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The Practical Specification of the Expected Error of
Population Forecasts

Juha M. Alho and Bruce D. Spencerl

Forecasts of future population are uncertain, but the language of probability theory can be
used to give the forecast users a realistic indication of their ex ante uncertainty. Knowing
the magnitude of the expected error allows the users to prepare for contingencies they might
otherwise neglect. The commonly offered high and low forecast variants fail to do the same
because the users have no idea of how extreme they are. The purpose of this article is to review
the central concepts needed in the analysis of uncertainty, and to present some approaches that
are now available for the practical computation of the prediction intervals.

Methods of constructing prediction intervals include the application of formal time-series
methods to past data, data analytic methods such as naive forecasting, analysis of ex post error
of past forecasts, and subjective or judgmental analysis of error. Examples of each are given.
In particular, we will comment on the compatibility of the results with our prior knowledge of
the vital processes.

In the probabilistic handling of the ex ante error we must be able to combine nonlinearly the
different sources of error without making unrealistic correlational assumptions, such as the
(implicit) perfect correlation assumption of most national forecasts. These propagation of
error calculations can be carried out either using analytic Taylor-series approximations or
via simulation. We present empirical data on the forecast errors of mortality and fertility to
motivate a simplified model that is suited to the programming of these vital rates and their
errors with the present-day computational resources.
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1. Introduction

The uncertainty of population forecasts can be assessed in two complementary ways. We
can study the accuracy of past forecasts ex post, or after the future values have become
known. Alternatively, we can try to assess ex ante, or beforehand, how accurate a forecast
we are making is likely to be. The purpose of this article is to discuss practical ways of
doing the latter. We will see that if a formal time-series model is used then the two
approaches are closely related, when the model is correct.

Our discussion builds on the work of Lee (1974), Lee and Carter (1992), Stoto (1983),
Cohen (1986), and Keilman (1990), who have made use of statistical time-series methods
and modern data analytic techniques to assess uncertainty of population forecasts. Alho
and Spencer (1991) and Lee and Tuljapurkar (1994) have developed methods for carrying
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out the propagation of error in forecasting. That is, if a forecast of the vital rates (fertility,
mortality, migration) is given, how does the uncertainty of the rate forecasts translate into
the uncertainty of the future population numbers? Since forecasting involves both judg-
mental and statistical elements, we will draw on our earlier work on modeling error
(Alho and Spencer 1985) and expert judgment (Alho 1992a). We will also show how
the concept of naive forecasts (Alho 1990) can be used to provide conservative, statistical
ex ante assessments of uncertainty for purely judgmental forecasts. By a conservative
assessment we mean a procedure that does not underestimate the level of uncertainty,
but may overestimate it. Finally, we will use some results of Alho and Spencer (1997)
to build simple representations for the forecast errors of the vital processes. A novel con-
tribution is a stochastic model that combines a data-based model of uncertainty for the
short run and a subjective specification for the long-run forecast.

Hoem (1973, p. 11) developed a detailed classification of forecast errors in population
forecasting into six main categories: estimation and registration errors, pure randomness,
random vital rates, unincorporated gradual changes in mean vital rates, gross shifts, and
serious model misspecification. Keilman (1990, pp. 19-20) specifically adds errors in
the jump-off population to the list. Both classifications are valuable in that they draw atten-
tion to important data analytic aspects of error. When the primary emphasis is on the ex
ante error, we have found it useful to think of forecast error from the point of view of sta-
tistical modeling. Then, the following categories seem to be the most important ones:

‘(1) model misspecification: the assumed parametric model is only approximately cor-
rect; (2) errors in parameter estimates: even if the assumed parametric model would be
the correct one, its parameter estimates will be subject to error when only finite data
series are available; (3) errors in expert judgment: an outside observer may disagree with
our judgments or prior beliefs about the parameters of the model, or the weight we give
to our beliefs in forecasting; (4) random variation, which would be left unexplained
even if the parameters of the process could be specified without any error: since any
mathematical model is only an approximation one would expect there to be residual
error.”” (Alho 1990, p. 523).

We will start in Section 2 by analysing the uncertainty of the rate of growth of total
population, ignoring age structure. This analysis is feasible for most countries of the world
at this time. Of course, it is deficient in that only the total population size, not age, is
considered. Sections 2.2.4.—2.2.5. discuss the relationship between ex post and ex ante
analyses. Next, in Section 3, we will show how simple calculations can be made for a
sex- and age-structured population, if very simple models are used for the vital rates.
The results are detailed enough to be implemented with modest effort in any country
that uses cohort-component methods in forecasting. In Section 4 we conclude with
practical recommendations for the producers of official statistics.

This article interweaves two themes. One examines particular kinds of models such as
Brownian motion and random line models for forecast error in 2.2.1, ARIMA and regression
models for the rate of growth in 2.2.2., scaled and Omstein-Uhlenbeck models for error in
3.2, and a model for error for census survival rates in 3.3. We fit the models into a general
framework for describing the propagation of error. The second theme illustrates the
practical use of this framework: Section 2 analyses the total population of the U.S.,
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Section 3 uses data from the Nordic countries, the U.S., and the Netherlands to discuss
error models for age-structured populations.

2. A Simple Analysis of Uncertainty for the Total Population

Let V(¢) be the size of population at time t = ..., —2,—-1,0,1,2,... Assume that V() >0
for all ¢, permitting us to define v(z) = log (V(¢)) and 6(t) = v(#) — v(t — 1). Suppose that
t = 0 is the jump-off time of the forecast, i.e., it is the last time for which we have data. As
a consequence v(f) = v(0) + (1), where y(r) = 6(1) + ... + 6(2).

Denote the forecast of V(¢) by V(z) for ¢ > 0. Similar notation is used for other forecasted
or estimated values. Define the forecast errors e,(f) = v(t) — 0(¢), €5(t) = 6(t)— S(t), and
€,(t) = y(t) — 4(1). Then, we can write

ev(t) = GU(O) + E,Y(I)

We will now go over the major steps involved in any assessment of the uncertainty of
population forecasts in this simple setting.

2.1. Errors in the jump-off population

The term €,(0) represents jump-off error. In a country like the U.S. or the UK., the main
source of population data are the decennial censuses. Suppose that 1 = 0 corresponds to
the time of a census. We can forecast three different types of populations. (1) The popula-
tion as enumerated in the census. In this case €,(0) = 0, by definition. (2) The population
that should have been enumerated in the census according to the law. Estimates of census
undercount depend on statistical modeling and judgment, so all four sources of error we
have defined are present: erroneous parametric models may be used in dual system estima-
tion or demographic analysis to assess undercount; parameters of such models are subject
to sampling error; judgments concerning some census procedures such as imputation, or
some modeling assumptions such as lack of correlation bias, are uncertain; and the process
of enumeration in the census and the possible post enumeration survey can be inherently
random (Mulry and Spencer 1993). (3) The de facto population that is actually present in
the country. This is different from the de jure population that is legally resident in the
country, and which is targeted in the census. In this case, many supplementary statistical
estimates are needed for the military and diplomatic personnel, seasonal workers etc. If
t = 0 does not correspond to the time of a census, additional estimates are also needed
to update census figures by subsequent births, deaths, and migration (Spencer 1980).

In some other countries,such as the Nordic countries, population data are obtained from
a population register. The situation parallels that described above, but the magnitudes of
error may be different. If we forecast the population as present in the register (cf., case 1)
above), then €,(0) = 0, by definition. It is known that the Nordic population registers are
not fully free of error, but it is believed that the errors are negligible. Hence, even if the
population to be forecasted is the population that should be in the register according to
the official rules (case (2)), we may often take €,(0) = 0 in practice. Since the registers
operate continuously, the establishment of the jump-off population is easier than in the
case of a census based system. However, if the objective is to forecast the de facto population
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(case (3)), then similar additional estimates are needed as in the census-based system, so
all the four sources of error are potentially present.

Our impression is that in many industrialized countries the statistical agencies ostensibly
prepare forecasts for the true de jure population (2), but they are prepared as if the
enumerated population (1) were known without error. For many government users of the
forecasts this is convenient, because with this method there is only one set of figures that
needs to be used in administration. However, we suspect that many non-government users
believe that forecasts are prepared for the actual population (3).

To proceed with the propagation of error it is necessary to say something about the dis-
tribution of €,(0). In the simplest case we may want to specify the mean squared error
(MSE). We have E[e,(0)’] = 0,(0)* + E[e,(0)]%, where 6,(0)* = Var(e,(0)). If erroneous
models are used in estimation, then we would typically have bias, or E[¢,(0)] # 0. Sampling
error in parameters and residual random variation contribute to ,(0)*. Errors in judgment
would typically cause both bias and influence variance. From the total error analysis
in Mulry and Spencer (1993) of the 1990 U.S. census, one can conclude that it would be
reasonable to assume that E[e,(0)] = 0 and 0,(0) = .0036, if the bias-corrected, adjusted
census count is used as the estimate of the U.S. population (case (2)). The primary sources
of uncertainty are modeling error and sampling error. (Mulry and Spencer 1993, Tables 1
and 2, p. 1082).

2.2.  Errors in the forecasted growth rate

The growth rate 6(¢) is essentially equal to: (crude birth rate) — (crude death rate) + (net
migration ‘‘rate’’) during the period [t — 1,¢]. In the industrialized countries forecasts for
the rate of growth are obtained as a by-product of a cohort-component forecast. In
countries with poor data, the crude vital rates, or the past rates of growth may be the basis
of forecasting. In either case, the simplest assessment of uncertainty derives from the rate
of growth. Next we present four different ways of arriving at a probabilistic characteriza-
tion of (), and a simple way to quantify the effect of choice of data period for model fit-
ting.

2.2.1. Judgmental specification

A method of forecasting that has been used in demography at least since the time of
Whelpton (1947) is to set a target value at some future year ¢ = T for the rate of interest,
in this case 6(T'). As already noted by Whelpton, a possible source of information may be
another country that is thought to lead in demographic development. Denote the target
value by 8(T). The usual approach would supplement the middle target by high and
low targets 64(T) and 6,(T'). However, to develop a probabilistic version of the forecast,
we would give a variance a,;(T)2 = Var(es(T)), instead. Think of the true value as
oT) = S(T) + €5(T'). The simplest way to complete the specification of the predictive dis-
tribution of 6(T') would be to assume a distributional form. The normal (Gaussian) distri-
bution is by far the easiest to handle technically. Provided that the forecast is an unbiased
one, the mean is given by 8(T). We can specify a variance as follows. Suppose that based
on past level of error in forecasts, experience in other countries etc., we think that the prob-
ability is (1 — p) that the future value is inside the interval [6;(T'), 85(T)] centered around
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8(T). Then we must have o5(T) = (85(T) — 8, (T)/(@ (1 — p/2) — &' (p/2)), where &
is the distribution function of the standard normal distribution.

Suppose now that we have derived the model 6(T') ~ N(S(T) aa(T)z) A particularly
simple way to derive a Jomt distribution for 8(¢) with 1 =7 =T is to assume a linear
change for the mean, or 5 = BO —|—61t where /30 = 5(0) and 61 (&(T) — 5(0)/T.
This implies that

(1) = Bot + Byt + 112

If a smooth start from the jump-off value and a leveling off at the target year is desired,
then the formula of Andrews and Beekman (1987, p. 21) can be used instead of the linear
curve. The forecast functions of ARIMA(1,1,0) processes provide alternate models that
level off asymptotically (Box and Jenkins 1976, p. 155).

Having decided on the linear (or some other) model for the mean we need to specify the
error structure. A particularly simple but fairly realistic model says that es(r) =
£5(1) + ...+ £5(1), where the summands £;(t) ~ N(O, ag) are independent (Section
2.2.2. considers the correlated case). Under this Brownian motion, or random walk
specification (cf. Alho and Spencer, 1990a), the error of the forecast increases with t.
The forecast error is highly autocorrelated, but not perfectly correlated, so it allows for
some cancellation of error over time. Under this specification we have 0} = a5(T)IT.
It follows that or,y(t) = 05(2t + 1)( + D/6. A less realistic model for the errors would
take e5(t) = €5(T)#/T. This would be the same as assuming that 8 is a straight line,
but with a random slope. Hence, it can be termed a random line model. In this case, there
could be no cancellation of forecast error over time, and we would have
o (t) = aa(T) [(e(t + 1)/(2T)] We see that the variance increases with the 4th power
of t, whereas under the Brownian motion model it increased slower, with the 3rd
power of t.

2.2.2. Formal models for forecasts

Suppose we have a time-series of values &(t) for t = —n,...,—1,0 available. In the
developed countries predictable changes in the age composition may provide explanations
for changes in growth rates. In the developing countries we may only have a time-series
of growth rates. In that case we have little other alternative than to model the 6(7) using
univariate time-series techniques, such as ARIMA models or polynomial regression.
These techniques provide us with both the point forecasts 8(r) and estimates of the
distribution of €5(¢) for 1 <t = T, provided that we can make sufficient assumptions about
the distribution of the 8(¢) (a functional form for the mean, stationarity of deviations
from the mean, possible normality). Unfortunately, such time-series approaches can be
problematic. We will illustrate this by presenting four alternate analyses of the U.S. growth
rate data: (I) stationary model, (II) random walk model, (III) ARIMA model, (IV) regression
model. We will then show how the error analysis can be done in the regression case.

(D) Pflaumer (1992) studied the series 8(¢) for the U.S. along the lines that had been ear-
lier suggested by Cohen (1986). The autocorrelation function declines slowly and the
graph of the data suggests a declining trend (Pflaumer 1992, Exhibits 7 and 8, pp. 334—
335). Nevertheless, the author fitted the stationary model: 6(r) = ¢+ o6t — 1)+ aj,
where the a, are i.i.d. error terms with E[a,] = 0. The estimates were ¢ = .0029 and
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¢ = .782. The model implies that the growth rate increases from the 1988 value of about
.009 to an asymptotic value, which is equal to the average of the data period 1900-1988,
or .0133. This produces implausibly high forecasts after a few forecast years (see column
PF of Table 1). For example, they are out of the 95 per cent prediction interval of Lee and
Tuljapurkar (1994, p. 1185) by the year 2000. The Lee-Tuljapurkar forecast is given in
column LT of Table 1. [The extremeness of the Pflaumer point forecast is further
illustrated by the fact that at year 2050 it agrees closely with the most extreme scenario
considered by Ahlburg and Vaupel (1990) which assumed a two per cent reduction of mor-
tality annually, 1-2 million immigrants annually, and a 50-year cycle of variation of the
total fertility rate from a ‘‘boom’” of 3.2 to a ‘‘bust’” of 1.84. While not impossible, these
assumptions hardly qualify as the most likely point forecast.]

(IT) Since both the graph and the autocorrelation function suggest that the series 8(¢) is
nonstationary, one might consider a stationary model for its first differences. The simplest
such model assumes that 6(¢) is a random walk. Random walk is a martingale which means
that the best forecast for all future times is the current value. Since we had approximately
6(1) = .009 at r =0 (year 1988), a reasonable forecast for y(¢) is 4(f) = .009z. Since
V(f) = 246.1 millions at = 0, we get the forecast V(¢) = 246.1 x exp (.009¢). These
values are in the column RW. The forecasts remain easily inside the Lee-Tuljapurkar
95 per cent prediction interval to 2070, at least. Under the assumption of a random
walk, we have e5(f) = £5(1) + ... + £5(¢), where £5(¢) ~ N(O, ag) are i.i.d. From our
data we get the estimate o5 = .00472. Now we are back in the Brownian motion model
of Section 2.2.1., if we take Bo = 6(0) and 31 = 0. Le., apart from the uncertainty con-
nected with the jump-off population, we know the full predictive distribution of the fore-
cast of the total population.

(IIT) Instead of assuming the increments to be uncorrelated we could build an ARIMA
model for them. Based on the autocorrelation structure, an MA(1) model seems reasonable
for the first differences of 6(¢). This is the same as fitting the model ARIMA(0,2,1) to the
series v(¢). These forecasts are in column IMA. We find that the added *‘refinement’’ that
takes into account the autocorrelation structure does not change the forecast much.
However, as can be seen from column IMC, adding a constant term to the model causes
the forecast to be very close to the Lee-Tuljapurkar forecast. In either case the calculations
needed for the assessment of uncertainty are a bit more complex. In Alho and Spencer
(1997) we give equations for carrying them out. However, in the simple situation at
hand, we get the same results from most statistical packages. Minitab for example, gives
the 95 per cent prediction intervals for the ARIMA(0,2,1) forecast of v(¢). By exponentiating
these we get the intervals for the population size V(¢) = exp(v(z)).

(IV) An alternative ‘‘old fashioned’’ way to handle the nonstationarity is to use ordinary
least squares (OLS) to fit the model 6(¢) = B, + B;¢ + €;(¢) to the data t = —n, ..., —1,0.
This closely parallels the judgmental specification of the predictive distribution under a
linear model for the mean. Using the U.S. total population V(¢) for the years 1900—
1990 we get the estimates 3, = .00983 and 3; = —.0000762. Using the formula of 4(f)
given in Section 2.2.1., we have calculated the forecast given in column REG of Table
1. We find that this forecast is close to the Lee-Tuljapurkar forecast for at least 60 years.

Again a more ‘‘refined’’ version of the regression model would be to use the estimated
residuals from the OLS fit to estimate a correlation structure for the error terms. This could
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be used by itself to improve the predictor, or it could be used as a basis for a generalized
least squares (GLS) estimator. Either procedure would be particularly helpful, if the fitted
line were far from the observed value of 6(¢) at jump-off. This is not the case in our data, so
the point forecast would not change appreciably.

2.2.3. Illustration of error analysis: regression

Under the regression method, we can use the estimated covariance matrix of the para-
meters to calculate prediction intervals for the future population. The covariance matrix
is calculated as a part of the regression fit, and it can typically be easily accessed in any
statistical package Define 8 = (B, 61) and let f? be its estimator. Define W(f) =
(t,1(t + D/2)T, so we can write €, (1) = (1,1) + W(t) (B—B), where e5(1,0=
€s(1) + ...+ €5(t). To reflect error source (2) in Section 1, define Cov (6) C. If we
assume that the errors e5(¢) are i.i.d., we get the simple equation

Var(e, (1)) = a3t + W(®) CW()

The first term on the right is of the order of ¢, or O(¢), and the second is O(t*); the latter will
dominate in long-range forecasts. Ignoring the jump-off error, we construct a 100(1-p) per
cent prediction interval for V(f) as (249.95)exp W©T B * Zi—pp Var(ev(t))m) where
Z1-prp is the 1 — p/2 fractile of the standard normal distribution.

We caution that these intervals do not reflect possible error in the model, which can be
substantial. Often error in modeling produces too narrow prediction intervals. Error in the
modeling can produce intervals that are too wide, depending on how the models are fitted.
For example, fitting, say, a quadratic function to the past data would give ever so slightly
better fits but would have larger prediction intervals. Although model-selection procedures
might clearly indicate that a smaller submodel is adequate, the model-selection procedures
themselves can be misleading (and will be, with some probability). The point is that over-
fitting can occur, and will increase the variances of the prediction errors. Allowances for
model uncertainty can be made (cf., Draper 1995), but the details are mostly beyond the
scope of this article.

Overly narrow prediction intervals do not seem to be the case here, however. Using the
U.S. data we get the estimates W 6 = (.00948)r — (. 0000381)t(t + 1) and Var (e, (1)) =
(.0000207)[¢ 4 (.0437)t* — (. 000733)t%(1 + 1) + (.00000412)*(t + 1)%]. For about 15-20
years the forecast intervals produced this way are comparable to those given by Lee
and Tuljapurkar (1994), but after that the fourth order terms of the variance formula start
to dominate, producing quadratically growing standard deviations for the prediction error.
These are soon unacceptably big. We will take up this problem again in Section 3.

In this particular model, it is easy to analyze the errors. However, in many propagation
of error problems it is simpler to resort to simulation. It is immediately clear that we can
simulate the variables €5(1, f) by simulating the summands 5(?), but it is less obvious how
to take care of the estimation error 8 — 8. A simple solution is to approximate the error by

~ N(0,C), and take €z and the €;(f) to be independent. This yields the approximate
model €, (D) =~ e5(1,0) + wo?! €g that can easily be simulated. Bayesian readers will recog-
nize this interpretation of the standard error as an approximation based on a flat prior on B,
and a normal approximation for the distribution of B. Note that the variance of €p decreases
with the length of the base period on which the model is fitted. Offsetting this variance
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reduction is the concern that the model does not apply too far back in the past. Thus, in
practice, official forecasts are based on relatively short series. One may well question
why, if one doubts the validity of the model far back in the past, one should accept the
validity of the model as far or farther in the future.

We conclude that the standard statistical methods can be used to arrive at a formally
correct predictive distribution, provided that the model is correct. Hence, any statistical
agency can perform these analyses, as long as the growth-rate data are available.

2.2.4. Evaluation of data-period bias

Data on the U.S. growth rates illustrate another important aspect of the assessment of
uncertainty. The U.S. growth rates first declined until the 1930s, then they increased until
the 1950s, then they have declined. Restricting the data period to 1930-1988 would sug-
gest that the trend in the growth rate is up. Restricting the data period to 1950—1988 would
suggest that the trend is down. Therefore, we should be sensitive to the fact that we do not
let our preconceived ideas about the future dictate the choice of the data period. On the
other hand, since some choices always have to be made, it is important to recognize
that they may create a bias in the forecast (‘‘error in expert judgment’’; cf. Section 1).
This is analogous to the effect of the jump-off year in the analysis of ex post errors that
has been noted by Stoto (1983) and Keilman (1990).

The magnitude of such a bias can be assessed by considering alternative data periods.
Judgment is always involved in such a choice, but we can typically decide that some data
are clearly too old to have any information for the current forecasts. The cut-off point may
depend on the length of the forecast horizon: the longer the horizon the more data one
would want to have! Similarly, we typically can decide the earliest data period that we
would certainly want to keep. The actual choice is somewhere in between, but it is hard
to say definitely where. In both ARIMA and regression based analysis we may systema-
tically go through all such alternative starting values s of the data period that are deemed
reasonable. In the U.S. data we have analyzed, these values could be 1900,...,1950, for
example. We can now fix a future year ¢ > 1990. We calculate the forecast of y(t), denote
it by 4(z,y), for all such starting years y. Under the assumption that at least one of the
chosen starting years yields an unbiased forecast (given the model we use), we can get
a bound for the data period bias. Let 4(r) be the preferred forecast and define
d.(r) = max {|§(z,y) — 4(O)|}. Then, we have the inequality, E[d. ()] = | bias of 4(t)|.
To illustrate the method, we used the ARIMA(0,2,1) model with a constant on the U.S.
growth rate data, and defined 4(¢) as the value with starting year 1950. The following esti-
mates were obtained: d,(¢) = .019 at ¢ = 10; .070 at ¢ = 20; and .153 at r = 30. In other
words, the data period bias might increase from 2 per cent to 15 per cent during the first ten
to thirty forecast years. For this model the bias is bigger than the standard deviation of the
prediction error (obtained from the ARIMA model with constant): .008 at ¢ = 10, .025 at
t =20, and .047 at t = 30. If we defined d,(¢) as the average of the values obtained with
the starting years y = 1900, ..., 1950, the bounds for the data period bias would drop by
approximately one third. Interestingly, using the ARIMA(0,2,1) model without a constant
term, and starting year 1950, yields much lower values: d,(f) = .0055 at t = 10; .011 at
t = 20; and .016 at ¢ = 30, but nearly twice as high standard deviations. Again, the use
of average predictions would cut the biases by nearly a half.
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It is interesting to note that the use of the constant term in ARIMA modeling provides a
much stronger control of the forecast than the model without the constant, but at the same
time it exposes us to a greater risk of data-period bias.

Having estimates d, (1) available permits us to incorporate part of the uncertainty of the
data period into our assessment of uncertainty for all z. This can be done in two Ways We
might simply replace our old estimate of Var (e, (1)) by the MSE Var (e,(1)) + d (t) and
proceed in the analysis as before, but with an inflated variance. This is similar to the
method used by Stoto (1983), who breaks the total error into the sum of error due to
the jump-off period and (a considerably smaller) residual error. This approach lends itself
easily to simulation. Use of intervals based on MSE rather than variance can have appro-
priate coverage probabilities if the bias is small relative to the standard error (cf. Cochran
1977, p. 15). Depending on the model, this may or may not be the case here. Alternatively,
we may treat bias separately from the variance.

As a complement to these observations we note that it is dangerous to forecast for a
longer period than the data period. In fact, prudence suggests clearly shorter forecasting
periods, in order for those features of the data that occur fairly rarely to have time
to manifest themselves. With the U.S. data of nearly 90 years, a forecast of the total
population may be carried out up to, say, 30 years into the future, and we still have a
reasonable basis for assessing its uncertainty using essentially data-driven methods. For
longer forecast periods it is critical to take into account the fact that the models used
for forecasting may be biased over the longer term.

2.2.5. Ex post estimates

Stoto (1983) suggested the use of the empirical distribution of the forecast error to char-
acterize the uncertainty of forecasts. Specifically, one should study past forecasts, in order
to detect the error in the rate of growth for each jump-off year and lead-time combination.
The method assumes nothing about the method of forecasting, nor does it require a prob-
ability model for the series &(f). Using data from the industrialized countries Stoto con-
cluded that the average growth rate has an ex post standard deviation of .0028-.0052,
depending what data were used. Stoto essentially used the random line model mentioned
in Section 2.2.1. for translating the ex post estimates into ex ante prediction intervals.

Spencer (1989) and Cheeseman Day (1993) have studied the RMSE of the past forecasts
of the U.S. Bureau of the Census. They found that the forecasts made in 19501971 had an
RMSE that increased from .0015 during the forecast year t = 1, to .0046 for t = 15. How-
ever, for the forecasts made after 1972 the RMSE showed a non-monotonic pattern from
the value .0015 at = 1 to .0003 at t = 7, and to .0020 at ¢ = 15. The accuracy of the short
term forecasts has not improved. Overall, they conclude that if the RMSE of the forecasts
made during the past 30 years can be used as an estimate of ex ante errors, then the high-
low forecast intervals of the U.S. Bureau of the Census for the total population can be
viewed as approximately 67 per cent prediction intervals.

Although the method is intuitively very appealing, it is limited for many reasons. First,
to be useful in ex ante error analysis, one must assume that the errors in the forecasts of the
future growth rates are of the same order of magnitude as those of the past forecasts. AlL
forecasters would not be willing to accept this premise. Second, the method requires that
many past forecasts are available. Otherwise, the estimates of past errors are unreliable.
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This is exemplified both by the wide range of error estimates Stoto got using different data
sets, and the experiences from the forecasts of the U.S. Bureau of the Census. Third, it is
cumbersome to extend the method to populations disaggregated by age because the joint
errors at different ages must be estimated.

2.2.6. Volatility based estimates

Most demographic forecasts do not use formal statistical methods, and in many countries
only a small number of past forecasts are available for an ex post error assessment. There-
fore, it would seem that only a judgmental specification of ex ante uncertainty is feasible.
However, in Alho (1990) we developed a method that can be used as long as we have a
past time series of the process of interest available. Typically we can devise a simple
method of forecasting that produces reasonable forecasts.

In the case of the growth rate, a reasonable forecast is obtained by assuming that the
current growth rate will continue indefinitely. We call these forecasts naive, because
they do not utilize any expert judgment about the conditions during the time of the fore-
casting. We can produce naive forecasts of the growth rate using each of the available past
years as the jump-off year, and find out what its error would have been. This gives us a
distribution of forecast errors for a range of lead times. From the forecaster’s point of
view error assessments based on these distributions are conservative for any method of
forecasting that he/she believes to be more accurate than the naive method. For example,
Keyfitz (1981) examined the 20-year growth rates for 90 countries with varying rates and
found an RMSE of .90 when the forecast assumed the average rate for the preceding five
years, an RMSE of .60 for a somewhat less naive forecast versus .48 for the actual fore-
casts. Therefore, we can get an upper bound for the error of our preferred forecasting
method from the error of the naive method. The errors of the naive forecasts are closely
related to the volatility of the time series in question. In highly volatile time series naive
forecasts have large errors, whereas in series of low volatility the errors are typically small.

We applied the method to the U.S. growth rates for the years 1900—1990, as follows.
First, we calculated the differences of the series for lags 1-60. These are the ex post errors
of the naive forecast for the annual growth rate for lead times 1—60. We then calculated the
RMSE of the naive forecast for each lead time. We found that the RMSEs increased from
.0047 at t =1 to .0083 at r = 29. Then, they decreased to the value .0051 at t = 49, and
increased again. The nonmonotonicity is similar to the one mentioned in Section 2.2.4.
We smoothed the empirical estimates using RSMOOTH of Minitab to remove some local
irregularities. The values of the first 29 years were used in volatility estimation. We
assumed that forecast errors in growth rates were built of independent increments, and
estimated variances for the increments. This specifies a complete probability structure
for the growth rates. In particular, we can derive Var (y(f)) from the variances of the incre-
ments. We omit the details (similar to those that will be discussed in Section 3.2.), but note
that the standard deviation of the prediction error for the naive forecast was .021 at ¢ = 10;
.068 at r = 20; and .121 at t = 30. The corresponding standard deviations of the Lee-Tul-
japurkar forecast under a lognormal interpretation are .019, .044, and .071; cf., Lee and
Tuljapurkar (1994; Table 2, p. 1185). We would expect the naive forecast of the growth
rate to be less accurate than the Lee-Tuljapurkar cohort-component forecast, but it is
interesting to note that initially the difference in performance is not overwhelming. The
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regression approach discussed in Section 2.2.2. yields the estimates .017, .057, and .131.
However, interestingly the corresponding ARIMA(0,2,1) based estimates .034, .083, and
.145, are the largest of all. Adding a constant term decreases these slightly.

Note that the latter methods yield ex ante estimates of error that exceed the ex post
errors of the naive method.

2.3.  Propagation of error for the total population

We have noted approaches to the assessment of the uncertainty of the jump-off population.
We have also described four methods of specifying a predictive distribution for the future
rate of growth. We saw that under a formal statistical model the ex ante error estimates
derive essentially from the past lack of fit of the assumed model. This implies that there
is a close relationship between ex ante and ex post error estimates, provided that the model
is correct, and the data-period bias is small. As shown in Section 2.2.5., when the model is
not correct, then the model-based ex ante error can be bigger than the ex post estimates of
past error. Note also that for the purpose of understanding the predictive distributions it is
the most natural to interpret the probabilities subjectively. A concrete example of this
approach was the simple way standard errors could be treated in simulation, under the
regression model.

In the simple case of forecasting the total population via the growth rate, the propaga-
tion of error calculation simply means that we combine the assessments of the jump-off
error and error in the growth rate, to get an overall estimate of the predictive distribution
of €,(f) = €,(0) + ¢, (). We have,

Var (e,(1)) = Var (e,(0)) + Var (¢,(1)) + 2Cov (,(0), (1)

Therefore, once we have estimates of the variances available, we still have to specify the
covariance. If the population size has been consistently over- or underestimated at the
same rate, then the error can be uncorrelated with the forecast error of the growth rate.
However, if there are changes in the error of the population numbers, the two sources
may be positively correlated: if the jump-off population happens to be underestimated
to an unusual extent, then so is the rate of growth at jump-off.

The basic principle of the probabilistic propagation of error (as opposed to deterministic
calculations) is that we can entertain arbitrary correlations between €,(0) and €, (¢), not just
the perfect correlation.

Table 1. Forecasts of the U.S. total population by Lee and Tuljapurkar (1994) (LT), by Pflaumer’s AR( 1) model
for the growth rate (1992) (PF), by a random walk model for the growth rate (RW), by an ARIMA(0,1,1) model for
the growth rate (IMA), by an ARIMA(0,1,1) model with a constant term (IMC), and by a linear regression model
(REG) for the growth rate

Year LT PF RW IMA IMC REG
2000 273.8 284.9 274.2 275.1 2727 274.6
2010 294.8 324.5 300.0 302.7 294.2 299.5
2020 316.0 373.2 328.2 333.1 313.8 324.1
2030 336.3 425.1 359.1 366.5 330.9 348.1

2050 371.5 556.8 430.0 443.9 355.7 3924
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3. Propagation of Error in a Simple Age-Structured Setting

We will now extend the above discussion to cover an age-structured population. The same
four ways of specifying predictive distributions, as above, are relevant. Similarly, the basic
principle of probabilistic propagation of error applies. The only difference is that we now
have a multidimensional problem.

We start out by summarizing findings from Alho and Spencer (1997), in which we study
extensively both empirical and theoretical aspects of the forecast errors of the vital pro-
cesses of mortality, fertility, and migration. We will then present a simple model under
which the propagation of error can be carried out either via analytical approximations
or via simulation. The setting is sufficiently general to contain the empirical models
that Lee and Tuljapurkar (1994) estimated from the U.S. data as special cases. It is also
well-suited to the formulation of stochastic versions of judgmental, deterministic
forecasts.

We will frequently use naive forecasts to characterize the errors of forecasts in the
industrialized countries. We assume that in the industrialized countries, a naive forecast
of fertility is today’s value. In the case of mortality, a naive forecast assumes that the
recent rate of decline will continue. In the case of migration, a naive forecast may be
the past average level.

3.1.  What are plausible error structures?

In Alho and Spencer (1997) we considered U.S. mortality in ages 65-69, 70-74, 75-79,
80-84, and 85+, and white U.S. fertility in ages 14, 15,...,46. We found that all series
were nonstationary. Many of them would have to be differenced twice, if differencing
were to be used to render them stationary. The rates are similar in other industrialized
countries, such as the Nordic countries. We conclude that plausible autocorrelation
structures for the forecast errors of age-specific mortality and fertility rates must be
qualitatively similar to the autocorrelation structures of the forecast errors of processes
whose first or second differences are stationary. Or, the autocorrelations are positive,
and high.

To study the cross-correlations of the forecast errors of the logarithms of age-specific
mortality rates, we produced (essentially naive) forecasts with an ARIMA(1,1,0) model
with a constant term. The correlations varied, but we concluded that a positive constant
correlation across ages provides a reasonable description of the empirical data. The results
were similar to those we found for cause-specific mortality earlier (Alho and Spencer
1990b, pp. 223-225).

In the case of fertility, the cross-correlations between different ages seemed to fall off
exponentially with increasing age difference. Hence, an AR(1) process across age can
serve as an approximation. We also studied the cross-correlations of age-specific fertility
rates across the Nordic countries. The result was that inasmuch as official forecast errors
resemble naive forecasts, the forecast errors of age-specific fertility rates will be expected
to be positively correlated, in the long run, across countries. In the short run, differential
timing would, nevertheless, produce different errors in the different countries., This sug-
gests that a positive constant correlation might be assumed.

Joop de Beer (1993) has used time-series methods to study net migration in the
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Table 2. The estimated standard deviations S(j,t) of the annual increments of the forecast error for the
logarithm of the age-specific U.S. female mortality during forecast periods 1-5, 6-15, 25-35, 45-55, 85-95
years based on the perfect correlation of error increments assumption and independence of error increments
assumption

Perfect correlation

Period
Age 1-5 6-15 25-35 45-55 85-95
0 .016 .012 .003 .003 .002
1-4 012 011 .003 .003 .003
5-9 .013 .013 .004 .004 .003
10-14 .011 .010 .003 .004 .003
15-19 .007 .006 .003 .003 .003
20-25 .006 .005 .003 .003 .003
26-29 .008 .007 .003 .003 .003
30-34 .012 .011 .004 .004 .004
35-39 014 .013 .005 .005 .004
40-44 .012 .012 .005 .005 .004
45-49 .010 .010 .005 .005 .005
50-54 .007 .006 .005 .005 .005
55-59 .006 .005 .005 .005 .005
60-64 .006 .006 .005 .005 .005
65-69 .007 .006 .005 .005 .004
70-74 .007 .007 .004 .004 .004
75-79 .008 .007 .004 .004 .003
80-84 .008 .008 .004 .003 .003
85-89 .008 .008 .003 .003 .003
90-94 .007 .007 .003 .003 .003
Independence
Period
Age 1-5 6-15 25-35 45-55 85-95
0 .036 .057 .039 .040 .039
1-4 .027 .051 .039 .045 .048
5-9 .030 .057 .042 .044 .054
10-14 .024 .046 .036 .046 .048
15-19 .015 .028 .030 .037 .045
20-24 .013 .023 .029 .035 .044
25-29 .018 .032 .034 .039 .048
30-34 .027 .052 .043 .048 .058
35-39 .031 .059 .050 .058 .068
40-44 .027 .054 .050 .058 .069
45-49 .022 .044 .048 .057 .069
50-54 .016 .029 .042 .053 .068
55-59 .013 .025 .041 .052 .067
60-64 .013 .025 .039 .049 .063
65-69 .015 .028 .039 .048 .060
70-74 .017 .031 .038 .046 .056
75-79 .018 .033 .036 .042 051
80-84 .019 .035 .034 .040 .048
85-89 .018 .034 .033 .038 .045 .

90-94 .016 .032 .031 .036 .043




216 Journal of Official Statistics

Netherlands in 1960—1989. The time series show abrupt changes from one year to the
next, but there does not seem to be systematic trends. There is some evidence of auto-
correlatedness, and the author identifies an MA(1) model. After the second forecast
year, this model uses the mean of the data period as the forecast, i.e., it is essentially
equivalent to an uncorrelated series. Bickman and Scheele (1995) have given estimates
of the relative error of migration forecasts by age, and shown that in ages with high
mobility the errors have been the greatest in the Stockholm region.

Finally, we note Keilman’s (1990, Figure 5.1., p. 83) results on the cross-correlations of
the Dutch fertility and mortality forecasts. Forecasts for both have been too high since the
1960s. The same is true in many other industrialized countries, such as the U.S., Canada,
and the Nordic countries. However, during the 1940-1960 period, fertility rose rapidly,
but mortality declined. Since the baby-boom came everywhere as a surprise, it seems clear
that the errors of fertility and mortality forecasts have little to do with each other. This
suggests that a zero cross-correlation between them is an appropriate approximation. To
avoid any misunderstanding, it is important to note that we do not claim that mortality
and fertility could not be behaviorally ‘‘correlated.”” We merely point out that it is unusual
that the forecast errors of mortality and fertility were correlated.

A further technical issue is the nature of error in long-term forecasting. We noted in
Alho (1990) that prediction intervals of the total fertility rate rapidly exceed values that
are considered plausible in the light of historical experience. This is particularly apparent
if an ARIMA forecast of the logarithm of the total fertility rate is made. We reported an
analogous finding in the case of the U.S. growth rate, in Section 2.2.2. If the prediction
intervals are not compatible with our other information concerning the vital processes,
then some modification of the error specification is called for. Alho (1990) and Lee
(1992) have experimented with logistic transformations that constrain the rates into a plau-
sible range. The mixed estimation approach discussed in detail in Alho (1992a) and the
mean conditioning of Lee (1993) similarly contribute to the stability of the prediction
intervals. However, below we will present a new method that is particularly simple to
use and avoids the use of deterministic bounds, while still retaining a strong control
over the forecast in the long run.

3.2, Simple covariance models for prediction errors

Based on the empirical analyses summarized in the previous section, we will define simple
correlation structures that can be used as building blocks to approximate many demo-
graphic forecast errors. Even if we use formal statistical methods in forecasting, we could
opt for the family to be introduced to provide a simple approximation for the often
complex analytical formulas. A key feature of the formulation is that it is given in
terms of random variables, rather than moments. Hence, it is directly applicable in
simulation.

We will assume that the prediction intervals up to time 7 =< oo may be determined by
empirical data, such as a formal statistical model, volatility or ex post based estimates
etc. For very long term forecasting (t = T') we may specify a subjective structure that con-
tinues smoothly from the earlier part, but remains bounded ad infinitum. The choice of T
will depend on the series. If the forecast errors increase to levels that are considered
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implausible by expert demographers, then we may want to switch to a subjective specifi-
cation that incorporates such judgment.

Consider error processes X(j, t), where j =1,...,J may refer to age or region, for
example, and ¢ >0 is the forecast year. Suppose that the processes are of the form
X(j, t) = €(j, 1) + ... + €(j, 1), where the error increments are of the form

6(j9 t) = S(J’ t)(TI] + 6(]’ )

Here, the S(j, t) are known weights whose specification will be discussed shortly. Assume
that for each j, the variables 8(j, ¢) are independent over time ¢ = 1,2, ... In addition, we
let the variables {&(j,H)|j=1,...,J;t=1,2,...} be independent of the variables
{njlj = 1,...J}. Furthermore, we assume that

n; ~ N(O, k;),6(j, ©) ~ N(0, 1 — «;)

where 0 < k; < 1 are known. For most purposes we may assume that Corr (y;, ;) = plf_j N

or Corr(n;,m;) = p,, for some |o,| = 1. Similarly, Corr(8(i,1),5(j, 1)) =p; "', or
Corr (8(i, 1), 8(j, )) = ps for some |ps| = 1. Since the increments are scaled by the
S(j, 1), we call this a scaled model for error.

Note first, that k; = Corr (e(j, 1), €(j, t + h)) for all h # 0. Therefore, «; can be inter-
preted as a constant correlation between the error increments. Under a Brownian motion
model mentioned in Section 2.2.1. the error increments would be uncorrelated with k; = 0.
This may be appropriate in fertility forecasting, for example. Second, note that
Var (e(j, t)) = S(J, t)2. Suppose that we have an increasing sequence of error variances
o(j, 1 < 0(j,2)* < ... < o(j, T)* available with Var (X(j, ©)* = o(j, 1)*. Such variances
may be known by subjective specification, formal methods, or by ex post or volatility
based estimates. We can now estimate the corresponding variances of the error increments

by taking first S(j, 1)? = o(j, 1)2. One can show that at z > 1, we must have
SG. 1) = =5 (s L = D + [ (s 1,1 — 1 + 0, 0 = oG, 1 = 1]

where s (j;1,t — 1) = S(j, 1) + ... + S(j, t — 1). Note that in the case «; = 0, this simpli-
fiesto S(j, ©)* = o(j, 1)* — o(j, t — 1)*. (This was the method we used in Section 2.2.6. to
specify the probability structure.) A moment’s reflection shows that when «; = 1, then
s(Gil,t=1) =o9(j,t—1),and S(j, 1) = o(j, 1) — o(j, t — D).

The structure given above provides flexible approximations to many different error
structures that are relevant in demographic forecasting. For example, consider the
logarithm of age-specific mortality in age j at time 7, denote it by m(j, 7). The Lee and
Carter (1992) forecast of m(j, ) leads to a model m(j, t) = m(j, t) + X(j, t), where the
prediction is of the form /(j, f) = a; + b;&t, where the a; and b; form the mean and the
first principal component vectors (and are treated by Lee and Carter as fixed in the propa-
gation of error) and & is an estimated parameter with a standard error. The increments of
the error process are of the form e(j, 1) = bi(e, + ,), where €, ~ N(0, 02) and
8, ~ N(0,02). We see that by defining c = (o2 +03)"> and taking S(j,7) =
cbj,m; = €,/c,8(j, 1) = &,/c, and p, = ps = 1, we have a special case of the proposed
model with x; = ag,/c2 for all j. .

We have argued that the usual time-series methods often produce prediction intervals
that will eventually be too wide. This may happen if the methods do not incorporate
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sufficient information about the boundedness of the vital processes. We propose to take
such additional information into account by allowing for modifications in the error struc-
ture so that levels of error that contradict the additional information are excluded. The first
proposal is a simple one. Suppose we judge that the error structure we have specified yields
what should be a maximum variance by year 7. We may then assume that from 7 on the error
structure will follow an AR(1) process centered around the point forecast that has the standard
deviation Var (X(j, T))"* and the first autocorrelation Corr (X(j, T — 1), X(j, T)). We will
consider X(T') as the first value of the AR(1) process, so there is a smooth transition from
one process to the next.

To provide a theoretical basis for the eventual AR(1) assumption, it is useful to note that
the AR(1) process is the discrete time version of the Ornstein-Uhlenbeck process of
diffusion theory. There, the process is obtained from a Brownian motion as subjected to
an elastic force towards a mean function (Feller 1971, pp. 99, 335-336). This notion
seems to capture well the idea that the errors should be centered around the point forecast
and have a bounded variance, in the long run.

However, the continuous time Ornstein-Uhlenbeck formulation also suggests a modifi-
cation of the above construction that is slightly less general, but simpler to describe. Let us
suppose that we have a sequence of variances o(}, 1)2 <...<o(j, T): < a(J, oo)z, where
o(j, ) is approached asymptotically, and suppose we are given the autocorrelation
e = Corr X, T —1),X(j, T)) for some \ > 0. We can then define an Ornstein-Uhlen-
beck process that is zero at time 7=0, and has the Gaussian distribution
N, (1 — e~ 2)g(j, %0)?) at time 7 > 0. By taking 7, = —log (1 — o(j, £)*/a(j, )*)/(2N)
for t =1,...,T, we see that the Ornstein-Uhlenbeck process has the variances o(j, t)2
at times 7,. Hence, by altering the time scale of the Ornstein-Uhlenbeck process we get
sample paths for the error process. This formulation permits the same cross-correlation
structures as above, but it is constrained to a specific autocovariance structure dictated
by the Ornstein-Uhlenbeck assumption.

The reports documenting the production of the ex ante forecast intervals should clearly
indicate what kinds of additional information were used to constrain the level of error, and
what the effects of these constraints are, e.g., at what point in time do the constraints take
effect.

3.3. A model for the error of the total fertility rate

As the first application of the model given above, let us consider the modeling of the error
in a forecast of age-specific fertility. Let j = 1,.. ., J refer to single years of age (such as
15-44) and define f (j, 1) as the forecast of age-specific fertility in year . Assume that the
true rate is of the form f (j, ) = f (J, nyexp (X(J, 1)), where the age-specific error of the
forecast is the same for each age j, or X(j, f) = X(¢) with E[X(¢)] = 0. This simplified
specification assumes that the error can be approximated in terms of the error of the total
fertility rate alone, and that the errors are perfectly correlated over age (i.e., p, = ps = 1).
This matches the assumptions of Lee and Tuljapurkar (1994) in their fertility forecast. A
more refined analysis would take into account errors in the forecasted distrjbution of
fertility (cf., Cruijsen and Zakee 1991, p. 36), but one would not expect this to have a
major effect on the analysis of the error in births.
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Suppose the error process X(r) is a Brownian motion with the annual increment
e(j, 1) = e(t) ~ N(O, .08%), where the variance is based on volatility estimates presented
in Alho (1990) for Finland and the U.S. In this case we would take k; =0, and
S(j, £) = S(t) = .08. Suppose the forecaster deems it unacceptable that, say, the 95 per
cent forecast interval exceeds twice the point forecast, or goes below one half of the point
forecast. Then, we would switch to a judgmental specification at time ¢ = T such that
exp (2(.08)T?) = 2, or at T = [log (2)/(.16)]*. Rounding to integers we have T = 19.
Under the Brownian motion process the first autocorrelation between values at time ¢
and ¢ — 1 is [(t — 1)/)"?, so at t = 19 we get .973. Similarly the standard deviation of
the value at t = 19 is (.08)(19)1/2 = .349. Therefore, we would replace the initial Brownian
motion model with an AR(1) model that has the standard deviation .349 and first auto-
correlation .973, for # = 19. There is some interest to note that the innovation variance
of the AR(1) process is (1 — 973%)(.349) = .081%, within rounding error of the variance
of the error increment of the Brownian motion, 082,

For comparison, we note that the Ornstein-Uhlenbeck version of the error process that
has variance (.349)2 and 7 = log (.973) should be observed at times 7; = .99, 7, = 2.02,
75 = 5.6, 719 = 13.6, 75 = 28.4, and 719 = 117.0, for example, to match the empirical
variances. For t = 20,21,... we would take 7, =t — 19 4 719.

Define B(¢) as the number of births during year >0, and let f?(t) be its forecast.
Assume, for the moment, that we can forecast mortality and migration without error.
Define £(¢) such that B(t) = B(t)exp (£(2)) for ¢t >0, and £(r) = O for ¢ = 0. Therefore,
£(¢) is the contribution of future fertility alone to the uncertainty of the birth forecast.
Similarly, define the number of women in age x during year ¢ as P(x, r). We have

B(t) = exp (X(0) Y _ P(x, Of (x, 1) exp (£t — x)

Define b(x, 1) = P(x, t)f (x, t)/EyP(y, t)f (y, 1) as the forecast of the fraction of births that
are due to women in age x during time 7. Then, a Taylor series expansion for log(B(1))
yields the following approximate renewal equation for the error due to fertility

ED =X+ Y b, 0EE —x)

Here, the summation extends over such child-bearing ages x that have x — ¢ < 0. The
renewal equation can be viewed as a version of Equation (2.5) of Lee (1974, p. 609),
except in our case the mean from which the deviations are measured is an arbitrary func-
tion given by the point forecast. Also, for our purposes we may allow the weights b(x, 7) to
depend on .

The above renewal equation is useful, because it shows how errors in fertility propagate
according to weights b(x, 1) that are given by the point forecast. A practical way to see the
effect is to replace X(¢) by an indicator process that takes the value zero everywhere,
except at t = ¢, where it takes the value one. Running this process through the filter shows
how an error at ¢ = £, produces new errors at later times.

The model also permits an analytical calculation of the autocovariance structure of _
the £(7) based on that of the X(f). However, since the simplest way to estimate the
autocovariances is via simulation, it is just as easy to simulate the values B(¢) directly,
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and to derive the autocovariances of £(¢) from them. In either case, we may effectively
derive the matrix Cov (£,), where £, = (£(1), ..., &))", for any ¢ > 0.

Above, we assumed that fertility was the only source of error in a birth forecast. The
result of the calculation was a full covariance structure for the vector of the logarithm
of the future births for as long as the forecast data are needed. It is easy to see that if
the errors of fertility forecasts can be viewed as being independent of the errors in mortal-
ity and migration forecasts, then we can add those effects separately to the current results
for a first-order approximation.

Another matter is that, as we have noted earlier (Alho 1992b), the level of uncertainty in
fertility is so high in most industrialized countries that the added uncertainty due to
mortality is negligible for the birth cohorts born after the jump-off. The same is true for
migration in many national populations. (However, in small subnational populations
migration can be a major, even the largest, source of error.) A remarkable consequence
is that whenever we may ignore the other sources of error, the error structure for all
survivors of the birth cohorts born after the jump-off time, can be derived from Cov (¢,)
for ¢ large enough. To see this, let V(x, t) = exp (0(x, t) + €,(x, 1)) be the number of males
(or females) in age x at time ¢ > 0. If fertility is the only source of error, then (in a single
region model) the relative prediction error is €,(x, ) = £(t — x) for x < t.

3.4. A model for the error of a mortality forecast

In this section we will take judgmental high, medium, and low forecasts of age-specific
mortality, and show how these can directly be turned into a stochastic forecast. This
allows the forecaster to perform additional propagation of error calculations based on
the forecast in a way that is compatible with the original forecast but that avoids the
severe perfect autocorrelation assumptions that the deterministic calculations are
equivalent to.

Consider the U.S. female mortality in ages 0, 1-4, 5-9, 10-14,...,90-94. The jump-
off year is 1985 and the official high, medium, and low forecasts are given for the years
1990, 2000,..., 2080, so the forecast periods are 5, 15, 25,..., and 95 years (Wade
1987, pp. 11-12). We took the logarithms of the rates and used the average of the
“‘high—medium’’ and ‘‘medium—low’’ differences as an estimate of the standard devia-
tion of the forecast error in the log-scale. In other words, we interpreted the high—low
interval as (approximately) a 67 per cent prediction interval for a normally distributed
error with mean zero. [Should it be more appropriate to interpret the official intervals
as, say, 95 per cent intervals, then the estimated standard deviations we present should
be divided by two.]

We considered both independent and perfectly correlated error increments (k; = 0 or
k; = 1). In both cases we assumed that the standard deviation was the same during the first
five forecast years, during the next ten forecast years, and similarly for each of the follow-
ing ten year segments. This gave us estimates of the standard deviations for each of the ten
forecast periods, for each age. Table 2 gives results for five forecast periods for both mod-
els. The results for the intermediate periods can be accurately obtained by interpolation.
The perfect correlation interpretation results in estimates that are much higher during
the first fifteen forecast years than later. The independence model shows a more even
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progression. Curiously, both models show that in ages 30—44 the relative forecast errors
are thought to be higher than in the neighboring ages.

To compare these error estimates for mortality to those for fertility, suppose X(j, 7) is
the error in the forecast of the logarithm of the mortality rate in age j at time ¢. Denote
the logarithm by m(j, 1), its forecast by 7u(j, t), and let p(j, ) = exp (— exp m(j, )+
X(j, 1)) be the corresponding survival probability with the forecast p(j, 1) =
exp(— exp (7, 1))). Then, the delta method gives the approximation

Var (p(j, 1) = p(j, 1)* exp ((j, 1) 0(j, 1)’

where Var(X(j, 1)) = o(J, t)z. We see that the relative error of the survival rate has
approximately the standard deviation exp (/(j,1))o(j, 1), i.e., it is the mortality rate times
o(j, 7). Depending on the country the age-specific mortality rates are in ages 1-40 roughly
1/1000, in ages 40—65 roughly 1/100, and in ages 65—80 less than 1/10. We omit the
details (see Exhibit 4 of Alho 1992b), but note that this is the reason why in industrialized
countries uncertain mortality is not a major source of error for forecasts of the size of birth
cohorts that are born after the jump-off, despite the fact that f annual errors are added to get
the z-year survival rate.

To complete the judgmental specification of the ex ante error we need assumptions for
the cross-correlations of the errors across age. As noted in Section 3.1., naive forecasts of
age-specific mortality rates have had highly variable cross-correlations, but a constant
correlation model can provide a reasonable approximation. It can be interpreted as saying
that all the ages share a common cause of forecast error, but that there are also age-specific
error factors that modify the error from the average error. While the constant correlation
assumption could certainly be refined, one should note that it is more general than the
perfect cross-correlation assumption of Lee and Carter (1992).

3.5. A model for the error of age-specific migration

A proper description of migration in a system of n regions would require data and analysis
of (n — 1)? outmigration rates per age and sex annually. However, migration data are poor
in many countries, and even if the data are available, the demands on the analyst are heavy.
For such reasons, migration is typically forecasted using summary procedures, such as
specifying an annual additive vector for a country’s international net-migration; or by
specifying annual out-migration rates for sub-regions, and reallocating them according
to historical shares, for internal migration.

Given the multitude of settings, we will only sketch one simple approach to the handling
of the error in migration forecasts. We will reduce the analysis to the consideration of
census survival rates. In other words, we assume that the migration forecast can be repre-
sented in terms of correction factors that modify survival rates, to account for migration.
Most migration forecasts can be reformulated in this way, even if they had originally been
made using other procedures.

Define the true correction factor in age j at time # as Q(j, ) = exp (§(J, 1) + €,(j, D),
where §(j, 1) is the forecast of log (Q(j,?)) and €,(j,?) is a zero-mean forecast error. At _
each survival step, we should add §(j,?) + €,(j,?) to the logarithm of the survival rate
to get the correct result, but we only add §(j, 7). This produces the error we have to
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characterize. A simple approach is the following. Suppose we write §(j,1) = 7(j, f)—
a(j,t), where 7(j,t) is the correction that we would need, if there were in-migration
only, and #(j, t) is defined by subtraction. Therefore, &(j, ¢) is approximately the factor
we would need, if there were out-migration only, in age j during year 7. (Essentially,
7(j,t) and @(j, 1) are the in-migration and out-migration ‘‘rates.””) A natural model would
seem to be that the true factors are of the form r(j,r) = 7(j,t)exp(e.(j, ), and
u(j,t) = a(j, r)exp (,(J,1)). Therefore, we have

€,(J, 1) = 7(j, D)(exp (e,(j, 1)) — 1) — a(j, )(exp (e,(j, 1)) — 1)
=~ ?‘(.]’ t)er(j’ t) - i’\‘(]’ t)eu(j’ t)

The family of Section 3.2. for e(j, ) can now be used directly for the terms 7(j, £)e,(j, £)
and 4(j, t)e,(j, 1). This implies a model for €,(j, t).

A new consideration is the correlation between €,(j, ) and €,(j, f). If in-migration and
out-migration tend to increase or decrease simultaneously, then the correlation is positive.
This can happen if, say, economic cycles sometimes accelerate and sometimes decelerate
the rate at which people change their jobs, or housing. If unexpectedly high in-migration is
associated with unexpectedly low out-migration, and conversely, then we have a negative
correlation. This could be due to unanticipated change in the relative attractiveness of a
region. Changes in the way de jure populations are defined may produce any kind of cor-
relation, depending on composition of inmigrants and outmigrants.

The key issue in the above derivation is that even if we forecast net-migration directly,
we need some idea about the magnitude and age-distribution of in- and out- migration.
Even, if we were willing to assume that the two age-distributions are the same, we still
need to have an estimate of what that common age-distribution is. The model migration
schedules of Rogers and Castro (1981) may be valuable in this task. To get a handle on
the magnitudes of the error terms we can always resort to naive forecasts. Recent past
average level, if known, can often be taken as the naive forecast.

4. Discussion and Recommendations

We have presented an overview of how one can assess, using relatively simple procedures,
the kinds of forecasts that are currently made by official statistical agencies. To be sure,
these procedures could be refined to take account of special circumstances in different
countries. They may also require modification to match a country’s specific forecasting
procedures and data capability. Nevertheless, we believe that our procedures are accurate
enough to give a realistic assessment of the error to be expected in forecasting, and we
hope that our discussion can serve as a basis for country-specific applications.

Our first recommendation is that the national statistical agencies do an ex post assess-
ment of the error in their forecasts of the total population. These estimates should find their
way into the future forecast reports as a crude warning that the users should be alert about
the possibility of error.

Second, due to the central role of fertility in the error of population forecasting, the
agencies should do an ex post evaluation of error, and a volatility-based assgssment of
error, for the total fertility rate, and compare the two. Something is wrong, if the ex
post errors are systematically bigger than the volatility based estimates.
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Third, the agencies should specify a Brownian motion model for the total fertility rate to
match their country’s circumstances and get an estimate of error for the birth vector. This
may involve exercising judgment (recall Section 3.2), in order to avoid too large errors.
The relative error in the size of a birth cohort will give a fairly accurate estimate of the
relative error in the number of survivors from the cohort.

Fourth, the agencies should formulate a probabilistic version of their mortality forecast
either based on time-series methods or judgmentally. This should be applied to the popu-
lation already born at jump-off. Together with the previous point, this would produce a
complete probabilistic specification of error for all ages.

Fifth, the agencies should assess the uncertainty in migration forecasts and in the jump-
off population. In some countries these uncertainties would not be major sources of error
on the national level, but in others they would. The estimates should be added to those
obtained earlier.

Sixth, we believe that real advances in the usefulness of forecasts are obtainable, if they
are implemented as databases. The procedures we have outlined here make it possible to
produce relatively simple computer programs that will calculate error estimates for user-
specified population aggregates. This will tremendously increase the value of the forecasts
for the users (Alho and Spencer 1991).

Seventh, we would like to caution the forecasters not to simply follow the usual
statistical practice of using five per cent as the risk level. It is likely that many users do
not realize what the actual level of uncertainty in population forecasts is. Therefore, if
the 95 per cent prediction intervals are much wider than the current high—low intervals,
then this may create some unnecessary speculation as to what has caused the ‘‘decline’
in the accuracy of the forecasts. Try 50% or 67% prediction intervals instead!
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