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The Ten Cases of Auxiliary Information
for Calibration in Two-Phase Sampling

Victor M. Estevao® and Carl-Erik Siirndal®

Calibration is commonly used to produce estimation weights in sample surveys. Calibration
weights satisfy a set of calibration equations that make use of the specified auxiliary informa-
tion. In a two-phase design, the information used for calibration can take different forms. The
case that we call complete auxiliary information arises when information is available at the
level of the population for one set of auxiliary variables and at the lower level of the first-
phase sample for another set of auxiliary variables. In practice, we may be restricted to a cali-
bration on a subset of the complete auxiliary information, or we may decide to discard some of
the complete information if no significant loss of efficiency occurs. We show that there are
exactly nine different subsets of the complete information, for a total of ten different cases
of auxiliary information. We propose one calibration estimator in each of these ten cases.
In general, the more extensive the auxiliary information, the better the precision of the
resulting estimates. However, there are sometimes surprising exceptions to this, as illustrated
both by our theoretical results and by our simulation. We study the precision of the calibration
estimators in the ten cases, both theoretically (by deriving the sum of the two variance
components) and empirically (by repeated sampling from different types of populations).
We suggest a simple approach to determine the best use of auxiliary information.

Key words: Design-based inference; linear regression representation; calibrated weights;
regression residuals; variance estimation.

1. Introduction

A distinguishing feature of two-phase sampling designs is that auxiliary information may
exist at two levels. Some information is at the level of the whole population and other
information is at the level of the first-phase sample. We may use all, some or none of
this information to obtain calibrated weights. These weights are then used to produce
an estimate of the parameter of interest such as a population total. The variance of the cali-
bration estimator depends on the level and amount of auxiliary information used in the
calibration.

Two-phase sampling designs have attracted considerable attention in the recent litera-
ture. There are two reasons for this. First, the efficiency of two-phase designs has led to an
increased use of them in statistical agencies such as Statistics Canada. In addition, two-
phase sampling provides a simple mechanism for the handling of nonresponse. We select
a sample and regard the respondents as the second-phase sample.
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There is an interest in studying alternative uses of auxiliary information in two-phase
designs: (i) it is important to identify the relevant auxiliary information for the calibration;
(ii) the complete auxiliary information may not be available, so we often have to calibrate
with a smaller set of information. We show that there are exactly ten different cases of
calibration for a two-phase design, depending on whether we use all or part of the com-
plete auxiliary information. These different quantities of information influence the preci-
sion (the variance) of the calibration estimator. We examine these issues from a theoretical
perspective, by deriving the large sample variances of the ten cases, and from an empirical
perspective through Monte Carlo simulation, in which repeated two-phase samples are
drawn from six generated finite populations.

2. Calibration Estimation in Two-Phase Sampling

We consider a finite population of size N, denoted U = {1,...,k,...,N}. A first-phase
sample s;, of size nj, is drawn from U with a design such that the sampling weight for
unit k is ay, = 1/, where wy, = P(k € s1) is the known first-phase inclusion probability
of k. Some variables (although not the variable of interest) are observed for the first-phase
sample units. A second-phase sample s, of size n, is drawn from s;with a second-phase
design such that the (conditional) sampling weight for unit k is ap, = 1/m,,, where
wy = P(k € s|s;) is the (conditional) inclusion probability of k, given s;. The total
sampling weight of unit k, given by a;, = a ay, is called the design weight.

The variable of interest is denoted y; its value for unit & is y,. The target of estimation is
the population total ¥ = >, y;. For simplicity, we write > yc4 as Y4 for any A c U. The
y-variable is observed only for the second-phase sample units, so the available y-data are
{y: k € s5}. The two-phase double expansion estimator, given by ¥pp = > s A1kAo Yy 18
unbiased for Y but makes no use of auxiliary information. It is however a natural point
of reference with which to compare the usually more efficient alternatives that follow.

Calibration is used to modify the design weights a; subject to constraints called calibra-
tion equations. In this article, we produce a set of calibrated weights {w;: k € s} of the
form w; = a,g;, where g, is the weight adjustment factor for unit k. As shown in Section
5, it is important that g, be close to 1 for all units in order to obtain an approximately
unbiased estimator and to permit the estimation of variance. We estimate Y by applying
the weight w;, to the observed value y,. Summing over the units in the second-phase
sample, we obtain the two-phase calibration estimator

F=3 wo @1

Estimators for two-phase designs can also be constructed using a regression approach.
Sidrndal and Swensson (1987) and Sirndal, Swensson, and Wretman (1992) examine
different regression estimators for two-phase designs. Armstrong and St-Jean (1994)
applied regression estimation in a Statistics Canada survey with a two-phase design.
Binder (1996) gives a useful linearization technique to obtain the approximate variance
of nonlinear estimators. Dupont (1995) studied regression and calibration and the relation
between them. Axelson (2000) discusses alternative approaches to variance estimation.
Lundstrom (1997) describes techniques for calibration to handle nonresponse.

The usual approach to computing calibrated weights is by distance minimization, which
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requires the specification of a distance function. This is discussed, mostly in connection
with one-phase designs, in Huang and Fuller (1978), Alexander (1987), Bankier (1989),
Deville and Sirndal (1992), Deville, Sdrndal, and Sautory (1993), and Singh and Mohl
(1996). As some of these references show, differences are often negligible between the
estimates produced by different distance measures. Another approach to calibration is
the functional form method given by Estevao and Sérndal (2000) in which the calibrated
weights are given an explicit functional form. In this article, we examine the differences
between calibration estimators in the ten different cases of auxiliary information, not
between calibration estimators within each case. The reason is that we do not always
have control over the amount of auxiliary information available for calibration, but we
know how to compute calibrated weights within each case. We derive an efficient calibra-
tion estimator for each of the ten cases, using least-squares minimization in one or two
steps to create the calibrated weights wy.

Consider two auxiliary vectors denoted x; and X, with J; = 1 and J, = 1 auxiliary vari-
ables, respectively. The values of x; and x, for unit k are denoted by x;; and x,,. We
assume that we have the following auxiliary information.

e The vector total >, Xy is known.
e xy; and x,; are known vector values for every k € s,.

We refer to this as the complete auxiliary information. The calibration process may use all
or part of it to produce the calibrated weights {w;: k € s} and the calibration estimator
Y = > Wiy Since each calibration equation always involves two different levels of
information, it is useful to present the auxiliary information by level as follows:

o At the level of the population U: The vector total > X, is known.
o At the level of the first-phase sample s,: X;; and X, are known for every k € s;.
o At the level of the second-phase sample s: Xy, and X,, are known for every k € s.

This article is arranged as follows. In Section 3, we show that there are exactly ten
ways of specifying the calibration equations. Each of these cases is a different way
of using the complete auxiliary information for calibration. Within each case, we pre-
sent the calibration equations and define one calibration estimator through a simple
method of calculating an efficient set of weights w;. The calibration equations and
the calculation of the calibration weights are discussed in Section 4. The bias and
approximate variance of the estimator are derived in Section 5 and the estimation of
variance is shown in Section 6. In Section 7 we describe an empirical simulation
and examine its results. In Section 8 we provide a simple recommendation to produce
the most efficient estimator among the possible cases.

3. The Ten Cases of Auxiliary Information

Consider the complete auxiliary information given in Section 2. It is possible to make use
of it in different ways. At the two extremes, we use either all or none of this information.
When no information is used, we obtain the double expansion estimator. There are also
eight intermediate cases, which use some auxiliary information. These cases merit
attention because of the following:
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(i) In some situations, there is little loss in efficiency when we ignore some of the
auxiliary information in the calibration. It is even possible to obtain a calibrated
estimator whose variance is less than that based on the complete information.
This is illustrated in the simulation results of Section 7.

We do not always have complete auxiliary information so we have to make do with
what is available. It is important to see how this limitation affects the variance of the
estimator and how the latter variance compares to the variance of the estimators in
the two extreme situations.

(ii)

We enumerate the ten possible cases by coding them using a sextuplet zzz/zzz, where each
position z is either 1 or O to identify whether or not we use the corresponding auxiliary
information. The first three positions indicate the use of information on x; in the calibra-
tion. Similarly, the last three positions tell us how we use information on Xx,. The first and
fourth positions indicate the use (z=1) or non-use (z=0) of information at level U, the
second and fifth at level sy, and the third and sixth at level s. Each calibration equation
involves two sums at different levels. We always calibrate from a lower level to a higher
level. Therefore, the sum represented by the higher level must be known. The sum at the
lower level involves the weights to be determined. As a rule, the lower level is shown on
the left of the equation and the higher level is shown on the right. Furthermore, if we
require the first-phase calibrated weights wy; in the calibration equations then we must
calculate these first, and use them to obtain the weights wy.

We illustrate this coding structure for the case where we use the complete auxiliary
information. This is Case Al in Table 1. First, we calibrate on x; from s; to U, to produce
the weights wy,. At this point, the code is 11z/0zz. Then, we calibrate on x; and X, from s to

Table 1. The ten different cases of auxiliary information for calibration
Case Code Calibration features and sequence Calibration equations
A 11z/0zz Calibration on x; from s; to U
Al 111/011 x; from s; to U to obtain wy; Don WX = Dy X
then x = (x},X5)’ from s to s; to obtain wy Do WX = D5 Wiy
A2 111/000 x; from s; to U to obtain wy; Do WX = Dy Xpg
then x; from s to s; to obtain wy Do WrXpe = Dy, WikXog
A3 110/011 x; from s; to U to obtain w; Do WX = Dy Xie
then x, from s to s; to obtain wy Do WiXop = Dy WigXo
A4 110/000 x; from s, to U to obtain wy, then wy = wyan, Y 5 WXy = Doy Xik
B 101/0zz Calibration on x; from s to U
B1 101/011 x| from s to U and x, from s to s; to obtain w; Y wi Xy = D>y Xpk
D s WiXak = D, G1xXok
B2 101/000 x; from s to U to obtain wy DTeWiXie = Yoy Xk
C 0zz/0zz No calibration on x; to level U
Cl 011/011 X = (x|, x5)’ from s to s, to obtain w; SoeWiXp = > apXy
C2 011/000 x, from s to s, to obtain wy Do WXy = Dy, AKXk
C3 000/011 X, from s to s; to obtain w; Do WiXop = D ayXox
C4 000/000 (none) (none)
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s1, to produce the weights wy. This results in the code 111/011 for Case Al. It follows from
our description of complete auxiliary information that a ‘‘1’’ is possible in all six positions
of the code except in position four, which is always ‘‘0’’ because we cannot calibrate on x,
to level U.

Any calibration using less than the complete information is also uniquely coded by this
notation. There are five possibilities for the first three positions of the code which specify
the calibration on x;: 111/ (from s; to U and from s to s; ); 110/ (from s; to U only); 101/
(from s directly to U, bypassing s; ); 011/ (from s to s; only); 000/ (no calibration on x;).
For the last three positions of the code, specifying the calibration on x,, there are two
possibilities: /011 (from s to s1); /000 (no calibration on X,). This results in 5x2 = 10
possible calibration cases. They are listed in Table 1. We divide the ten cases into three
general categories: Cases A, B, and C. This classification provides a more convenient
grouping for examining the properties of the estimators. The list in Table 1 progresses
from ‘‘complete information’’ (Case Al, at the top) to ‘‘no information’’ (Case C4, at
the bottom). It is not possible to give a completely ordered progression, where a case
higher in the list has more information than one lower in the list. For example, we conclude
that A1 has more information than A2, A3, B1, or C1, but among these, we cannot say that
one has more auxiliary information than the others.

We examine all ten cases. Some cases, such as Al and B1, show subtle differences in
the use of auxiliary information. Unlike Al, B1 does not require the x;; values over the
first-phase sample. Case B1 only requires that we observe x;; for units in the second-phase
sample, and that we know the population vector total > x;; from a census or other reli-
able data source outside the survey. This can happen in practice. The lack of the individual
values of x;, for k € s, forces us to change the calibration equations and this leads to an
estimator different from that of Al. Although Case B1 requires less information than Al,
this does not always lead to a less efficient estimator. There are situations where B1 pro-
duces a calibration estimator with smaller variance than that of Al. This and other results
are shown in the simulation of Section 7.

3

4. The Calibration Equations for the Ten Cases

The calibration equations for all of the ten cases are determined by the sextuplet code.
These equations are shown in Table 1. Case A in this table is a generic representation
covering the four Cases A1, A2, A3, and A4. The code type is 11z/0zz, indicating a cali-
bration on x; from s to U, to obtain the intermediate weights, {w;: k € s;}. In Cases Al,
A2, and A3, this is followed by a calibration from s to s; to produce the final weights
{wy: k € s}. The calibration equations for Case A are

E WXk = E X1k
5] U
E Wi Xy = E W1k X
s 51

where x, is one of the following, corresponding to Al, A2, A3, and A4, respectively:

“.1)

X
X; = (Xlk>; X = Xq45 X = Xogs X, = d) for all k& (42)
2k
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The calibrated weights are computed by minimizing an objective function in each of the
two steps, as described below. In the first step, the first-phase design weights a;, are
adjusted to obtain calibrated weights w; = a8, satisfying the first calibration equation
in (4.1). Here, gy, is a first-phase weight adjustment factor for each unit k € s;; it does not
depend on the second-phase sample. The weights wy are then used to obtain ) i w/;x; for
the second calibration equation. Then, the second-phase design weights a,,a,; are adjusted
to obtain calibrated weights w;, = a;a,,.g; satisfying the second equation in (4.1). Here, g
is the weight adjustment factor for each unit k € s. In A4, there is no second calibration
equation since x; = ¢. The weights w; are obtained from wy; by defining w;, = wy,a,;.

Cases B and C do not involve calibration from s; to U. Consequently, there is no cal-
culation of first-phase weights wy,. Case B covers B1 and B2. It has code 101/0zz, denoting
a calibration on x; directly from s to U. Thus, the first-phase sampling weights a;; remain
unchanged in sums over s;. The calibration equations are therefore

E WiXix = E X1k
s U

E WiXy = E A Xy
K S

with x; = X5, (B1) or x; = ¢ (B2). The second equation disappears for B2.
Case C in Table 1 covers four cases. It has the code type 0zz/0zz, indicating no
calibration to U. Therefore, the only calibration equation is

Z WXy = Z aXy 4.4)
s 51

where x; is one of the four alternatives given in (4.2), leading to C1, C2, C3, and C4,
respectively. Case C4, with x; = ¢, involves no calibration; the final weights w; are
simply w;, = a;, the sampling design weights for all k£ € s.

It follows that Cases B and C (except C4) only require a single adjustment of the design
weights a;,ay; to arrive at the final weights w; = aj a8, for k € s. The value of g; for
these cases is generally different from that obtained for Case A. The weight computation
for Cases B and C involves the minimization of one objective function.

The calibration weights wy; and w, for A1, A2, and A3 were obtained by the following
approach. We express each weight as the corresponding design weight multiplied by a
weight adjustment factor. Thus, we write

4.3)

Wir = A1,k 81k for kEsl
4.5)
Wy = A1 Ay 8k for kEs

Substituting these terms into the calibration equations for these three cases, we obtain a set
of equations in terms of the unknowns g;; and g;. For example, the Calibration equations
(4.1) for A1 become

E a1k 81kX1k = E X1k

S U
§ A1k Dk 8k Xk = E a1k81kXk
s 51

(4.6)
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There are many solutions for g;; and g;. To have a bias close to zero and to permit the
estimation of variance, we need to have g;;, =1 forall k€ s, and gy =1 forall k E s
or equivalently, wy;, = ay; for all k € s;, and w; = aay; for all k € s. One way to do
this is by the following two-step procedure. Step 1: Determine the weights wy;, = a8
as the solution to the weighted least squares minimization problem given by

2
_ Wi —a
Min Z Wik —ag)
s 4

SubjeCt to Z Wi Xy = Z X1k
5] U

The solution is given by the weights

A7)

—1

’
/
Wi = ap + <§ Xy — E alkxlk> (E ayX X 1k> ayXiy (4.8)
U 5] K]

We then use these weights to produce ) 5 wy X, for the right-hand side of the second
equation in (4.6). Step 2: The weights w, = a;,a,,8; are obtained as the solution to the
minimization problem given by

Min Z (Wi — ayay)’

a1,k
subject to E Wi Xp = E WXk
s K

This gives the weights

/ -1
/
Wy = aydy + (E WiXg — E alkazkxk> <§ a1y XX k) a1 Xy (4.10)
51 s s

Case A4 only requires a single step calibration since there is no second calibration equa-
tion. Once the weights wy; are obtained, we simply define w;, = wy;ay;. The estimators in
Cases B and C do not involve the weights wy, only the final weights w;, = a;;a,;8x. These
are obtained in one step by minimizing the objective function Y (w; — a; kaZk)z / aaog
subject to the corresponding calibration equations. It is interesting to note that the use
of the least squares function in the minimization problems produces the same weights
wy, and consequently the same estimator for A2 and B2. In general, other objective
functions may produce different weights for Cases A2 and B2.

(4.9)

5. Bias and Variance of the Two-Phase Calibration Estimators

In this section, we derive the bias and the approximate variance of the calibration estimator
for the ten cases of auxiliary information. Table 2 provides a summary of the important
properties of the estimators. The approximate variances are given in terms of regression
residuals and generally indicate (although not always unequivocally) which estimators
are expected to have the smallest variance. Calibration is involved in all cases except
C4, which gives the unbiased double expansion estimator. This estimator has a well-
known exact expression for the variance. In every other case, the resulting calibration
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estimator is approximately unbiased and the variance expression is approximate. The
residuals in the two terms of the approximate variance are shown in Table 2.

The derivation of the approximate variances requires the use of one or two least squares
linear regression representations over all units k € U. The calibration equations deter-
mine the representations appropriate for any given case. These representations do not
require the assumptions associated with traditional methods of regression model fitting.

For the general form of Case A, the representations are obtained by a sequential
procedure which identifies the auxiliary variables used to obtain w; and wy;. For the first
linear representation, we look for the auxiliary variables in the calibration equation used to
determine w; and we express y; as a linear regression of these variables. From the calibra-
tion equations for Case A in Table 2, we find that these variables are given by x;. There-
fore, we write y;, = x’kB(y;x) + ej(yx) for k € U. The term By, is a population regression
coefficient and ey, is the population residual for k € U. We use the subscript (y; X) to
indicate the regression of y; on x,. The coefficient B, is defined by the ordinary least
squares (OLS) minimization of >y (v — x'kB(y;X))z. Therefore, the residuals satisfy the
normal equation

Zxk(}’k — X B) = Zxkek(y;x) =0 (5.1
U U

For the second linear representation, we take the predicted values x/kB(y;x) and express
them as a linear regression of the auxiliary variables in the calibration equation used to
determine wy;. These variables are given by x;,. Therefore, we write x/kB(y;X) =
x’lkB(XB;X]) + exxBix,) for k € U. The term Bp.x,) is the population regression coefficient
(of dimension J,) for this representation and eyyp.y,) is the corresponding population
residual for k € U. The subscript (xB; x; ) indicates the regression of x/kB@;X) onxy;. The co-
efficient By, is the solution to the OLS minimization of Yy (xX';B,.x) — X/lkB(xB;x,))2~
Therefore, the residuals ey yp.y,) satisfy the normal equation

lek(x/kB(y;x) — X Bupx,) = lekek(xB;xl) =0 (5.2)
] T

In summary, the representations for Case A are

Vi =XiByx + expin (5.3)

/ /
X Bax) = X 11 BBix,) T €rxBix,)

where the first three forms of x; in (4.2) agree with the calibration equations for Al, A2,
and A3, respectively. For A4, there is no calibration from s to s; since x; = ¢. Conse-
quently, (5.3) does not provide a proper representation. The appropriate representation
for A4 is the single equation y, = x'lkB(},;xl) + €x(y.x,)- A similar approach can be used
to obtain the representations for Cases B and C. In Case B, we express y;, as a linear regres-
sion of the auxiliary variables in the calibration equations used to determine wy. Thus, we
obtain y, = (X1, X )Byx, x) T €xyix, ) With Xp = Xy (for B1) or x; = ¢ (for B2). The
components of B, x) associated with x; and x are given by Bﬁyl;)xl,x) and Bg;)xl,xy The
representations for Case C are obtained in a similar manner. All representations are shown
in Table 2. Using (5.1), (5.2), and (5.3), we obtain the following properties for Case A:



Table 2. Properties of the calibration estimators for the ten cases of auxiliary information

Case Auxiliary x Calibration equations Linear representation Residuals in approx. variance (5.13)
€1k €2k
/
WX = X =x.B«) + €1y / /
A X le X1e = D u Xix )’1; kD ,x/) k(y;x) e — X1 B, e — XiB
Zs Wi Xy = Zs] Wik Xg XkB(y;x) = XlkB(xB;xl) + erxBx))
/
WX = X = x:B(,x) + €ry: / ;o
Al M= (Qi) Lo Wruie = 2.0 o T ke Ye = X 1B e — X1 X00)Biyix, )
Zs Wi Xy = Zs, WikXk XkB(y;x) = XlkB(xB;xl y T erxBix))
s WikX1k = 2_u X1k ’ / /
A2 X = Xy 2 2 Vi = XuBgx) T €rpixy) Vi — XuBg.x)) Vi — XuBux))
D s WXy = Zsl WXk
/
s WX = X1 Yk = XuBx,) t+ e / /
A3 X = Xy 2 2 p %) Ox2) Vi — XuB,Bix)) Yk — X Bixy)
Do Wi = Do WiXox X Bx,) = XuBe,Bix,) + €rxBix))
o WXy = X / /
A4 X, = ¢ D Wik = 20 Xik Yk = XuBgix) + epxy) Vi — XuBgix) Vi
(then wy = wyzay,)
WXk = 2. U X1k — (X X g _
B X Zs Z Ve = (Xlk’xk)B(y;Xl,x) + €(y:x, . X) Vi — XlkB(v;x,,x) ik — Xk Xk)B(_V;XI,X)
Do WXy = Zs, a1k Xk ’
WiX1e = 2_Uu X1k A 100 /o
Bl Xp = Xy s 2 Vi = i X20Bgix, x,) T Ckiyix; x0) Vi — XuBx, x,) Vi — K X00B 3, x,)
D s WiXoy = Zsl aXok
/ ! !
B2 X, = ¢ D s WiXie = D u Xik Vi = XuBgx) t €roxy) Vi — XuBgix) Vi — X By
/ /
C Xy Do WX = D, Ay Vi = X By + €rx) Vi Vi — X By
‘ Wi X1 = o A1kX] / / / /
Cl1 Xy = (22) Zé Kk Zs] Kk Yk = (Xlksx2k)B(v;x1,x2) + ek(y;xl,xz) Yk Yk — (Xlk’XZk)B(y;xl,xz)
Zs WiXor = Zsl ayXok
/ /
C2 X = Xqk Zx Wi X = Zs, ayXik Yk = XlkB(y;x.) + eryix)) Yk Ve — XlkB(y;xl)
’ /
C3 Xp = Xok Do WXy = Zsl a1 Xok Yk = szB@;xz) + €ryixy) Yk Yk — XZkB(y;xz)
C4 X, = ¢ (none) (none) Vi Vi

Supduing aspyg-om [ ur uoDAGD,) 10f UOUDULIOfU] LIDIIXNY JO SaSD) UIL Y JDPUIDS PUD ODAJIST

1
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Property 1 If x; is contained in x (x; € X) then:
() v ek Crpin) = 0
(il) expyx) T CrxBix,) = Cr(yx,) fOT every k € U, where the ¢y ) are the
residuals of the OLS representation y, = X/, Bax) T Crixy)
(i) Bexp:x,) = Biyix,)
Property 2 If x is contained in x; (X £ X;) then eyyp.x,) = 0 for all k € U.

Property 1 holds for Al. Both properties are true for A2. We now use the linear representa-
tions to derive the bias and approximate variance of the calibration estimators in Case A.
Using (5.3) and the calibration equations (4.1), we find that the calibration estimator (2.1)
for Case A can be written as

Yy = ZXIkB(xB x) T Zwlkek(xB xp T Zwkek(v x) (5.4

where w; and w; are given by (4.8) and (4.10). Substituting for wy; and w; and
simplifying we obtain

Vo= Z X 1 BBox,) + Z a1k€rxBx,) T Z A1kA2kCh(y:x)

51

/
+ (ZU: X, — Zalkxlk> Bxbix) — Bixix,)) (5.5)
51
<Z ayXy — Z a1ka2kxk> By — Biyiw)

51

where

-1
D ’
By = (Z a1kayXeX k> (Z alkaZka)’k>
N N
-1
N , A
Bipx) = (Z apX X 1k> <Z apX X kB(y;x)>
S S

are the sample based estimates of B, ) and Bg.y,) respectively. Note that we can

(5.6)

calculate x kB(} - in the second term of B(XB x,) because X, is known for k € .
Now let

7
= (Z X1k — Zalkxlk> (B(xB;x,) - B(xB;x1>)
U 51

and
R, = (Z Xe — Z alka2kxk> (B(y;x) - B(y;x))
51 K

Both N_lRl and N _1R2 are a product of two terms each converging to zero in probability
under general conditions. In N'R;, N™'(3yxy — Do auXip) s Op(ny 1/2) and
Buxs:x,) — B(xB <)) 18 Op(n 1/) since B(xBx) is a functlon of n through B(yx) in
(O s, anXX kB(yx)) Therefore N~ Rl is  0,(n" h. Similarly in N~ Rz,
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N_I(Zs] aXy — ES alkaZka) is Op(l’l_llz) and (ﬁ(y;x) — B(V;X)) is Op(l’l_l/z) SO N_1R2 is
0[,(n_'). The terms N _lRl and N_le are obviously of smaller order than
N_I(Z‘y] a]kek(xB;Xl)) and N_l(zsa]kay(ek(y;x)) which are OP(nfllz) and OP(n_l/z),
respectively.

To obtain the bias of ¥ A We use (5.3) and express Y as

Y= Z X/IkB(xB;xl) + Z (ek(xB;xl) + ek(y;x)) (5.7)
U U

It follows from (5.5) that the bias is given by

1
Bias(?A) = E{ (Z X1k — Zalkxlk> (ﬁ(xB;xl) - B(xB;xl))
U s

(5.8)

/
+ <Z ayXy — Z alka2kxk> By — B(y;x))}
S s

The bias is simply E(R; + R,). By the above analysis it is O(n~") and therefore close to
Zero.

Ignoring the lower order terms in (5.5), we obtain the approximation to ¥, given by the
linearized statistic

Y= Z X1 Bubix,) + Z a1keixBix,) T Z A1k A2k Cryix) (5.9
U S s

The first term on the right-hand side is a constant. To obtain the approximate variance of ¥,
we condition on s; and apply the conditional variance rule to the right-hand side of (5.9),

IlOtiIlg that Exlsl (Zv alka2kek(y;x)) = Zs] A1kCk(y;x) and €(xB;x;) + Criyx) = Yk — XllkB(xB;x1)~
This gives

V(¥ =V, {Z ay e — X/lkB(xB;xl))} + B, Vs, {Z ayany (O, — X;cB(y;x))}

51

(5.10)

Using the first three forms of x; in (4.2), and Properties 1 and 2, this expression yields the
approximate variance for Al, A2, and A3 in Table 2. For A4, we proceed as follows. To
find the bias, we note that E; E (3~ wiranyi) = E; (3, wikyy) since the weights wy
are independent of s. Then we replace y, with its linear representation
Vi = x/lkB(y;X]) + €x(y.x,) and use the calibration equation X w Xy, = LyXy;. This leads to

Bias(¥54) = E{ (Z X — Zalkxlk> Bx,) — B(y;x,))} (5.11)
U Sy

Similarly, we obtain the approximate variance of A4 as
V(a9 =V, {Z ay O — X,1kB(y;xl))} + E; Vg, {Z alkaZkyk} (5.12)
K] s

We include A4 in the first group because the calibration equation and the approximate
variance for this case can be obtained by x; = ¢ in the general formulas for Case A.
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Putting x; = ¢ eliminates the second calibration equation leaving the appropriate
calibration equation for A4. Furthermore, with x, =¢ in (5.10), we obtain the
approximate variance for A4.

Similar analyses can be carried out for Cases B and C. For each of the ten estimators, we
obtain an expression of the approximate variance given by

V) =V, 8> apen p +Eq Vi, 4 Y anaxex (5.13)
5y K

where e, and e,, are given in Table 2. We make the following observations about the
residuals ey, and ey;.

Remark 1. Suppose y is a linear combination of x; and x, given by y, = x’kB@;x) for
k € U with X/, = (x|, X5). It then follows that e,, = 0 for Al, B1, and C1 and from
(5.13) we see that these estimators reduce to one-phase estimators with approximate
variance V {D, aje}. For Al, we can also interpret this result as follows. Suppose
we have xy; for k € s, and the corresponding auxiliary total given by >, xy;. If the vector
of residuals y;, — x’lkB(x];y) lies in the column space of x,, it then follows that ey, = 0.
While this is unlikely to happen in any survey, it suggests that in order to produce an effi-
cient estimator, we should look for an auxiliary x, that explains as much of the variability
of the residuals y; — x/lkB(y;Xl) as possible.

Remark 2. When y is an exact linear combination of x; written as y, = x/,kB(y;x])
for k€ U then e, =0 and e, =0 for Al, A2, Bl, and B2. This means that
Vay=VYar =V, =V, =Y for every two-phase sample. This result suggests that Yar,
Y5, Y5, and ¥, are efficient estimators if the residuals Ciyx) = Yk — X B(y:x,) are small.
It is interesting to note that for A4, e;;, = 0 but ey, = y, when y, = X/, By, fork € U.
Therefore, even in the unlikely situation of an exact regression of y on X, the second

Case g €

Al €oix) €0 )

A2 e(y;x,) €iny) R ’ e

A3 o) ¥ CBiny) L) By B

A4 e(y;!,) Y

B1 XZB};);X) + €0 ) Cx,Bix,)
o ,Boxy

B2 e(y;x,) e(y;!.)

C1 y o) s

C2 y Clyin)

C3 y Ciny) :

o y y (y:x)

Fig. 1. Vector interpretation of residuals in the variance of two-phase calibration estimators
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component of the variance of A4, which includes variability over both phases of selection,
still remains.

The differences between the ten estimators are reflected in the two components of the
approximate variance which are functions of e;; and ey, respectively. Fig. 1 provides a
geometric interpretation of these residuals. In this diagram, y, e¢;, and e, are vectors in
N-dimensional space. Furthermore, the lines shown for x; and x, should be interpreted
as subspaces generated by the columns containing the auxiliary variable values over the
population. The diagram provides insight into the general properties of the residuals
and enables us to compare the variance of the different estimators. Fig. 1 also provides
another way of expressing the residuals e, and ey;. The vector ey, is obtained from an
OLS projection of y on x, where X is the subspace generated by x; and x,. Therefore the
Euclidean magnitude of ey, is less than or equal to that of e(y:x,), €y:x,)> €(yix,) T €x,Bixy)
and XIZngxl,xZ) + €(y:x, x,)- Similarly, the vectors e,y ) and X/ZBgzx],xZ) + €(y:x, x,) are both
projections of y on x,. However, by (5.1), ey, has minimum Euclidean distance because
of the OLS projection of y on x;. Can we use these results to compare the approximate
variance of the different estimators? For example, let us look at estimators Al and B1.
We note that they have the same approximate variance for the second component.
Therefore, the difference in the approximate variance of these estimators is due to the
variance of the residuals ej; of the first component. Estimator Al has residuals
el = Yx — x’lkB(y;Xl) = ek(yx,)» Which are on average smaller than the corresponding
residuals ey, = y, — XllkB((i;)xl,xz) = X/ZkBg;)xl,xz) + €x(yix, x,) Tor B1. Despite this result, we
cannot conclude that the approximate variance of Al is always smaller than that of B1.
However, this is true for specific designs and choices of x;. For example, let us consider
the design used in the simulations of Section 7 with SRS at each phase. It is easy to show
that for this design, the approximate variance given by (5.13) simplifies to

o A2 ny I x~(en—2) | n\ 1 (e — )
V=N (1-F) S <1‘nl)n;N—1 (5.14)
where n; and n are the first-phase and second-phase sample sizes (n < n;),
er=>u elk/N ande, = > €2k/N. Since the population size N is known, we can cali-
brate on this total by including a count variable with value 1 in the auxiliary vector x;. It
then follows from the normal equations that &..y )= >y eyx, / N=0 and
) = DU €y /N = 0 with X, = (x'j;,X;)". We can also derive the following results.

M >u e — ?)2 =>u el%(y:xl) +2u (X,”‘B(y?"l) - )‘/)2

2) Yv€lym) = 2v i + v KB — X1iBiyix,))’

3 v (Cryxy) — E(_v;xZ))Z = el%(y;x) +> v (X/kB(y;X) - X/ZkB(y:Xz) - é(y3xz>)2

@ Y (% = X1Besix) — 21 = v i) + v KBy — Bepix) — 21
where &{" = 3" (% — X1 B, ix) /N

5) >u O — X/lkBE;:)xl,xz)) — ?(131))2 =>u e%(,v;x,) +>u (X/lk(B(y;XI) - BE,\I);)XI»XZ)) - é(lBl))z
where 2"V = "y, (3 — X By, ) /N

Results (1) to (5) allow us to compare the approximate variance of the ten estimators for
this particular design and choice of auxiliary vector x;. For example, Result (5) implies
V(¥a) < V(¥g;). Comparisons can be made between other pairs of estimators. We
show the result of these comparisons as a tree diagram in Fig. 2. A link between two
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smaller variance Al
‘ /\
! 2) (1) (3) &4 %)
— / N ™~
A2=B2 Cl A3 Bl
1) (2 3)
4 /
A4 C2 C3

M
NS

larger variance C4

Fig. 2. Comparison of the approximate variance of the ten estimators for a design with SRS at each phase and
with the count variable included in X,

estimators means that the higher one has variance smaller than or equal to that of the lower
one. The number on the link shows the result required to prove each comparison. The
approximate variance of Al is smaller than or equal to that of any other estimator. Hence,
it appears at the top of the tree. We emphasize that the comparisons given by Fig. 2 are not
valid when x; does not include the count variable. This can be seen from the results in
Tables 6 and 7 of Section 7.

6. Variance Estimation

Variance estimates for the ten estimators can be obtained from the approximate variance
given by (5.13). If we follow the standard approach to variance estimation, such as the one
given by Sérndal, Swensson, and Wretman (1992), we obtain a general form of the
variance estimate as

\M?):ZZiAW T3 @+ZZ% Eu fw (6.1)
res Ies TkdT2k Tk T 55 6 T2k Ti1eTok T1To;
In this expression, y, is the first-phase joint inclusion probability of units k and [ and 7y,
is the second-phase (conditional) joint inclusion probability of units k and [ given
(k,I) € s;. In addition we have Ay = 7y — 7w and Ay = oy — W Ty. The resi-
duals é;; and e, are calculated by first estimating the unknown parameters in e;; and
ey, respectively. The residuals and parameter estimates are shown in Table 3.

Each term in (6.1) is an estimate of the corresponding term in variance formula (5.13).
This approach works for all ten estimators but on closer inspection of (5.13) we note that
we can do better for the estimated variance of ¥, ¥4, and IA/A3. For these estimators, we
can calculate the estimated regression coefficient IAi(y;x) over the units in s, use the pre-
dicted values x/k}A}(},;x) over s, to calculate the second regression coefficient fi(xB;xl> and
then obtain ¢, for k € s;. This allows us to obtain a better estimate of the first component
of variance as a double sum over s; instead of a double sum over s. Thus, we obtain the
estimated variance of ¥,;, ¥, and IA/A3 as
o A e ey Apy e &y
Va) Z Z Tk Tik 7r11jL ZZ okl T1kT2k T T2 ©2

kEs, IEs, kEs lEs




Table 3. Residuals and parameter estimates for variance estimation

Case Auxiliary x Residuals in estimated variance (6.1) and (6.2) Parameter estimates
ek e
0 7\ —1
! h B B = a1,y XX aqayX
Al X, = (21) e = XiBpiy Ve — XB P0:%) (35 anayxy k/) _]Zx 12k kyllc A
B(xB;xo = (Zsl alkxlkxlk) Zs] alkXIkaB(y;x)
! B ! B 5 r \—1
A2 Xp = Xqi Y — XlkB(y;x,) Vi — XlkB(y;xl) B(y;x,) = (Zs alkakalkxlk) D s A1rlopX Yk
D 7 \—1
I H I B By, = s A1k X0 X § A1y X
A3 X, = Xop Vi — X BB Vi — XuBx,) A(v,x_) (Zs 1k@2i X0k /21<)_1 > s A1k 2/kyf
B(sz;x,) = (Es, alkxlkxlk) Zsl d1kX1kX2kB(y;x2)
! D 5 7 \—1
A4 Xy = Vi — XuBgx)) Vi Bouy = (s ananXiuXin) ™ Yo anauXu
~1
— 7 ) / I \P 0 _ / ’
Bl Xy = Xoi Ve — XuBix, x,) Vi — K X20B x, x,) Bx x) = (Zs aay (2;;) (Xlk’XZk)) D s Aikdok (2];))71{
! D ! D D r \—1
B2 X, =¢ i — XuBgx)) Vi — X1 Bgx)) Bix) = (s ananXuXin) Yo ananXiy
N R —1
’ / / /
Cl Xy = (2:) Yk Vi — K X20B x, x,) Bx x) = (ZxalkaZk (i;:)(xlksXZkD D s Aixdok (i;:)Yk
! 1 5 7 \—1
C2 X = X Vi i — X1 Bx)) Bio) = (s ananXuXin) Yo ananXiy
! D 5 7 \—1
C3 Xp = Xoi Yk Y — XZkB(y;xz) B(y,xz) = (Zv alkazkxzkxzk) D s A1rlorXor Vi
C4 X, =¢ Yk Yk (none)

Supduing aspyg-om [ ur uoDAGD,) 10f UOUDULIOfU] LIDIIXNY JO SaSD) UIL Y JDPUIDS PUD ODAJIST

Lye
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This approach to variance estimation was noted by Axelson (2000). It makes better use of
the auxiliary data for the estimation of the variance of Yui, Y4 and f/A3.

7. Simulation and Results

This section describes the design and the results of the simulation. To represent different
conditions, we created six artificial populations, each of size N = 1,000. All six involve a
variable y, generated as a linear function of one or both of the single auxiliary variables, x,
and x,, and a random error term. The theoretical variance of y is set to be the same for all
six populations. This makes the double expansion estimator have roughly the same simu-
lation variance in all populations and facilitates a comparison of results across the popula-
tions. The information used for calibration may reach the level of the whole population for
x; but is limited to the level of the first-phase sample for x,. The populations differ with
respect to two factors: (i) the linear regression relationship of y on x; and x, (three types: a
linear function of both x; and x,, of x; only, of x, only); (ii) the size of the correlation
between x; and x, (two types: near O, near 1). This results in six populations for which
a convenient notation is introduced in the body of the following 3 x 2 table.

Regression of y on x; and x, Correlation between x; and x,

Near 0 Near 1
Linear in x, and x, Uino) Uiy
Linear in x; only Ui Uiy
Linear in x, only U Unq)

Populations Uy, Uy and Upyg, were constructed as follows: For each unit £,
we generated independently x;; ~ Gamma(9, 10), x,; ~ Gamma(9,10) and g, ~
Normal(0, 252); k=1,...,1,000. (The Gamma(a,b) distribution has density
f) = [T(a) b1 'x* " exp(—x/b) for x>0, with E(x) = ab and Var(x) = ab’.) Then,
for k=1,...,1,000, the value of the variable of interest, y;, was computed for each
population as follows: Ujyp): Yr = X1 + X2k + &3 Uyo): Y = \/Exlk + &5 Uyy:
Vi = \/Eka + &;. For all three populations, the theoretical correlation between x; and
X, is 0 and the theoretical y-variance is 2,425 = 2 x 900 + 625. Thus, we obtained three
populations of triples (v, X1, X2), kK = 1,...,1,000. Each has a correlation between x;
and x, close to 0 and a y-variance near 2,425.

We include U, and Uy, in order to illustrate ‘‘counterproductive calibration.”” For
example, this can occur when the variable y is linearly related to only one of x; and x,,
but the calibration only uses information about the other variable. As shown by the simu-
lation, this calibration can produce an estimator with larger variance than that of the dou-
ble expansion estimator ¥r,. This is important because we are often not in a position to
determine whether y depends on one or both of the auxiliary variables x; and x,.

Populations U,y(1), U,y and Uy, were constructed as follows. For unit k, we
generated independently x;;, ~ Gamma(9, 10) and &, ~ Normal(0, 252); then we com-
puted x,, = x1; + 0, k = 1,...,1000, where 6, ~ N(0,45), independently of x;;, and g.
As a result of the comparatively small variance of §;, the correlation between x; and x,
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is near 1; its theoretical value is 1/900/945 = 0.976. Then, for k = 1, ..., 1000, y;, was
computed as follows: Ujyqy: ¥ = (2\/16/9)(x”( +x0) + & Uy e = \/Exlk + &3
Usy: yr = (2\/5i6/21)x2k + &. For all three, the theoretical y-variance is again 2,425.
This gives three additional finite populations (y;,xx,Xo), K = 1,...,1000, all with a
correlation between x; and x, close to 0.98 and a y-variance near 2,425.

We selected 100,000 independent two-phase samples from each of the six populations.
Each first-phase sample s; was drawn as an SRS of size n; = 500 from the population U of
size N = 1,000; for each s, s was drawn as an SRS of size n = 200 from s,. Calibrated
weights w; were obtained for each (s, s) realization. They were determined for each of the
ten cases and two different options for the auxiliary vectors: (i) Xy, = (1, x1;); Xo5 = X,
and (i) X = x5 X = Xy

Calibration using option (i) requires that the population size N be known, in addition to
> v X1k In our simulation, N is known, so from the standpoint of using all available
auxiliary information, the natural choice is x;;, = (1,x;;) rather than x,; = x,;. However,
some statisticians would prefer x;;, = xy;, arguing that if the regression of y on x; goes
through the origin, allowing for an intercept is inappropriate.

For each of the 100,000 realizations of (s;,s), calibration estimates were obtained
for the ten estimators under the two options given above. A Monte Carlo bias was
computed as the mean of the 100,000 estimates minus Y. Since the bias was negligi-
ble for all estimators, we omitted it from the simulation tables and analysis. This
allowed us to focus on the variance rather than the mean squared error of each esti-
mator. A simulation variance was calculated as the Monte Carlo variance of the
100,000 calibration estimates. This variance is shown as SimVar in Tables 4, 5, 6
and 7. The terms ApproxVE and ApproxEV represent the components of the approx-
imate variance under SRS at each phase. These were calculated from the correspond-
ing terms of formula (5.14) using the expressions in Table 2. This can be done since
we can compute the residuals ey, and ey, for all k € U. The approximate variance
denoted by ApproxVar is simply the sum of ApproxVE and ApproxEV. The simula-
tion results are summarized in Tables 4 and 5 for option (i) and in Tables 6 and 7 for
option (ii). In all tables and for all cases, SimVar and ApproxVar are very close. This
confirms formula (5.14) and the theory behind the linear representations and residuals
given in Table 2.

We look for answers to the following three questions in the simulation results of Tables
4to07:

1. Should Al have the smallest variance because it is the only one to use all the
auxiliary information?

2. Should B1 and A1l have nearly identical variances, because they differ only slightly
in the auxiliary information used for calibration?

3. Should C4 have the largest variance because it is the only case that uses no auxiliary
information?

Tables 4 to 7 show that the answers to these questions are not always what we expect. We
look into the reasons for this. In the following comments, ‘‘improves on’’ or ‘‘is better
than’’ is to be understood as ‘‘has smaller variance than.”” The term ‘‘best’’ means
“‘has the smallest variance’” among a set of alternatives. The term *‘significantly better’’
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Table 4. Simulation results with x; ~ Gamma(9,10), X, ~ Gamma(9,10), ¢, ~ Normal(0, 252) and
calibration variables xy;, = (1,x1;) and Xy, = xy. Variances are the displayed values x10°

Population Population model  Estimator SimVar ApproxVar ApproxVE ApproxEV
Al 3.29 3.25 1.46 1.79
A2 5.91 5.85 1.46 4.39
A3 9.17 9.12 2.37 6.75
Ad 8.65 8.47 1.46 7.01
Upno _ Bl 3.29 3.25 1.46 1.79
Y =181113.00 ¢ =¥ tou e py 501 585 1.46 439
Cl1 4.15 4.13 2.34 1.79
2 6.75 6.73 2.34 4.39
C3 9.13 9.09 2.34 6.75
C4 9.38 9.35 2.34 7.01
Al 243 2.39 0.60 1.79
A2 242 2.40 0.60 1.80
A3 1421 14.12 2.41 11.71
A4 7.89 7.74 0.60 7.14
U, Bl 2.43 2.39 0.60 1.79
Y= 128138.08 V¢ = V20 + e B2 2.42 2.40 0.60 1.80
Cl1 4.20 4.17 2.38 1.79
2 4.19 4.18 2.38 1.80
3 1418 14.09 2.38 11.71
C4 9.61 9.52 2.38 7.14
Al 4.17 4.14 2.35 1.79
A2 9.47 9.41 2.35 7.06
A3 4.15 4.14 2.35 1.79
Ad 9.47 9.41 2.35 7.06
Uso Bl 4.17 4.14 2.35 1.79
Y = 12741006 V¢ = V20 + & B2 9.47 9.41 2.35 7.06
Cl1 4.16 4.14 2.35 1.79
2 9.46 9.41 2.35 7.06
3 4.14 4.14 2.35 1.79
C4 9.41 9.41 2.35 7.06

or ‘‘significantly worse’’ is used when there is a difference of 5% or more between the
variances, and ‘‘insignificant’ refers to a difference of less than 5%.

By examining SimVar in Tables 4 and 5, we are led to the following observations for
option (i) with x;; = (1,x;;) and Xy, = Xy

1. As we can see in Table 5, Al has smaller variance than the next best estimator only
for U,y(y). For all six populations, one or more estimators come very close to Al. For
example, there are no significant differences between Al, A2, B1, and B2 for U ,.

2. Al is not always distinctly better than B1. For Uy, U}y and Uy, in Table 4, Al
and B1 are about the same, and they are close for Ujyy and U,y in Table 5. But
Uy stands out, in that B1 has a much (about 50%) larger variance than Al.

3. For Ujyy, Uiy, and Uy(py in Table 5, C4 has distinctly larger variance than all other
cases. For Ujy), Uy (), and Uy in Table 4, there are other estimators with about the
same variance as C4. For U, we see some striking examples of counterproductive
calibration, in that A3 and C3 have much larger variance than C4. With these two
estimators, we unknowingly make a mistake by resorting to this calibration. It would
be better to ignore the auxiliary information in these two cases.
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Table 5. Simulation results with x;, ~ Gamma(9,10), xy = x1 + 6  with & ~ Normal(0,45),
& ~ Normal(0, 25%) and calibration variables xix = (1,x1;) and Xy, = xo. Variances are the displayed
values x10°

Population Population model Estimator SimVar ApproxVar ApproxVE ApproxEV
Al 243 240 0.61 1.79
A2 245 243 0.61 1.82
A3 252 251 0.61 1.90
A4 785 7171 0.61 7.10
U BI 268 2.60 0.81 1.79
v 22741933 Y = @VI09)0 +x20) + e 245 243 0.61 1.82
Cl 418 416 237 1.79
2 419 419 237 1.82
c3 427 427 2.37 1.90
C4 954 947 237 7.10
Al 243 239 0.60 1.79
A2 242 240 0.60 1.80
A3 276 274 0.60 2.14
A4 789 774 0.60 7.14
U Bl 252 244 0.65 1.79
v ¥ 1ag13g.08 k= V2t B2 242 240 0.60 1.80
Cl 419 418 238 1.80
2 419 418 2.38 1.80
c3 453 452 2.38 2.14
C4 961  9.52 238 7.14
Al 248 245 0.66 1.79
A2 265 263 0.66 1.97
A3 247 245 0.66 1.79
A4 785 172 0.66 7.06
U Bl 371 3.64 1.85 1.79
v 2 12518384 Ve = 2V2102D0x + 6 py 265 263 0.66 1.97
Cl 416 414 235 1.79
2 432 432 235 1.97
C3 415 414 235 1.79
C4 948 941 235 7.06

We find more counterintuitive results when we examine SimVar in Tables 6 and 7 for
option (ii) with x;; = xy; and X, = Xy

1. Al is not distinctly better than any other estimator for any population. For U, and
U, in Table 6, B1 provides a significant improvement on Al (by about 20%).

2. We find a mixed pattern when comparing A1 and B1 in the two tables. For U, and
U, B1 is better than Al. By contrast, B1 has about 50% larger variance than Al
for Uyy. For Uy, Uiaq), and Uy, B1 and Al show no significant difference.

3. For Uy, U1y, and Uy in Table 7, C4 has distinctly larger variance than all other
cases. For Uy, A4 and C3 come close in variance to C4. In Table 6, we find several
counterproductive calibrations for U, and Uy). For Uy, A3 and C3 have much
larger variance (about 50% for C3) than C4. Even more striking, A2, A4, B2, and C2
have much larger variance than C4 for Uy ,. In fact, A2 has about 70% larger vari-
ance than C4.

Our simulations have produced several examples where calibration based on all the avail-
able auxiliary information can be counterproductive. For example, we have noted cases
where B1 has smaller variance than Al although A1l uses more auxiliary information.
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Table 6. Simulation results with x; ~ Gamma(9,10), X, ~ Gamma(9,10), ¢, ~ Normal(0, 252) and
calibration variables X, = xy; and Xy, = Xy Variances are the displayed values x10°

Population Population model  Estimator SimVar ApproxVar ApproxVE ApproxEV
Al 4.00 3.99 2.20 1.79
A2 3.82 8.79 2.20 6.59
A3 8.68 8.67 1.92 6.75
Uiao Ad 9.26 9.21 2.20 7.01
Y =181113.00 Yk =¥ Txx+e g 328 326 1.47 1.79
B2 8.82 8.79 2.20 6.59
Cl1 4.14 4.13 234 1.79
2 8.91 8.93 2.34 6.59
C3 9.13 9.09 234 6.75
Cc4 9.38 9.35 2.34 7.01
Al 2.42 2.39 0.60 1.79
A2 2.41 2.40 0.60 1.80
A3 1243 1237 0.66 11.71
Ad 7.82 7.74 0.60 7.14
U, Bl 2.42 2.39 0.60 1.79
Y= 128138.08 k= V2 + e B2 2.41 2.40 0.60 1.80
Cl1 4.19 4.17 238 1.79
2 4.18 4.18 2.38 1.80
3 14.18  14.09 238 11.71
C4 9.61 9.52 2.38 7.14
Al 5.62 5.61 3.82 1.79
A2 1534 15.28 3.82 11.46
A3 5.60 5.61 3.82 1.79
Ad 1090  10.88 3.82 7.06
Uso Bl 4.16 4.14 235 1.79
Y = 12741026 k= V20 + 6 B2 1534 15.28 3.82 11.46
Cl1 4.16 4.14 2.35 1.79
2 13.83 1381 2.35 11.46
3 4.15 4.14 2.35 1.79
C4 9.41 9.41 2.35 7.06

We have also found examples where C4, which uses no auxiliary data, has smaller
variance than other estimators that use auxiliary information. The reasons become evident
on closer inspection. For example, the calibrations in A2, A4, and C2 rely exclusively on
information about x;. But for population Uy, x; is uncorrelated with x, which is the sole
predictor of y. Instead of improving the weights, the calibration on x; produces inefficient
weights, as shown by the results in Table 6. We conclude the discussion on the simulations
with a few additional comments.

(i) The efficiency gains from calibration. For U, Uy, Uy, and Uy, and both
formulations of the vector x;, the variance is reduced from about 9.5 x 10° C4)
to about 2.4 x 10° (the best estimator for each population), a reduction of about
70%. For Ujyg, and Uy, the gains are about 55%. In other words, the best
calibration estimator always provides a significant improvement over no
calibration.

(ii) The effect of an intercept term in the vector x;. The use of x;, = (1,x;;)" and
X, = X rather than x;; = xy; and X,; = xy; does not improve the Case A
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Table 7.  Simulation results with x,;, ~ Gamma(9, 10), xp; = x; + 6, where &; ~ N(0,45), ¢, ~ Normal(0, 25%)
and calibration variables X, = xy; and Xy, = xy. Variances are the displayed values x10°

Population Population model Estimator SimVar ApproxVar ApproxVE ApproxEV
Al 242 240 0.61 1.79
A2 244 243 0.61 1.82
A3 252 251 0.61 1.90
Ad 778 771 0.61 7.10
Ut Bl 267  2.60 0.81 1.79
v 22741033 = @VI09) ik + 00 + €5 o 244 243 0.61 1.82
Cl 417 416 2.37 1.79
2 418 419 2.37 1.82
3 427 427 2.37 1.90
C4 954 947 2.37 7.10
Al 241 239 0.60 1.79
A2 241 240 0.60 1.80
A3 276 274 0.60 2.14
U Ad 782 774 0.60 7.14
Yl(:”128138.98 Y= V2t e B1 250 243 0.64 1.79
B2 241 240 0.60 1.80
Cl 418 417 2.38 1.79
2 418 418 2.38 1.80
C3 453 452 2.38 2.14
C4 961 952 2.38 7.14
Al 247 245 0.66 1.79
A2 263  2.63 0.66 1.97
A3 247 245 0.66 1.79
Ad 779 772 0.66 7.06
Uy Bl 370 3.65 1.86 1.79
Y= 125183.84 Yk = @V2102Dxy +e gy 263 2.63 0.66 1.97
Cl 415 414 2.35 1.79
2 431 432 235 1.97
C3 415 414 235 1.79
C4 948 941 2.35 7.06

estimators when x; and x, are highly correlated (Uy(1), Uy(1y and Uy(;)). However,
for Al the improvement is significant when these variables are essentially
uncorrelated and y is not a linear function of only x; (Ujy) and Uy ).

(iii) Recalibrating on the vector X;. The difference between Al and A3 is thatin A1, we
calibrate on x; at each step, but in A3, we only calibrate on x; at the first step. Does
the repeated use of x; in the calibration lead to a significant improvement? We find
that considerable improvement does occur for Ujy(, and U, when the variables
x; and x, are nearly uncorrected and y is not a function of x, alone.

8. Recommendations and Discussion

In practice, it is important to make the best use of the available auxiliary information so as
to obtain the most efficient estimator possible. Ideally, we would like the set of auxiliary
variables in X; to be closely linearly related to y. Whether this holds or not, we can try to
use any additional set of auxiliary variables in X, to explain as much as possible the
variation remaining in the residuals y, — x/, B

We have seen that the approximate variance is the sum of two components, each of
which is a function of population residuals. The variance depends not only on the size



254 Journal of Official Statistics

of these residuals but also on the two sampling designs (one for each phase) and on the
respective sample sizes, n; and n.

A quick and simple approach requiring no analysis is to calibrate on all of the available
auxiliary information (which may be less extensive than in the complete information Case
Al). As we have seen in the simulations, this may not always produce the best estimator.
Occasionally, it may even result in an inefficient estimator, with a variance larger than that
of the double expansion estimator. However, it is a reasonable approach to use in a routine
production of estimates for many variables of interest.

We could go further and conduct an analysis for each variable of interest, computing the
estimated variance of the different estimators from the given auxiliary information. We
have shown in Section 6 how the variance is estimated for a general two-phase design.
To single out the best (minimum variance) use of the available auxiliary information
for every y-variable in a large survey is not easy, at least not without special effort and
time consuming analysis. Still, this procedure is only a guide because the variance estima-
tor is a random quantity, and sometimes, there may be little to choose between several of
the available alternative uses of the auxiliary information.
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