Suppose that the variable v : p ! x is net income of a household, i.e., p is a set of

households and x is a set of possible income values. Suppose also that w : p ! q assigns to

each household in p its household composition in q, i.e., q is a set of household

composition classes (like single person household, or single parent household). Then the

aggregate total net income of a household class by household composition is a function

that assigns to every composition class d [q the number

{e[pjd¼wðeÞ}

X
vðeÞ;

i.e., the sum of the incomes of each household in the class. It is in this sense that we

perceive aggregation as an operation a(_, _) that takes two functions v : p ! x and w :

p ! q as input, and produces a function u : q ! x as output, as suggested by the diagram

below.

q

w

p
v

x

u=a(v,w)

In fact, we generalize a so that it includes other forms of aggregation as well, such as

(weighted) averages. The key point (as Pursiainen 2008 notes in order to tackle the

problem of consistency in aggregation) is to let x be (a set underlying) a commutative

monoid: an algebraic structure with a commutative and associative operation, and an

identity. To calculate a total (such as the one above), we ‘feed’ a with, for instance, the

monoid m ¼ ðR$0;þ; 0Þ. Put differently, the monoid m acts as a parameter to a (so that

we might write a ¼ am) and prescribes a’s mode of aggregation. Thus, to calculate a

minimum, we might use m ¼ ðR$0; min ; 0Þ (where min(n1, n2) takes the minimum of n1
and n2). For a product P, we take m ¼ (x; £ , 1) (zap!).

Using the functional perspective outlined above, in this article we define four basic

operations on statistical data, viz. functional composition, ‘row-wise’ and ‘column-wise’

combining, and aggregation (together with some ‘inverse’ operations, such as the

‘column-wise’ selection of variables). Three of them are well-known from computer

Journal of Official Statistics418

science literature (Mac Lane 1998; Barr and Wells 1999); the fourth, aggregation, is

defined here in our functional perspective. Basic properties of aggregation (in the context

of the other operations) are shown subsequently. For instance, we show the precise way in

which the aggregation of the ‘row-wise’ combination of two data sets can be distributed to

the aggregation of both of the data sets.

As it turns out, these properties are ‘natural’ in the sense that they convey formally what

is expected from our informal understanding of aggregation. They should therefore come

as no surprise to the reader, but that is exactly the point: we hope to convince the reader

that the four simple operations are both natural and powerful to serve as the constructs of a

language in which properties of statistical information can be adequately expressed. In the

future, we plan to extend the language by two extra constructs: one selection mechanism

intended to form subpopulations of a given population, and one mechanism to record

higher-order functions such as the one mentioned earlier. However, at the moment we do

not know in what way initiality can be maintained in such an extended language. More

precisely: we are not sure whether properties of such a language can be expressed in the

framework of equational logic.

An earlier version of this article is Gelsema (2010). There, category theory was used in

order to prove the properties mentioned above: functional composition, ‘row-wise’ and

‘column-wise’ combining were inspired by category theory (as, for instance, category

theory uses functional composition as its atomic operation in the category of sets and

functions). However, we realized that this affected the readability of the article in a

negative way. Therefore, the present article does not use category theory at all. Most of the

proofs in this article are left to the reader; whenever a formal proof is required, the reader

should consult Gelsema (2010).

The remainder of the article is organized as follows. In Section 1 we give a brief

overview of the main objectives of the article, using a running example. Then, in

Section 2, the ‘column-wise’ and the ‘row-wise’ combinations of statistical data are

explained. In Section 3 aggregation is defined using commutative monoids, and properties

of aggregation are stated subsequently. Then in Section 4 the implications of the

framework for statistical practice are discussed. In Section 5 we compare our approach to

metadata with that of two others, viz. Sundgren (1973) and Codd (1969; 1970); a proper

understanding of Section 5 requires some knowledge of the two. We conclude with

some general remarks on some extensions of the functional framework of statistical data

and metadata presented here. Appendix A sketches the translation of the properties

considered in Sections 2 and 3 to the framework of equational logic and requires some

knowledge of universal algebra. From a purely scientific point of view, Appendix A

constitutes the only result of the article.

This article advocates the initial algebra approach to give the exact relationship between

statistical data and metadata.

1. An Example Model of a Statistical Domain

We now give an intuitive overview of the ideas presented in the article.

Consider the diagram of Figure 1 that consists of labeled boxes and labeled arrows. It is

a model of a small part of the world, in the sense that it contains information about

Gelsema: The Organization of Information in a Statistical Office 419

phenomena that statisticians may want to measure and describe. The intuitive

interpretation of the information model is straightforward and as expected: associated

with a job is a person and an organization. From a job’s point of view, the person

associated with it is an employee, and the organization associated with it is an employer.

Each person is a member of a household; the total number of persons a household contains

is its household composition. The notion of an income is applicable to both persons and

households. A person’s income is the total amount of salary he receives (i.e., for each job

he is employed in) after tax deduction. A household’s income is the sum of each member’s

income (after tax deduction).

We can add some clarity by calling the boxes labeled person, organization, job, and

household object types (Sundgren 1973), and the boxes labeled amount and number value

types. Further, we can adopt the conventions that an arrow between an object type and a

value type is called a variable, an arrow between two object types an object type relation,

and an arrow between two (possibly identical) value types an operation. We stress that, for

the time being, a proper understanding of these conventions rests upon the intuition of the

reader only.

Though the information model is small, a fair amount of information that is not directly

contained in it is instead implied by it. This information can be uncovered if we allow the

application of some natural deductive rules.

For instance, household composition can also be treated as a variable of object type

person (for the time being, this means: can be treated as an arrow that originates from the

box labeled person) since we know that each person is a member of a household. In other

words, if we ask a person about his household composition, we are dealing with the

variable labeled member of. composition, which is the arrow we get if we follow the arrow

labeled composition after the arrow labeled member of, as indicated in Figure 2. The

intuitive deductive rule we apparently applied is that in a situation in which one arrow

follows another, we can add their sequence without changing the information intended by

Number

Composition

Member of Employee

Employer

Salary

Tax deduction

Income
Income

Household

Person
Job

Organization

Amount

Fig. 1. An information model

Journal of Official Statistics420

the model. In fact, we may choose to do this for any similar combination of arrows, for

instance for a sequence of two object type relations as well (which results in an object type

relation, by convention).

As another example, we may assume that any combination of two value types gives rise

to a type of pairs of values. For instance, we can imagine a type denoted number £ amount

of pairs, the first component of any member being a number and the second being an

amount. In turn, this gives rise to pairs of variables; for instance the pair denoted

kcomposition, incomel that, for each household, yields its composition and its income as a

pair of values, as indicated in Figure 3. In essence, the arrow labeled kcomposition,
incomel thus may be interpreted as a microdata set consisting of two columns, the first

corresponding to the variable composition, and the second to the variable income.

The informal deductive rule we applied here is that in a situation in which two arrows

originate from the same box, we can add to the model a ‘box of pairs’ and draw to it an

‘arrow of pairs’ that starts from the original box. We may do the same for boxes and

arrows of triples, quadruples, etc, as long as all arrows involved originate from the same

box. Also, the arrows involved may be any suitable combination of variables, object type

relations and operations.

The deductive rules from Figure 2 and Figure 3 immediately pose a dilemma. It is clear

that, using these rules, both the arrow labeled

member of : kcomposition; incomel

as well as the arrow labeled

kmember of : composition; member of : incomel

can be deduced. The question is whether or not these arrows are synonymous, or, in other

words, whether or not we may treat them as equals. To solve this question, we need to give

meaning to boxes and arrows and to the deductive rules of Figure 2 and Figure 3.

Member of. composition

Member of Employee

Employer

Salary

Tax deduction

Income
Income

Composition

Number

Household

Person
Job

Organization

Amount

Fig. 2. Sequential composition

Gelsema: The Organization of Information in a Statistical Office 421

We suggest that the following interpretation is both natural and sufficient: a box is an

arbitrary set (for example, in the sense of Fraenkel et al. 2001) and an arrow x ! y is a

function v : x ! y. By a function we mean a set of pairs ka, bl such that for every a there

exists exactly one element ka, bl in the set –– see for instance Fraenkel et al. (2001). The

sequential composition z · v of two arrows v : x ! y and z : w ! x is the usual functional

composition: the composition v W z : w! y of two functions v : x ! y and z : w ! x is

defined by ðv W zÞðaÞ ¼ vðzðaÞÞ for every a [w. The formation of a type x £ y of pairs is

the Cartesian product of x and y. The definition of kv, ul for functions v : p ! x and u :

p ! y is given in this article (but is as expected). Using this interpretation it can be shown

that the two arrows mentioned above are synonymous.

An interpretation such as the one given above, together with identities such as

kv; ulWz ¼ kvWz,uWzl that hold within that interpretation, is called an algebra. There is

another interpretation though, which is given by the figures themselves: this is the

interpretation of simply adding suitable boxes and arrows to a given information model

consisting of boxes and arrows. More precisely, arrows are interpreted as terms, such as

composition, income, or kcomposition, incomel W member of, and terms are considered

equal, with respect to a set of equations, if they can be transformed into one another using

only equations from that set. That interpretation can be considered as the initial algebra.

The formal construction of an initial algebra corresponding to the information model of

Figure 1 is given in the Appendix.

As a last example of a deductive rule, consider Figure 4. Now that we are equipped with

a solid interpretation of arrows and boxes, we may ask ourselves whether or not the dotted

arrow of Figure 4 can be deduced. In other words: which general, evidently binary,

operation –– say a(v, w) –– of functions v : x ! y and w : x ! z in the specific case of

Figure 4 yields the total salary of each of a person’s jobs, given the salary he receives from

each of his jobs individually. This article will show that such an operation a can be defined

such that it is consistent with the sets-and-functions interpretation of arrows and boxes.

Finally note that the arrow labeled income between person and amount can now be defined

by the term

Member of. composition

Member of

Composition

Employee

Employer

Salary

Tax deduction

Income
Income

<composition, income>

Number

Household

Number X amount

Person
Job

Organization

Amount

Fig. 3. Formation of a data set from two variables

Journal of Official Statistics422

income ¼ tax deduction Waðsalary; employeeÞ;

which confirms in a formal way the informal definition of income given in the introductory

part of this section. If we assume that tax is deducted using a flat tax (i.e., one tax rate for

all income), then it does not matter if tax deduction is applied to the total salary, or to the

salary of each individual job. Formally, this means that the terms below should be treated

as equal:

tax deduction Waðsalary; employeeÞ ¼ aðtax deduction W salary; employeeÞ:

By identifying relationships, such as the above, that hold within the sets-and-functions

interpretation of statistical information, we are able to discover synonyms between terms,

i.e., between descriptions of statistical data. Among a set of synonymous terms, one could

be appointed as standard (or normal form), so that each statistical data item can be given a

unique description. Deriving normal forms is the subject of term rewriting (Klop 1992),

which is beyond the scope of this article.

2. Variables and Data Sets

The concept of a statistical variable as it is understood in official statistics –– the result of a

measurement of a phenomenon on a group of entities of interest –– can be captured as a

function v : p ! x. Here, p is a population, a possibly infinite set of (anonymous) entities,

and x is a set of values, the possible outcomes of the measurement. The value v(e) [x is

the outcome of the measurement on the entity e [p. We say that a variable v : p ! x is

defined on (the population) p and that v is defined for (the value set) x.

We have to be careful about what we perceive as a population; in particular, we have to

briefly address the role of time in measurements.

As the properties of an entity may change over time, viewing the result of a measurement

as a (deterministic) function v : p ! x implies that each member e of p must be fixed at

Member of. composition

Member of

Composition

Employee

Total salary

Employer

Salary

Tax deduction

Income
Income

<composition, income>

Number

Household

Number X amount

Person
Job

Organization

Amount

Fig. 4. Aggregation

Gelsema: The Organization of Information in a Statistical Office 423

some time instance. So we assume that the members of p are in fact entities at specific, but

not necessarily identical, moments in time. We therefore also assume that each population

p comes with a map tp : p ! T that, for an entity e [p, yields the moment tp(e) of its

existence, and hence the time of measuring v(e) (T is a universe of time instances). Though

mainly of philosophical interest, we believe this is the most convenient (and accurate)

approach to introduce the concept of ‘time of measurement’ into a general functional

framework of statistical variables. Moreover, it allows us to speak of a ‘population of

people’ and a ‘population of car accidents’ equally well, thus complying with the usual

general definition of a population (from, e.g., Everitt 2002) that includes collections of

people as well as collections of events. Note however that this philosophical assumption

leads us to consider infinite populations, in particular if T is taken as infinite, so that care

must be taken when defining aggregation (in Section 3).

The outcomes of two variables v : p ! x and w : p ! y, measuring two phenomena of

the same population p, can be arranged ‘horizontally’, i.e., in pairs, for every entity e [p

through the map e 7! kv(e), w(e)l [x £ y, where x £ y denotes the Cartesian product of

x and y. The construction of this map from v and w is denoted by kv, wl : p ! x £ y. The

projection functions p1 : x £ y ! x and p2 : x £ y ! y defined by p1 (ka, bl) ¼ a (and

similarly for p2) are associated in a natural way with the Cartesian product. In fact, they

can be used to recover the variables v and w from the data set kv, wl, viz. through the

compositions p1 W kv;wl and p2 W kv;wl, respectively. Thus, for suitable g, the following

identity holds:

g ¼ kp1g;p2gl ð1Þ

where p1g abbreviates p1 W g (and similarly for p2g).

It is easy to show that for a function z : r ! p the following holds:

kvz;wzl ¼ kv;wl W z ð2Þ

This can be shown element-wise, but is immediate from the product construction in a

category (Mac Lane 1998).

We refer to the operation h _, _ i as the column-wise combining (of data), as variables are

usually listed as columns in a rectangular presentation of statistical data. To assist the

intuition of the reader, the column-wise combining of two variables is sketched in

Figure 5 below.

Fixing an arbitrary one-element set 1 ¼ {*}, column-wise combining of data can be

extended to an arbitrary number of variables: we denote the general column-wise

e1 •
v

2

7

2

2

7

2

ppp

a

a

c

a

a

c

w (v,w)

e2 •

e3 •

e1 •

e2 •

e3 •

e1 •

e2 •

e3 •

Fig. 5. Column-wise combination of two variables

Journal of Official Statistics424

combination of variables vi : p ! xi, 0 # i # k, by kvil, where it is understood that

kvil ¼ 1p when k ¼ 0, and where 1p is the unique map 1p : p ! 1 (see, e.g., Pierce 2002).

Note that we thus treat variables and data sets similarly, viz. as functions.

Conversely to the situation above, we consider the row-wise combining (of data). Row-

wise combining two variables v and u (or data sets for that matter) makes sense only if they

have a common value set, i.e., if v : p ! x and u : q ! x. Note that variables v : p ! x and

z : q ! y can be forced to have a common value set x < y by composing them with suitable

injection functions i1 : x ! x < y and i2 : y ! x < y. Let p þ q be the disjoint union of

p and q, i.e., the set p £ {1}< q £ {2}, where < denotes ordinary set union, and 1 and 2

are arbitrary but distinct elements. Note that p þ q coincides with p < q (up to an

isomorphism) if p and q are disjoint. Then the row-wise combination of v and u is defined

as the function [v, u] : p þ q ! x with [v, u] (ke, 1l) ¼ v(e) and [v, u](ke, 2l) ¼ u(e). So,

intuitively, the map [v, u] combines the outcomes of v and u ‘row-wise’, listing the

outcomes of v for every entity in p ‘on top of’ the outcomes of u for every entity in q.

The variables v and u can be recovered from [v, u] with the aid of the injection functions

ı1 : p ! p þ q and ı2 : q ! p þ q defined by ı1(a) ¼ ka, 1l and defined similarly for ı2.

Then we have v ¼ ½v; u� W ı1 and u ¼ ½v; u� W ı2. Thus, similar to Equation 1, we obtain

h ¼ ½hı1; hı2� ð3Þ

for suitable h.

Also, it is easy to show that, opposite but similar to Equation 2, we have

½zv; zu� ¼ z W ½v; u� ð4Þ

for every function z : x ! y. This is immediate from the coproduct construction in a

category (Mac Lane 1998), but can also be shown element-wise, if preferred.

We refer to the operation [_, _] as the row-wise combining (of data). As with the

column-wise combining of data, row-wise combining of data is easily extended to any

number of variables: we denote the general row-wise combination of variables ui : pi ! x,

1# i # k, by [ui], where it is understood that [ui] ¼ 0x when k ¼ 0, and where 0x : =0 ! x

is the unique map with codomain x (see Pierce 2002). The row-wise combination of two

variables is sketched in Figure 6 below.

2

7

2

4

2

6

2

7

2

4

2

6

e1 •

e2 •

e3 •

d1 •

d2 •

d3 •

<d1, 2> •

<d2, 2> •

<d3, 2> •

<e1, 1> •

<e2, 1> •

<e3, 1> •

v

p+q

qp

u [v,u]

Fig. 6. Row-wise combination of two variables

Gelsema: The Organization of Information in a Statistical Office 425

The operations considered in this section are the basic operations for constructing data

sets from statistical variables, both column-wise and row-wise.

3. Properties of Aggregation

In this section we define in a general way the notion of aggregation. As suggested in the

Introduction, aggregation is an operation a(v, w) defined on two variables v : p ! x and w :

p ! q, that outputs a function u : q ! x, as indicated in Figure 7 below. The operation a

can be seen as a formal confirmation of the idea that, for instance, the aggregate total

turnover of Dutch enterprises by activity should somehow depend on two variables

(defined on the same population), viz., turnover of a Dutch enterprise and activity of a

Dutch enterprise.

As stated in the Introduction, our notion of aggregation is based on commutative

monoids; we briefly review the definitions involved (see also, e.g., Grillet 2001).

A monoid m is a triple (m; ·, 1) where m is a set, · is an associative binary operation

on m, and 1 is an element of m that is an identity for ·, i.e., for all a, b, c [m we have

(a · b) · c ¼ a · (b · c) and a · 1 ¼ a ¼ 1 · a. Note that we identify a monoid m with its

underlying set m; it will always be clear from the context whichever we mean.

A homomorphism between two monoids m and n is a function h : m ! n such that

h(a · b) ¼ h(a) · h(b) for every a, b [m, and h(1) ¼ 1. A monoid is commutative if

a · b ¼ b · a for all a, b [m. Since all monoids we consider here are commutative,

we usually refer to them as monoid from here on (as it is also understood that by

homomorphism we mean monoid homomorphism). In fact, for a commutative monoid m,

it is usual to employ an additive notation: m ¼ (m; þ , 0), which we will follow

from here on.

The product of two monoids m and n is the monoid m £ n (with underlying set m £ n,

i.e., the Cartesian product of m and n), with ka1; b1lþ ka2; b2l ¼ ka1 þ a2; b1 þ b2l, and
with identity k0, 0l. The product of monoids is easily extended to an arbitrary number of

monoids.

Let m be a monoid, v : p ! m a variable, and let p0 ¼ {e1; : : : ; ek} be a finite subset

of p. The generalized sum of v by p0, denoted

e[p 0

X
vðeÞ;

is defined as vðe1Þ þ · · ·þ vðekÞ if p
0 is nonempty, and where

e[p 0

X
vðeÞ ¼ 0

q

w

p
v

x

u=a(v,w)

Fig. 7. The aggregation of v by w.

Journal of Official Statistics426

if p0 ¼ =0. Note that this definition makes sense, since it does not depend on the order of the

elements in p0, by associativity and commutativity of þ .

A function w : p ! q is inverse-finite if w 21(d) ¼ {e [p j d ¼ w(e)} is finite for every

d [q. Note that w is inverse-finite if p is finite. Also, if w is inverse-finite, then p is finite if

q is finite. Every injection is inverse-finite. The composition of two inverse-finite functions

is inverse-finite. If w1 : p1 ! q and w2 : p2 ! q are inverse-finite, then so is [w1, w2].

Our interest in inverse-finite functions for the purpose of aggregation is the following.

We want to find a general expression for the operation that takes a variable v : p ! m that

has a binary commutative operation þ defined on its value set m, together with a second

variable w : p ! q, and that produces a variable u : q ! m defined as the map

d 7!
d¼wðeÞ

X
vðeÞ ð5Þ

for every d [q. For this to make sense it is a requirement that the sets w 21(d) are finite,

for otherwise the generalized sum would fail. So, let w : p ! q be inverse-finite, and v, p,

and m as before. The aggregation of v by w, denoted a(v, w), is the map u : q ! m defined

by (5). Note that (5) is well-defined, as its notation must be seen as an abbreviation of

d 7!
e[w21ðd Þ

X
vðeÞ

which corresponds to the notation in the definition of the generalized sum.

The following two properties of a are immediate: let v, w, p, q, and m be as before, let

z : q ! r be inverse-finite and let h : m ! n be a homomorphism. Then we have

aðv; zwÞ ¼ aðaðv;wÞ; zÞ ð6Þ

and

aðhv;wÞ ¼ h Waðv;wÞ ð7Þ

which show the distribution of a with respect to the functional composition in both of its

arguments. The situation of Property (6) is clarified by the diagram below.

r

z

w

m

q

p v

a(v,w)

a(v,zw)

It is confirmed by the fact that, for all c [r, we have

c¼zðwðeÞÞ

X
vðeÞ ¼

c¼zðd Þ

X
uðdÞ;

with u : q ! m the Map (5) above. The proof of this fact is straightforward, but a bit

tedious, and is left to the reader. Property (7) is just a generalized homomorphism

condition for h, as it expresses that

Gelsema: The Organization of Information in a Statistical Office 427

hðvðe1ÞÞ þ · · ·þ hðvðekÞÞ ¼ hðvðe1Þ þ · · ·þ vðekÞÞ:

The reader requiring a more algebraic proof of Properties (6) and (7) is referred to

Gelsema (2010).

Property (6) is explained intuitively as follows. Suppose that we have access to the

following information: for every entity e in a set p of people, we know the household

w(e) [q he or she is a member of, as well as his or her income v(e) [m (with

m ¼ (N; þ, 0) say). Also, each household d in q is assigned a class z(d) [r, based, say,

on the region in which it resides. Then the aggregate total income earned per region can be

computed in one stroke, adding together the incomes of the persons that reside in the same

region. For this we must use zw : the map that assigns to a person the regional class of his

household. It can also be computed in two strokes, by first calculating the income of each

household, adding together the incomes of its members, and then by calculating the total

income earned per region, adding together the incomes of the households in the same

region. Of course, the two results must be equal.

Suppose that, in addition, we consider income taxes in calculating the total income of a

household. For simplicity, we assume a flat income tax, i.e., one tax rate is applied to all

income. Then it does not matter whether tax is deducted from the income of each member

of a household after which the results are added, or conversely, incomes are added after

which tax is deducted from the total. In other words, tax deduction is an endomorphism on

m ¼ (N; þ, 0) (i.e., a homomorphism between m and itself). This shows the intuitive

meaning of Property (7).

It makes sense to view a(v,w) as the functional composition g(v) d(w) of g(v), called the

elementary class parameter induced by v, and d(w), called the dimensional structure

induced by w. Separating a in this way formally establishes the idea that the aggregates

total turnover of Dutch enterprises by activity and total turnover of Dutch

enterprises by size class share a class parameter, but differ in their dimensional structure.

Thus, the notions of a class parameter and a dimensional structure, at least from an

information-sharing point of view, seem more fundamental than the notion of an aggregate

a(v, w). Speaking in terms of the pharmacist’s cabinet analogy of the Introduction,

separate drawers will be put aside for g(v) and d(w). They are defined in a straightforward

way as follows.

For a set p, let Fp be the set of finite subsets of p and let v be as before. Then we define

g(v) : Fp ! m simply as the generalized sum of v, i.e., g(v) maps p0 [Fp to
P

e[p 0 vðeÞ.

We warn the reader that g(v) is not a homomorphism between m and the monoid we get

from Fp by taking set union as operation and the empty set as identity. Now let w be as

before. Then the map d(w) : q ! Fp is simply w 21, i.e., d(w) maps an element d [q to

the set {e [p j d ¼ w(e)}. Note that it makes sense to compose g(v) with d(w) as their

composition ‘factors through’ Fp. It is trivial to verify that viewing a(v, w) as g(v) d(w)

does not alter Definition (5), nor does it affect Properties (6) and (7).

To see that aggregation is not limited to summation, but also includes, e.g., calculating

weighted averages, consider the following example.

Example 3.1 (Weighted arithmetic means, adapted from Pursiainen (2008)) Let x and y

be the sets R and R.0, respectively. Suppose that the first is used as a value set of

Journal of Official Statistics428

a variable v : p ! x (p is an arbitrary population), and the second, y, is used as a set of

positive weights for the values of v, which we record as a function z : p ! y. The

interpretation of z is the following: for each value v(e) [x the corresponding weight that

should be used in calculating weighted averages of v is z(e) [y. Let w : p ! q be any

inverse-finite function, i.e., q is interpreted as a set of ‘categories’ d which are used to

denominate ‘classes’ w 21(d) of interest within the population p. Now let m be the monoid

defined by taking the underlying set m ¼ x £ y < {v}, together with the following binary

operation (we denote ordered pairs ka, bl by (a, b) here):

ða1; b1Þ�ða2; b2Þ ¼
a1b1 þ a2b2

b1 þ b2
; b1 þ b2

� �
;

and such that e · v ¼ e ¼ v · e for every e [m (so v is m’s identity). The first component

gives the weighted arithmetic mean of a1 and a2, and the second adds their corresponding

weights b1 and b2. It is easy to check that · is associative and commutative. Now the

function a(kv, zl, w) : q ! m returns a pair consisting of the weighted average of v together

with the sum of the weights used for each category in q. A

Next, we study the aggregation of data sets that are composed row-wise or column-wise,

as defined in the previous section. We consider binary combinations only, as they are

easily generalized to arbitrary combinations.

Let v1 : p ! m1 and v2 : p ! m2 be two variables with m1 and m2 monoids, and let w :

p ! q be inverse-finite. Then we have

aðkv1; v2l;wÞ ¼ kaðv1;wÞ;aðv2;wÞl ð8Þ

Note that in the left-hand side of Equation (8), aggregation is meant with respect to the

monoid m1 £ m2.

To explain Property (8), let v1 be the variable v as before, i.e., v1 measures a person’s

income. Let also w be as before, i.e., w assigns a household to the respective person. Let

m2 ¼ m1 ¼ ðN;þ; 0Þ and let v2 be the constant 1 everywhere. Then a(v2, w) is household

composition, i.e., the number of persons a household contains. Now in order to produce a

data set containing the total incomes of a set of households as well as their compositions,

we may first form a data set of persons containing their income together with a column of

1s (i.e., the variable v2) and then sum both columns at the same time for each household.

We may also calculate household composition and household income separately, and then

combine their results column-wise; of course the outcomes of both procedures should be

identical.

Property (8) uses the fact that, for an arbitrary finite subset p0 of p, we have

e[p 0

X
kv1ðeÞ; v2ðeÞl ¼ h

e[p 0

X
v1ðeÞ;

e[p 0

X
v2ðeÞi;

which is immediate from the definitions of the generalized sum and the product of two

monoids.

Gelsema: The Organization of Information in a Statistical Office 429

To set up the properties of the aggregation of a row-wise combined data set, let v1 :

p1 ! m, v2 : p2 ! m, and let w1 : p1 ! q and w2 : p2 ! q be inverse-finite. Then

að½v1; v2�; ½w1;w2�Þ ¼ aðv1;w1Þ þ aðv2;w2Þ; ð9Þ

where it is understood that, for functions u1, u2 : q ! m, by u1 þ u2 we mean the monoid

operation þ applied to the data set hu1, u2i, or, in other words,

u1 þ u2 ¼ ðþÞ W ku1; u2l:

Though intuitively simple to understand, the proof of Property (9) is a bit more complex.

The reader may try it him- or herself, or may consult Gelsema (2010) for a proof using

category theory.

Intuitively, Property (9) considers a population p of, say, people, that is split into two,

say males p1 and females p2. Then the calculation of a household’s total income can be

distributed to calculating its males’ share and its females’ share. What then remains to be

done is to add their results for each household.

Finally, picturing aggregation as in Figure 7, it is natural to consider those cases for

which the diagram commutes, i.e., for which aðv;wÞ Ww ¼ v holds. The cases considered

below are among those.

Let 0p,m : p ! m be the map e 7! 0, for all e [p (where 0 is the identity of m) and let

w : p ! q be inverse-finite. Then

að0p;m;wÞ ¼ 0q;m: ð10Þ

Let v : p ! m and let 1p be the identity on p. Then

aðv; 1pÞ ¼ v: ð11Þ

Let v be as above and let w be an injection. Then

aðv;wÞ W z ¼ v: ð12Þ

These properties are all easy to show (and most are left to the reader, or see Gelsema

2010). For instance, using (12) to show (11), we have aðv; 1pÞ ¼ aðv; 1pÞ W 1p ¼ v.

The cases above are not exhaustive –– in fact we conjecture that if v and w are functions

for which it holds that

for all e [p; w is injective on e or vðeÞ ¼ 0;

then we also have aðv;wÞ W z ¼ w. The reader can verify that even this condition does not

cover all cases.

Example 3.2 Consider the statistical domain of Figure 8, which is an extended version of

the information model of Figure 1. The dotted arrows of Figure 8 represent derived

notions. For instance, the income of a household, labeled hh income in Figure 8, is now

formalized as a(income, member of), i.e., the sum of every member’s income. Also,

household composition, the number of persons a household consists of, is now defined as

a(l, member of), where the arrow 1 designates the map from person to number that is 1

everywhere. The box labeled avg. number designates the monoid of Example 3.1 and the

arrow labeled i is the inclusion of the product number £ number in it. The arrows labeled

p1 and p2 are the projection arrows defined in Section 2.

Journal of Official Statistics430

Associated with each household is now a type (such as single parent household or

couple with children for instance) and the region of its residence.

Suppose the aim is to give an metadata term in normal form for the data set informally

typified by average composition and total income of households by type and residence.

First, it should be clear now that total income of households by type and residence is given

by the term a(hh income, ktype, residencel). Second, using the monoid of Example 3.1

with weight vector 1 (depicted by the arrow labeled 1 from household to number), the

average composition of households by type and residence is a(i W kcomposition, 1l, ktype,
residencel). Column-wise combining the two gives

N1 ¼ aðki W kcomposition; 1l; hh incomel; ktype; residencelÞ

by Property 8. If the general strategy is to rewrite expressions using Property 8 in the right-

to-left direction, then the expression N1 above is in normal form: it cannot be rewritten any

further. If however the rewrite strategy is to apply Property 6 in the right-to-left direction

(and the other properties in either direction), then the following equivalent expression is in

normal form

Number × number

1 1

Composition = a(1, member of)

i

hh income = a(income, member of)

Residence

Type
Member of

Income

Number

Region

hh type

Person

Amount

Household

Avg. number

P2
P1

Fig. 8. An example of a statistical domain

Gelsema: The Organization of Information in a Statistical Office 431

N2¼kaðiWkcomposition;1l; ktype;residencelÞ;

aðincome; ktype; residencelWmember of Þl

as the reader can verify.

Finally, almost trivially now, if (with respect to a global homomorphism h) the terms

income, member of, type and residence correspond to the variables v, w, z, and u,

respectively (i.e., h(income) ¼ v, h(member of) ¼ w, etc.), then the expression

hðN1Þ ¼ aðki W khðcompositionÞ; 1l; hðhh incomeÞl; khðtypeÞ; hðresidenceÞlÞ

¼ aðki W kað1;wÞ; 1l; aðv;wÞl; kz; ulÞ

calculates the actual data set appointed by N1 (or N2 for that matter). A

The notion of aggregation that is considered in this section does not take into account

the fact that an output table produced in a statistical office often contains statistical data for

different levels of detail. For instance, it is common that an output table like total turnover

of Dutch enterprises by activity records the turnover of enterprises for activity categories

like, e.g., construction and manufacturing, as well as for ‘smaller’ categories like civil

engineering and manufacture of textiles. The relationships that hold between figures

recorded for different levels of detail (‘smaller’ categories should add up to ‘larger’

categories) is something that cannot be captured using the notion of aggregation

considered in this section. However, in Gelsema (2010) an extension of the framework of

this section is considered: using Boolean algebras for structuring classification systems,

a notion of aggregation is described that respects the relationships mentioned above.

By identifying the equations that hold between the different operators considered, this

section and the previous sketched the intended semantics for our functional view of

statistical information. We stress that this is almost all we need to gain the benefits

explained in the Introduction, in particular the homomorphism h between metadata terms

and data items. The only thing that remains to be done is to translate the equations into the

framework of equational logic; once we have done that, the existence of the initial algebra

follows from Meinke and Tucker (1992). This translation is sketched in Appendix A.

4. Discussion

The main arguments presented in this article are twofold. First, statistical information

elements of different kinds are best represented by functions. Whether for a variable,

a microdata set, an aggregate, an object type relation, or a statistical operation: a function

captures its true meaning. Second, the initial algebra is a way to model statistical metadata

in a faithful way. Using a modest set of operations, a simple algebra of functions captures

the dependencies between the information elements listed above, such as the relationship

between a data set and its variables. The terms of the associated initial algebra are the

‘best’ descriptors of such information elements, since they provide a natural and

compositional semantics. This means, for instance, that a data set is described using the

descriptions of its variables, which is a natural requirement.

Journal of Official Statistics432

The objective of the article is to present a formal framework for statistical metadata. It is

felt that such a framework can contribute to statistical practice in a number of ways. These

are listed below using the framework’s main virtues.

First, we have given much attention to the formality of the framework. This has been

done in order to give all kinds of automated processes a sound basis for capturing the

information objects they operate upon. In other words, supporting automation is the main

objective of the formality of the framework. The processes that we have in mind are the

ones that concern the design of statistical output and intermediate results, in such a way

that interdependencies between them are maintained across the statistical process (these

processes reside in the column “Design” of the Generic Statistical Business Process Model

(GSBPM); see Vale 2009). In this way, for instance, the effect of changes to the input on

the output of a statistical process can be made visible. Also, it is felt that the algebraic

approach of the framework supports the automated generation of metadata during

statistical production. Both uses are examples of the “industrial” view of statistical

production, proclaimed, for instance, by van der Veen (2011).

Second, the framework is formulated in a precise way. Definite choices have been made

in defining the concepts of a statistical variable, a statistical data set, etc. Therefore we

believe that the framework could play a role in settling discussions about the semantics of

statistical information objects, as in our experience those discussions are often central (and

can be lengthy without the proper means) when designing statistical information models.

The recent initiative of the Generic Statistical InformationModel (GSIM; see van der Veen

2011), the counterpart of the GSBPM, specifically includes a semantics part and we feel

our framework could make a valuable contribution to that, in the sense meant above.

Third, we have tried to keep the framework as simple as possible, concentrating on the

main issues. The algebraic approach makes it relatively easy to extend the framework to

new functionalities, viz. by adding operations and equations. Existing standards, such as

SDMX, have received some criticism recently on their complexity (see, e.g., UNECE

Secretariat 2011) calling for “light” versions of those standards. This complexity is

highlighted by the decisions a designer of SDMX artefacts must make: often there are

numerous different (but ‘equivalent’ in a sense left obscure) ways possible in the design of

such artefacts, counteracting their comparability and counteracting standardization.

Again, it is believed that simpler (exchange) standards can be developed, provided that

they are based on frameworks such as the one presented in this article. Also, we believe

that every engineering discipline should be guided by some sort of theory, and the

designing of information models should be no exception to that. The first steps towards

such a theory are the ones presented in this article.

5. Comparison with Other Approaches

The goals set by this article probably resemble those of Sundgren (1973) most: both seek to

discover the structure of statistical information. Our technical approach however is more

similar to Codd (1969; 1970).We draw a comparisonwith each of those works in this section.

Most of the constructs that we treat in this article (viz. composition, product, sum, and

aggregation), Sundgren also acknowledges in some form or the other. To begin with,

the notion of a variable, that Sundgren defines as a single-valued attribute, probably

Gelsema: The Organization of Information in a Statistical Office 433

corresponds to our use of a function, provided we may treat the “relevance group” of that

attribute as the domain of the function. The motivation for this is reinforced by the

construct of “consolidated constellation”, a grouping construct of attributes, which then

corresponds to our product construction, since consolidated constellation is only

meaningful for attributes that have identical relevance groups. Also, it is believed that the

“generation of relation dependent properties”, a particular closure rule of properties of

objects, can be explained by our functional composition. Further, the notion of aggregation

that Sundgren uses seems to suggests a monoid or semigroup. Finally, the “box algebra”

Sundgren uses to explain the dimensional structure of aggregates bears much resemblance

to a Boolean algebra, and can presumably be exchanged for it.

The approach of Sundgren considers many other relevant notions though. We believe

that many of those can be understood by proper refinements of our functional view. For

instance, the useful notion of an “identifying property” can be understood by an injective

function: a variable v : p ! x is identifying if for each moment m in time T the restriction

of v to pm is an injection where pm ¼ t21
p ðmÞ ¼ {e [pjtpðeÞ ¼ m}.

Though technically profound, Sundgren (1973) chooses a nonstandard approach in

defining its constructs: it does not consistently use a well-understood underlying theory

(such as category theory or algebra) upon which its constructs can be grounded. The lack

of an underlying theory is the main difference between our approach and that of Sundgren;

without it, we feel that the identities of Sections 2 and 3 cannot be derived, and indeed

Sundgren does not try to discover them. Also, Sundgren does not seem to be interested

in keeping the number of its basic constructs limited. In contrast, we believe that the

value of our approach lies in keeping the number of language constructs small, yet

retaining a language expressive enough to explain, for instance, the great number of

seemingly independent notions Sundgren considers. Thus, we feel that our approach is

more fundamental.

Further, Sundgren does not treat the relationships between data and metadata in a

satisfactory way, viz., by considering some kind of (formal) mapping between the two, as

we do. Finally, we believe that a lack of an underlying theory may also lead to some

undesired results. As an example, because in an abg-query the relevance group of an

aggregated variable (the b-part) depends on the boxes given by the variables in the g-part,

technically a query like total income by sex not only differs in its g-part from total income by

social class, but necessarily also differs in its b-part, which is unsatisfactory and probably

not what was intended. We resolve this technical issue by letting our aggregates ‘factor

through’ Fp, the set of finite subsets of (a population) p, or, informally put: the relevance

group of total income is the set of finite subsets of the relevance group of income. This

makes total income a separate notion, i.e., one that is independent from social class or sex.

We believe that the use of some common underlying theory is indispensable for truly

giving meaning to the nature of statistical information. Because of the agreement of ideas

however, we think of our approach as a formal semantics for many of the notions of

Sundgren (1973).

As for Codd (1969; 1970), and many initiatives based on the relational calculus since

then (see, e.g., Elmasri and Navathe 1989), their goal is to describe a small set of

elementary relational operations that can form the basis of a query language. The objective

of Codd is to also study their dependencies (composition is defined through join for

Journal of Official Statistics434

instance, and join is defined through projection) which classifies this approach as algebraic

in nature.

Indeed, Codd (1970) considers (relational) composition as an (elementary) operation,

as we do. Further, our product construct can be seen as a restricted kind of join. Only

the restriction operator of Codd (1970) is lacking in our approach (however, see the

Conclusion of this article). On the other hand, aggregation is not mentioned in Codd

(1969; 1970) and the author knows of no other initiative to supplement the relational

calculus with aggregation in a satisfying way. This is despite the fact that most commercial

database management systems are equipped with aggregation operators nowadays.

However, we strongly argue against a relational view of statistical data, and propose our

functional view instead. To begin with, any relation can be expressed (without any loss of

information) as a set of functions. For instance, a binary relation R on domains A and B

(i.e., R # A £ B) is given by two functions l : R ! A and r : R ! B defined by

R ¼ {klðoÞ; rðoÞl j o [R}, and similarly for an arbitrary n-ary relation. Thus, in this sense,

the relational approach is not ‘more expressive’ than the functional. Secondly, a sequence

of observations such as 4, 7, 4, 3, 7, while suitable for statistical purposes as is, in the

relational view needs an additional attribute that (possibly combined with the sequence)

can serve as a key. Only this will prevent it from reducing to the set {4,7,3} which,

according to Codd (1969; 1970) is what is left of the sequence when viewed as a relation.

Probably for this reason, contrary to Codd, today’s relational database management

systems operate on multisets (Engelfriet and Gelsema 1999) of records, instead of sets of

records. Thirdly, using relations (and operations on them) for the representation of

statistical information can lead to nonsense, as the following example shows. Consider

Table 1, which for three enterprises reports their size class (according, e.g., to the number

of people employed), their main activity (using some classification of activities, e.g.,

NACE), and their turnover (in millions). Note that any of its columns can be deleted just

like that (the deletion of a column of data is accomplished by the projection operator of

Codd (1969; 1970)). For instance, when the second column labeled activity is deleted,

what is left is a table that is just a little less informative than the one started with, but

nevertheless useful for statistical purposes: the average turnover by size class for instance

can still be computed from it. Now consider Table 2 that results from Table 1 by

computing the average turnover by size class and activity. From a relational perspective

the second table is similar to the first, but its statistical intention is entirely different.

Table 1. A three-column table of statistical data

Size class Activity Turnover

10 Agriculture 12
10 Agriculture 24
10 Industry 72

Table 2. Average turnover by size class and activity

Size class Activity Avg. turnover

10 Agriculture 18
10 Industry 72

Gelsema: The Organization of Information in a Statistical Office 435

This can be seen by again deleting the second column, admissible from a relational point

of view, which results in Table 3. From a statistical point of view though, that table has

become useless, since its dimensional structure has been corrupted. Note also that taking

the average of the two figures in Table 3 would not lead to the correct average turnover by

size class, according to Table 1.

Our functional perspective of statistical data solves this issue by viewing the first table

as a function v : enterprise ! size class £ activity £ turnover but the second as a function

w : size class £ activity ! avg.turnover and by the restriction that our projection operator

is defined only for ‘columns on the right side of ! ’, cf. Section 2.

6. Conclusion

We have presented a general framework for elementary operations on statistical data, as

they are understood in official statistics. If these operations are seen as operations in an

algebra, then the corresponding term algebra is a natural candidate for the structure (or: the

syntax, or: the format) of the metadata that describe statistical data.

In official statistics, the lack of a theory of statistical information (with the exception of

Sundgren (1973)) is prominent in the proliferation of metadata models, each claiming to

have found the ‘right’ interpretation of “data about data” but, in effect, each failing to

make precise the relationship between a metadata item and the corresponding data item.

In addition to the results recited above, this article advocates being precise about statistical

data and metadata in such a way that meaningful and verifiable claims about metadata

models can be formulated. Further, it attempts to offer the early steps towards a general

theory of information in official statistics. Again, we feel that the availability of such a

theory is crucial; the most prominent reason being that –– as we claim –– very few of the

metadata models used in statistical offices are sufficiently and satisfiably closed under

aggregation, by which we mean that either the result of aggregating microinformation falls

out of the model’s scope, or the model treats aggregated information as if it were

microinformation (or vice versa). Another rationale is that such a theory is likely to be of

use in the harmonization and the increase of coherence within official statistics.

The next step towards such a theory is to properly account for time series information

and related phenomena. For instance, ideally, variables such as output of the production of

shoes, output of the production of cars, etc., are treated as particularizations by product

group of one variable, viz. output. The proper management of these related variables, we

believe, is solved by exponentiation. The expressiveness of the result will be equivalent to

that of a Cartesian closed category (Mac Lane 1998) enriched with the notion(s) of

aggregation developed here (and together with the notion of classification developed in

Gelsema (2010)). The final extension is a mechanism for constructing a subpopulation

from a given population. This mechanism should acknowledge the fact that the definition

Table 3. After deletion of the middle column

Size class Avg. turnover

10 18
10 72

Journal of Official Statistics436

of a subpopulation of entities is necessarily founded on similarities in the outcomes of one

or more variables defined on the given population (after all, this is the only means within a

statistical office to effectively decide whether or not an entity is a member of a

subpopulation). We believe that the notion of a subobject from category theory offers the

right approach. However, it may turn out that the resulting equations cannot be expressed

within the framework of equational logic.

Appendix A. Sketch of an Initial Algebra

This section is of a technical nature and may be skipped by the reader unfamiliar with

universal algebra. It is meant to support the claim that an initial algebra exists for the type

of algebras described in the Introduction.

We sketch the construction of an initial algebra for the information model of Section 1

using the identities of Sections 2 and 3. For brevity and simplicity, we will consider binary

products only and we leave out binary sums (and thus row-wise combining) altogether. For

the same reason we will not consider the identities (10), (11) and (12) of Section 3 that

concern the commutativity of Diagram 7. Finally, we will not treat a(v, w) as the derived

operator g(v)d(w). We stress however that these simplifications do not affect the main

claim of this section.

The algebraic framework we use is that of equational logic: it is known that algebraic

classes described in this framework admit initial algebras (Meinke and Tucker 1992).

More precisely, for a set of sorts S, and an S-sorted signature S, to be defined below, we

give an equational axiomatization E (i.e., a set of equations) that corresponds to the set of

equalities identified in the previous sections. Then the class of all models of E, i.e., the

class of algebras for which every equation in E is valid, contains an initial algebra.

We start by defining the set S of sorts. Let O 0 be the set of object types from Figure 1,

and letM0 be the set of value types. SoO 0 consists of the object types person, organization,

job, and household, which we abbreviate with p, o, j, and h, respectively. The set M0

contains amount and number, which we will denote by a and n respectively. Let P0 be the

union of O0 and M0. We construct the set P of product types inductively as follows:

P0 ¼ P 0

Pi ¼ {ð p1 £ p2Þ j p1; p2 [pi21}; where i . 0; and

P ¼ <i$0Pi:

We let the subset M of P consist of those product types that are inductively built up from

M0 (i.e., by takingM0 ¼ M0 and definingM similarly to P above). The set S of sorts is now

S1 < S2 < S3 where

S1 ¼ {ð p! qÞjp; q [P};

S2 ¼ {ð pQ qÞjp; q [P}; and

S3 ¼ {ðm a nÞjm; n [M}:

The sets S1, S2, and S3 contain the sorts for functions, inverse-finite functions, and monoid

homomorphisms, respectively.

Gelsema: The Organization of Information in a Statistical Office 437

We now construct an S-sorted signature S for the algebra we have in mind. As is usual,

S is an indexed family of sets Sw,s with w [S* and s [S, that contain those operation

symbols that expect arguments of sorts w ¼ s1 _ _ _sl (with si [S) respectively, and that

return sort s. As special cases, Sl,s contain the constant symbols of sort s, which we will

define first.

One part of the constant symbols of our algebra simply consist of the arrows of Figure 1,

except for the two arrows labeled income and the arrow labeled composition (this is

because we will derive them from the other arrows, using the operations considered

below). Taking s ¼ ð j! aÞ for instance, then Sl;s ¼ {salary}, i.e., the arrow labeled

salary between the object type job and the value type amount. The arrows member of,

employee, and employer represent inverse-finite functions; note that this is in accordance

with the philosophical discussion of Section 2. The arrow tax deduction represents the only

homomorphism of Figure 1. Thus, for instance, we let Sl;ð jQoÞ ¼ {employer} and we let

Sl;ðaaaÞ ¼ {tax deduction}.

Another part of the constant symbols represent the monoid operations. For each m [M,

we let Sl;ððm£mÞ!mÞ ¼ {mm} where mm is the symbol that represents the monoid operation

ofm. For the value types a and n, we plan to implement those by addition (but that happens

in a later stage; for now mm is nothing more than an S-sorted constant symbol).

Finally, we treat the projection functions p1 and p2 as constants: for every

p ¼ ð p1 £ p2Þ [P, we let p1;p [Sl;ð p!p1Þ and similarly for p2,p.

We now give signatures to the operations W, k _, _ l and a. We use a trick to

accommodate those partial operations into the total framework of equational logic: for

instance, we treat composition as a family of operations Ws,s 0 with s, s 0 [S. Their meaning

is the following. Composition expects two arguments of sort s and s0 respectively, and they

can be a combination of functions, inverse-finite functions, and homomorphisms. For

composition to be well-defined, the left-hand side of smust match the right-hand side of s0.

Thus, supposing s, s0 [S1 we have, for instance, s ¼ (p ! q) and s0 ¼ (r ! p). The result

of composing functions of sort s and s0 is a function of sort (r ! q). Hence we let

Ws,s0 [Sss 0;ðr!qÞ. For other suitable combinations of s and s0, we see to it that the

composition of an inverse-finite function with a function produces a function, the

composition of two homomorphisms is a homomorphism, etc. This means that we also

have, for instance, Ws,s0 [Sss 0;ð p!nÞ where s ¼ (m a n) and s0 ¼ (p Q m), which

expresses that the composition of a homomorphism with an inverse-finite function is a

function. It should be clear that any meaningful composition, i.e., for any suitable s and s0,

can be accommodated in this way. The same holds for k _, _ ls, s0 which can be defined

similarly. As for as,s0, the only meaningful combinations are of the form s ¼ (p ! m) and

s0 ¼ (p Q q), and then we have of course as,s0 [Sss 0;ðq!mÞ.

Now we let the set E of equations over S be families of equations defined according to

the following recipe. Take for example identity (6). According to the treatment of

composition and aggregation above, it corresponds to the following family of equations:

að p!mÞ;ð pQrÞðv; z WðqQrÞ;ð pQqÞwÞ ¼ aðq!mÞ;ðqQrÞðað p!mÞ;ð pQqÞðv;wÞ; zÞ;

where p, q, r range over P and m ranges over M. It should be clear that all relevant

equations of Sections 2 and 3 (i.e., Equations (1), (2), (7), and (8)) can be treated similarly.

Journal of Official Statistics438

FromMeinke and Tucker (1992) we now know that the initial algebra for the equational

class Alg (S, E) of models of the equational theory E exists: it is the algebra consisting of

congruence classes [t] of terms t over S, where two terms are congruent if the one can be

derived from the other using equations in E together with the deduction rules of equational

logic (i.e., reflexivity, symmetry, transitivity, and substitution rules).

It should be clear that any S-algebra D that respects the sets-and-functions

interpretation of Sections 2 and 3 is a member of the equational class Alg(S, E). The

sets-and-functions interpretation is formalized by choosing appropriate carriers Ds (s [S)

for D where, for instance, D(jQo) is the set of inverse-finite functions from a set jD of jobs

to a set oD of organizations. Also, appropriate monoids and monoid operations must be

chosen for each m [M, for instance letting ma,D (i.e., the interpretation of ma in D) be

addition over R, as each other constant symbol must be given appropriate meaning,

choosing a particular combination of entity-value pairs for the variable salaryD [

D(j ! a) for instance. Finally, the interpretation of the operation symbols in D is then

taken from Sections 2 and 3, for instance letting Wð pQhÞ;ð jQpÞ;D be the composition of two

inverse-finite functions taken from D(pQh) and D(jQp) respectively.

7. References

Barr, M. and Wells, C. (1999). Category Theory for Computing Science. Montréal: Les

Publications CRM.

CMF (2011). The Common Metadata Framework: Part B – Metadata Concepts,

Standards, Models and Registries. Technical Report, UNECE.

Codd, E.F. (1969). Derivability, Redundancy and Consistency of Relations Stored in

Large Data Banks. Technical Report RJ599, IBM Thomas J. Watson Research Center.

Codd, E.F. (1970). A Relational Model of Data for Large Shared Data Banks.

Communications of the ACM, 13, 377–387.

Elmasri, R. and Navathe, S.B. (1989). Fundamentals of Database Systems. Redwood City,

CA: The Benjamin/Cummings Publishing Company.

Engelfriet, J. and Gelsema, T. (1999). Multisets and Structural Congruence of the

pi-Calculus with Replication. Theoretical Computer Science, 211, 311–337.

Everitt, B.S. (2002). The Cambridge Dictionary of Statistics. Cambridge: Cambridge

University Press.

Fraenkel, A.A., Bar-Hillel, Y., and Levy, A. (2001). Foundations of Set Theory. Amsterdam:

Elsevier Science.

Gelsema, T. (2008). General Requirements for the Soundness of Metadata Models. Joint

UNECE/Eurostat/OECDWork Session on Statistical Metadata (METIS), Luxembourg,

9–11 April.

Gelsema, T. (2010). Universal Properties of Aggregation. Technical Report DPK-2010-

02-08-TGSA, Statistics Netherlands.

Goguen, J.A., Thatcher, J.W., Wagner, E.G., and Wright, J.B. (1977). Initial Algebra

Semantics and Continuous Algebras. Journal of the ACM, 24III, 68–95.

Goguen, J.A., Thatcher, J.W., and Wagner, E.G. (1978). An Initial Algebra Approach to

the Specification, Correctness, and Implementation of Abstract Data Types. Current

Gelsema: The Organization of Information in a Statistical Office 439

Trends, in Programming Methodology, Volume IV: Data Structuring, R.T. Yeh (ed).

Englewood Cliffs, NJ: Prentice-Hall.

Goguen, J.A. and Malcolm, G. (1996). Algebraic Semantics of Imperative Programs.

Cambridge, MA: The MIT Press.

Grillet, P.A. (2001). Commutative Semigroups. Dordrecht, The Netherlands: Kluwer

Academic Publishers.

Gunter, C.A. (1992). The Semantics of Programming Languages: Structures and Techniques.

Cambridge, MA: The MIT Press.

Klop, J.W. (1992). Term Rewriting Systems. Handbook of Logic in Computer Science,

Vol. II: Background; Computational Structures, S. Abramsky, M. Gabbay, and

T. Maibaum (eds). Oxford: Oxford Science Publications.

Mac Lane, S. (1998). Categories for the Working Mathematician. New York: Springer.

Meinke, K. and Tucker, J.V. (1992). Universal Algebra. Handbook of Logic in Computer

Science, Vol. I: Background; Mathematical Structures, S. Abramsky, M. Gabbay, and

T. Maibaum (eds). Oxford: Oxford Science Publications.

Pierce, B.C. (2002). Types and Programming Languages. Cambridge, MA: The MIT

Press.

Pursiainen, H. (2008). Consistency in Aggregation, Quasilinear Means and Index Numbers.

Technical Report 244, Helsinki Center of Economic Research.

SDMX (2011). SDMX Standards, Section 2, Information Model: UML Conceptual

Design. Technical Report. Available at http://sdmx.org/.

Sundgren, B. (1973). An Infological Approach to Data Bases. PhD thesis, University of

Stockholm.

UNECE Secretariat (2011). Final Report of the Workshop on Statistical Metadata

(METIS), UNECE.

Vale, S. (2009). Generic Statistical Business Process Model. The METIS Workshop on

the Statistical Business Process and Case Studies, Lisbon, 11–13 March.

van der Veen, G. (2011). Strategic Vision of the High-Level Group for Strategic

Development in Business Architecture in Statistics. Paper presented at the 59th plenary

session of the conference of European Statisticians (CES). Geneva, 14–16 June.

Wirsing, M. (1994). Algebraic Specification. Handbook of Theoretical Computer Science,

Volume B: Formal Models and Semantics, J. van Leeuwen (ed). Cambridge, MA: The

MIT Press.

Received January 2011

Revised November 2011

Journal of Official Statistics440

