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The Time Series Analysis of Compositional Data

Teresa M. Brunsdon1 and T.M.F. Smith2

1. Introduction

The theory of sample surveys has mainly been concerned with univariate problems. Argu-

ably this matters little for randomization inference since the only random variable is the

indicator representing sample selection. For model-based inference, however, the multi-

variate nature of survey data must be taken into account. Scott and Smith (1974) devel-

oped a model-based theory for the analysis of repeated surveys which was essentially

univariate. If yt is a survey estimate of a parameter vt based on survey data at time t

then we can express this in signal and noise form as

yt � vt � et; t � 1; 2;¼; T �1:1�

If the estimator is unbiased then the estimation error, et, will have mean zero and its

covariance structure will be determined by the sample design. In randomization inference

vt would be treated as an unknown constant with no relationship between vt and past

values vtÿ1, vtÿ2;¼. Scott and Smith argued that vt would frequently change stochastically

over time and could be represented by a time series model. The covariance structure of vt
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could be inferred from the observed covariances of yt, and the known covariance structure

of et. They showed that time series predictors of vt could be more ef®cient than the

classical randomization estimators.

Time series analysis requires a long run of data for ef®cient estimation. In addition, it is

much easier to employ the covariance structure of et in a time series framework if the error

structure remains constant over time. This implies a long run of surveys with the same

design and sample size. One set of surveys which met these conditions were monthly pub-

lic opinion polls of voting intentions. Scott, Smith and Jones (1977) and Smith (1978),

®tted time series models to key variables such as, Ct, the proportion who would vote Con-

servative, Lt, the proportion who would vote Labour, and, Ct ÿ Lt, the Conservative lead

over Labour, which could be negative. The results demonstrated some of the potential

gains of time series methods, but they also raised several additional problems. First, the

proportions were bounded between 0 and 1 and yet the models ®tted were not so con-

strained. Second, the true variable of interest was the complete vector of voting intentions,

a multinomial vector, not the single variables, and the Labour and Conservative votes

would be negatively correlated. The solution to these problems became clear when

Aitchison (1982) read a paper on the statistical analysis of compositional data to the Royal

Statistical Society. The multinomial vectors formed compositions and so the problem was

that of the time series analysis of compositional data. Many series published by of®cial

statistical agencies satisfy the conditions of a compositional time series. In this article

we analyze labour market data from the Australian Labour Force Survey. The multinomial

vector of interest is the employment status of individuals categorized as employed (Et),

unemployed (Ut), and not in the labour force (Nt). Wallis (1987) analyzed a univariate

time series of unemployment rates. Following the methods in Brunsdon (1987) we show

how the analysis can be extended to the multivariate composition of all labour market

states.

2. Compositional Data

Consider a multinomial response, _rT
� �r1; r2;¼; rd�1�,

Pd�1
i�1 ri � n, which represents a

d dimensional random variable. Let xi � ri=n, _xT
� �x1;¼; xd�, then _x is a composition

which lies in the simplex Sd
� _x : 0 < xi < 1; i � 1;¼; d;

Pd
i�1 xi < 1

� 	
. The value

xD � 1 ÿ
Pd

i�1 xi, where D � d � 1, is called the ®ll-up value, or FUV, and is deter-

mined by the d values x1;¼; xd. The problems of modelling and analyzing compositional

data are discussed thoroughly in the monograph by Aitchison (1986). He demonstrates the

dif®culties of applying standard methods to the composition, _x, due to the constraints of

the boundary of the simplex. Multivariate analyses based on null concepts such as inde-

pendence are particularly dif®cult to handle. Aitchison's solution, which like all good

ideas seems obvious when you hear it, is to map _x from the simplex Sd onto Rd and

then to examine the statistical properties within Rd. He considers several transformations

the most important of which is the additive-logistic or ad�xi� transformation de®ned by:

yi � ad�xi� � log
xi

xD

� �
; �i � 1;¼; d� �2:1�
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where

xD � 1 ÿ
Xd

i�1

xi

with inverse

xi � aÿ1
d �yi� �

eyi

1 �
Pd
j�1

eyj

�i � 1;¼; d�

�
1

1 �
Pd
j�1

eyj

�i � D� �2:2�

where xD is the FUV. Let xf denote the D ´ 1 vector, consisting of x augmented by xD, so

that

_xf : 0 < x
f
i < 1�i � 1;¼;D�;

XD

i�1

x
f
i � 1

( )

represents an alternative de®nition of a composition.

One problem is that if the xi's are permuted a different FUV is obtained and so a dif-

ferent version of ad. In other words we may select any element of xf , xk say, to be the

reference variable and obtain:

y�k�i � a�k�
d xi

ÿ �
� log

xi

xk

� �
�i � 1;¼;D; i Þ k�

with inverse

a�k�ÿ1
d y�k�i

ÿ �
�

ey�k�
i

1 �
P
j�1
jÞk

ey�k�
j

�i � 1;¼;D; i Þ k�

�
1

1 �
P
j�1
jÞk

ey�k�
i

�i � k�

In using this transformation we must therefore establish whether subsequent analysis is

invariant to the choice of reference variable. It is useful to note that y�k� � Z�k�yD, where

Z�k� � zij�k�
� 	

and

z�k�ij � 1; �i � j Þ k; i; j � 1;¼; d�

� ÿ1; �j � k; i � 1;¼; d�

� 0; elsewhere �2:3�
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If we now assume that y�D� , Nd�m;å� then x , Ld�m; å�, the logistic-normal distribution,

i.e.,

f _xjm;
X� �

�
1

j2p
P

j1=2PD
iÿ1xi

exp ÿ1=2 log
_x

xD

� �
ÿ m

� �TX
ÿ1

log
_x

xD

� �
ÿ m

� �� �
�2:4�

Aitchison and Shen (1980) show that for y�k� , Nd�Z�k�m;Z�k�åZT
�k��, the distribution

Ld�Z�k�m; Z�k�åZT
�k�� is simply the appropriate rotation of Ld�m;å� i.e., it is the distribu-

tion of x�, where x� is x but with xk and xD interchanged. Consequently any subsequent

analysis is unaffected by the choice of reference variable. This invariance property may

be extended to time series models and we examine this in Section 3.

When d � 1, ad reduces to the univariate logistic transformation log�x=1 ÿ x� and

Ld�m;å� to L1�m; j
2
� which is equivalent to the SB distribution of Johnson (1949) with

parameters g � ÿm=j and j � 1=j. Thus the ad transformation and the Ld distribution

provide a multivariate generalization of the approach suggested by Wallis (1987).

The moments of the Ld�m;å� distribution, although ®nite, cannot be evaluated

algebraically.

In the time series context the mean is employed to obtain minimum MSE forecasts, and

Brunsdon (1987) shows how the mean may be evaluated using quadrature. Aitchison

(1989) warns that the mean vector for compositional data may be a poor summary statistic

when the distribution is multi-modal because it may lie outside the dense part of the dis-

tribution. For the data that we have analyzed this has not been a problem.

In many applications interest centres more naturally on the ratios xj=xk or their loga-

rithms. From standard log-normal theory we have, for example,

E�xj=xk� � exp mj ÿ mk � 1=2�jjj ÿ 2jjk � jkk�
� 	

and

Cov�xj=xk; xi=xl � � E�xj=xk�E�xi=xl � exp�jij � jkl ÿ jjl ÿ jik� ÿ 1
� 	

where

å � jij

� 	
For further discussion of this see Aitchison and Shen (1980).

3. Compositional Time Series

If a survey is repeated at times t � 1;¼;T , then multinomial responses at each time t, xt

say, lead to compositions

xt : 0 < xit < 1; i � 1;¼; d;
Xd

i�1

xit < 1; t � 1;¼;T

( )

which form a multivariate time series.

Transforming the series using the ad transformation (2.1) produces a multivariate time

series de®ned on Rd at each time point which can be analyzed using standard methods. In
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particular we will examine the use of VARMA models on the transformed series de®ned

by

f�B�yt � v�B�et

where

f�B� � Id � f1�B� � ¼ � fpBp

and

v�B� � Id � v1�B� � ¼ � vqBq

In the multivariate case we follow the ideas of Tiao and Box (1981) who give a very sim-

ple procedure for choosing, estimating and testing such models.

As in the previous section it is necessary to consider if the choice of reference variable

in any way in¯uences the analysis. Brunsdon (1987) proves the following results.

Result 1.

Let Yt � yt ÿ v, where v � E�yt�, then

Y �k�
t � Z�k�Yt

� Z�k��yt ÿ v� � y�k�t ÿ v�k�; �t � 0;61;¼�; �k � 1;¼; d�

where Z�k� is given by (2.3). Then if Yt

� 	
follows a VARMA(p,q) process of dimension d,

then Y �k�
t

� 	
is also VARMA(p,q). Further the roots of the determinantal equations of both

the AR and the MA components from the two models are identical, so that the stationarity

and invertibility conditions remain consistent.

Result 2.

Consider the compositional time series fy
t
g where a�k�

d �xt��k � 1;¼;D� follows a

VARMA(p,q) process. Then each VARMA model �k � 1;¼;D� represents the same

model for xt, except that the elements of x
f
t and associated parameters have been permuted.

That is, the model for xf is totally invariant to the choice of reference variable.

The consequence of the above two results is that any component of x
f
t may be selected as

the reference variable without affecting the ®nal results. For the rest of this section, we will

assume, without loss of generality, that the reference variable is xD;t.

The application of Section 2 to modelling and forecasting is now straightforward and

follows the same argument as Wallis (1987). The series xt is transformed to y
t
:

yt � ad�xt�

y
t

n o
is then modelled by a VARMA(p,q). It is then a relatively simple matter to obtain

forecasts for y
t�l . If the l -step ahead forecast of y

t�l is denoted by y
t
�l � and its covariance

matrix åt�l � then we may obtain the ``naive'' forecast for xt�l as

xt�l � � aÿ1
d yt�l �
� �
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Assuming normality for the distribution of yt, so that

y
t�l jyt

; y
tÿ1

;¼
� �

, N y
t
�l �;
X

t
�l �

� �
the optimum forecast of xt�l ; xt�l � may be found numerically by calculating the mean of

Ld�yt
�l �;åt�l ��.

From standard multivariate theory a con®dence region for xt�l may also be obtained,

although it will not be centred at xt�l �. A 100�1 ÿ a�% con®dence region for xt�l can

be formed from

y
t
�l � ÿ log

xt�l

xD;t�l

� �� �TX
ÿ1

t
�l � y

t
�l � ÿ log

xt�l

xD;t�l

� �� �
# x2

a;d

where x2
a;d is the a% point of a x2

�d� distribution, by mapping points from Rd onto the

simplex Sd, see Figure 1.

Finally, forecasts for either the ratios xi;t�l =xj;t�l , or the log-ratios, may be found. For

example

�xi=xj�t�l � � exp yit�l � ÿ yjt�l � � 1=2�jiit�l � ÿ 2jijt�l � � jjjt�l ��
� 	

where åt�l � � jijt�l �
� 	

:
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4. An Application to Labour Market Data

Data from the Australian Labour Force Survey (LFS), provided by the Australian Bureau

of Statistics, were available monthly for the period February 1978 to July 1991, a total of 162

observations. The vector of interest is the triple (Et, Ut, Nt) which de®nes the numbers in each

employment state. For time series analysis it is easier to work with the deseasonalized series. The

series for Et and Ut were available after seasonal adjustment using the X11 routine. The

seasonally adjusted series for Nt was deduced by using the constraint that the sum

Ct � Et � Ut � Nt

gives the total population which should not be subject to seasonal variation. We denote the

seasonally adjusted values by the vector

�E�
t ;U

�
t ;N

�
t �

Our interest centres on the bivariate composition of the relative proportions of employed

and unemployed, that is, E�
t =Ct and U�

t =Ct, or Et=Ct and Ut=Ct.

The two compositional time series are plotted in Figures 2 and 3 respectively.

The annual cycle is clearly evident in the raw series, whilst the seasonally adjusted

series contains the underlying trend with the seasonal component apparently removed.

Thus the formation of N�
t appears to have been validated. The next step is to form the

transformed series. In this case we form

Yt � log
Et=Nt

Ut=Nt

� �
and,

Y�
t � log

E�
t =N

�
t

U�
t =N

�
t

� �
The last six observations were removed from the series to enable a comparison of fore-

casts. Thus the series from February 1978 to January 1991 (156 observations) will be

used to forecast February 1991±July 1991. The multiple time series package SCA, Liu

et al. (1986), was used to identify and ®t a VARIMA model to each of these two series.

Summaries of sample cross correlation, and partial autocorrelation matrices, are given

in Figures 4 and 5 for each series respectively. Note that there is more than one de®nition

of these matrices; we use the one in the SCA manual, Liu et al. (1986). We also use the

conventional ``�'', ``ÿ'', ``.'' notation.

Similar models were identi®ed for both series but it was found necessary to further dif-

ference the series. This is evident in Figures 4 and 5 by the pattern of the ACFs which do

not appear to decay rapidly. After taking ®rst differences of the Yt series, it was apparent

that the seasonal lags likewise indicated non-stationarity. Seasonal differences were also

taken and the new ACF/PACF type functions are also given in Figure 4.

For Yt we found VARIMA2(3,0,0)(0,1,1)12, VARIMA2(0,1,1)(0,1,1)12, VARIMA2

(2,1,0)(0,1,1)12 and VARIMA2(1,1,1)(0,1,1)12 to be possible contenders. The seasonal

MA component is the obvious choice because of the truncation of the ACF at lag 12, whilst

the PACF decays at the seasonal lags. The remaining components depend on the exact

interpretation of the early lags of the ACF and PACFs. Each of the above models was ®tted

and the residual ACF/PACFs etc. examined. All the models ®tted reasonably well but
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the worst model was the VARIMA2(0,1,1)(0,1,1)12. Marginally the best model was the

VARIMA2(1,1,1)(0,1,1)12, and so this was selected for forecasting. This model was re-®tted

®xing any near zero parameter values to zero, in order to reduce the number of parameters.

The seasonally adjusted series, Y�
t , only required ordinary differences, as one might

expect, and the resulting ACF/PACF type functions are reported in Figure 5. There is a

slight indication of a signi®cant lags in the ACF at lags 12 and 24, whilst the PACF again

seems to indicate signi®cant results at all three seasonal lags computed (12, 24 and 36). If

we ignore this we can tentatively identify VARIMA2(3,0,0), VARIMA2(0,1,1),

VARIMA2(2,1,0) and, VARIMA2(1,1,1) to be possible contenders. When these were

®tted it became evident from the residual ACF/PACFs that a seasonal component still

remained. Again a seasonal MA(1) seemed the best choice. The VARIMA2(1,1,1)

(0,0,1)12 was selected as the most appropriate model, and apart from the seasonal

difference this is identical to that for Yt.
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Fig. 2. Australian Labour Force Data expressed as proportions



The resulting two models ®tted were:
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Fig. 3. Australian Labour Force Data (seasonally adjusted) expressed as proportions

I ÿ

0:386 ÿ0:092

�0:097� �0:017�

ÿ1:183 0:601

�0:283� �0:125�

26664
37775B

0BBB@
1CCCA�I ÿ B12

��I ÿ B�Yt � I ÿ

0:684 0:000

�0:83� �fixed�

0:000 0:629

�fixed� �0:128�

26664
37775B

0BBB@
1CCCA

´ I ÿ

0:787 0:000

�0:049� �fixed�

0:000 0:834

�fixed� �0:049�

26664
37775B12

0BBB@
1CCCAet

with cov�et� �
0:000106 0:000187

0:000187 0:001517

� �



and

I ÿ

0:000 ÿ0:097

�fixed� �0:020�

ÿ1:271 0:631

�0:288� �0:107�

2664
3775B

0BB@
1CCA�I ÿ B�Y�

t � I ÿ

0:240 0:000

�0:081� �fixed�

0:000 0:582

�fixed� �0:117�

2664
3775B

0BB@
1CCA

(continued on next page)
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Fig. 4. Cross-correlation and partial autocorrelation functions of Yt



´ I ÿ

0:305 0:000

�0:072� �fixed�

0:000 0:317

�fixed� �0:073�

2664
3775B12
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1CCAet

with cov�et� �
0:000076 0:000117

0:000117 0:001085

� �
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Fig. 5. Cross-correlation and partial autocorrelation functions of Y�
t



Using these two models forecasts of Yt and Y�
t were produced for the next six months.

These were then converted back to forecasts of the proportions using the inverse trans-

formation

Et

Ut

Nt

0@ 1A �

eY1t =�1 � eY1t � eY2t �

eY1t =�1 � eY1t � eY2t �

1=�1 � eY1t � eY2t �

0@ 1A
A comparison of the resulting forecasts is given in Table 1. It can be seen that the forecasts

are reasonably close to the actual values for both series.

We now compute the con®dence regions for the forecasts. This may be done using the

formula in Section 3. The matrix åt�l � may be easily calculated using the standard formula

for an l -step ahead forecast in multivariate VARIMA models, namely

åt�l � � å � W1åW0
1 � W2åW0

2 � :::� W�l ÿ1�åW0
�lÿ1�

where the Wi's are the usual MA weights. These may be easily output from SCA. The

resulting con®dence region for the 1-step ahead and the 6-step ahead forecasts are given

in Figures 6 and 8. We observe that the con®dence regions are very small. A small area has

been enlarged and the resulting regions plotted in Figures 7 and 9 for each of the 1 to 6-step

ahead forecasts. These use the triangular co-ordinates, so some reference points are also

given in the ®rst grid. The actual values are also plotted for comparison.

The small con®dence regions in this example are due to the relatively small values of

the error covariance matrix. Because of small con®dence regions the use of a sophisticated

method to estimate the MMSE forecast rather than these ``raw'' forecasts would add an

insigni®cant amount of accuracy to the analyses.

The enlarged con®dence regions help to illustrate the success of this approach: all bar

the 2-step ahead and 6-step ahead con®dence region contain the actual value. The season-

ally adjusted series does slightly worse, with the actual value being further from the pre-

dicted region of con®dence. Also the 3-step ahead forecast is only just inside the
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Table 1. Comparison of actual and forecasted values

Date Actual proportions Forecasted proportions

Raw series
Feb 91 (0.57695, 0.06055, 0.36250) (0.57902, 0.06054, 0.36044)
Mar 91 (0.57666, 0.06138, 0.36196) (0.58471, 0.05851, 0.36196)
Apr 91 (0.57619, 0.06366, 0.36015) (0.58269, 0.05675, 0.36056)
May 91 (0.57457, 0.06030, 0.36513) (0.58192, 0.05656, 0.36152)
Jun 91 (0.57213, 0.05666, 0.37118) (0.58107, 0.05503, 0.36390)
Jul 91 (0.56459, 0.05938, 0.37603)* (0.58135, 0.05495, 0.36371)

Seasonally adjusted series
Feb 91 (0.58090, 0.05500, 0.36400) (0.58330, 0.05323, 0.36347)
Mar 91 (0.57390, 0.05780, 0.36820) (0.58317, 0.05490, 0.36193)
Apr 91 (0.57400, 0.06270, 0.36330) (0.58194, 0.05506, 0.36299)
May 91 (0.57280, 0.05970, 0.36750) (0.58095, 0.05485, 0.36419)
Jun 91 (0.57140, 0.05880, 0.36990) (0.58102, 0.05475, 0.36423)
Jul 91 (0.56450, 0.06160, 0.37391)* (0.58049, 0.05416, 0.36536)

*No actual values of proportions were available for July 1991, values given are the of®cial predicted values



con®dence region. Similarly for the non-adjusted series, the 2-step ahead is nearly inside

the con®dence region. The so-called actual values for July 1991 (6-step ahead) are both

outside the regions that our models predict. It transpired that these themselves were pre-

dicted values, not actual values, and that the method has picked up this anomaly. The fail-

ure to forecast the March 1991 (2-step ahead) actual values could be due either to an

unusual occurrence in that month, or to a failure in our model of some kind. However,

all-in-all our model does well.
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Fig. 6. Con®dence regions for forecasts of Australian Labour Force series using the model

The four points in the corners of the 1-step ahead cell represent some reference points to give an indication of

scale. Reading from left to right, and down, the points are, (0.55 0.08 0.37), (0.58 0.08 0.34), (0.57 0.04 0.39)

and (0.60 0.04 0.36). The central point in each plot is the forecasted value. The second point is the actual value

*(except for July 1991, which is the of®cial predicted value).

Fig. 7. Enlarged 95% con®dence regions for the ®rst six forecasts using the original data series
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Fig. 8. Con®dence regions for forecasts of the seasonally adjusted Australian Labour Force series using the

model

The four points in the corners of the 1-step ahead cell represent some reference points to give an indication of

scale. Reading from left to right, and down, the points are, (0.55 0.08 0.37), (0.58 0.08 0.34), (0.57 0.04 0.39)

and (0.60 0.04 0.36). The central point in each plot is the forecasted value. The second point is the actual value

*(except for July 1991, which is the of®cial predicted value).

Fig. 9. Enlarged 95% con®dence regions for the ®rst six forecasts using the seasonally adjusted data series



5. Further Discussion of Results

We initially set out to illustrate the procedure outlined above for the raw series. Software

problems led us also to consider the seasonally adjusted series in the belief that no seasonal

component would be required in our model. However, we have found that such a

component is required, and consequently we have decided to report on both sets of

data. The fact that a seasonal component still remains in the seasonally adjusted series

indicates a potential problem with the seasonal adjustment procedures employed.

The series E�
t , N�

t , U�
t show slight residual seasonality which seems to be accentuated by

the logistic transformation. We could speculate that it was something to do with our

method of calculating N�
t , but this does not explain why N�

t did not appear to contain a

seasonal component. A similar problem has been found when considering the Brazilian

Labour Force Survey. The cause of the problem needs further investigation.

When we compare the two models it is also interesting to note the similarity between the

parameter estimates. For the non-seasonal parameter estimates they are roughly identical

except for the ®rst diagonal terms. The seasonal components also exhibit some similarity;

they are both diagonal, with the two parameters being similar in each model. For the sea-

sonal series after seasonal differencing the seasonal MA parameter is about 0.8I, whilst for

the seasonally adjusted series it is about 0.3I, where I is the identity matrix. Some seasonal

adjustment has therefore taken place as expected.

In producing our forecasts we have used the raw transformation of the series. However,

because of the small values of the covariance matrix in our model there will be little

difference between these and the true MMSE forecast. As seen in Section 3, for time

series the MMSE is found from the expected value of the forecast, given that the

transformed forecast is (Multivariate)-Normal. For our transformation this may be evalu-

ated numerically but not algebraically. Aitchison (1989) argues that one is often interested

in the ratios of one category to another; the forecasts for these can be easily computed, we

then have only the log transformation to take account of. Again the methodology was

given in Section 3. In the time series context, we may be more interested in the raw series

such as the number unemployed. In this case, whenever the components have a covariance

matrix of a fairly small order the inverse transformation should suf®ce.

Another word of warning is that the underlying distribution for the proportions can be

multimodal. In such an instance the highest density of probability is not at the mean, and

the MMSE forecast may not be what is required. It might be better to quote the modes.

From studies in Brunsdon (1987) the problem of multi-modality only occurs for what

are relatively high values of the covariance matrix of the parent normal distribution

(i.e., åt�l � in this case). Such a series would tend to ¯uctuate rapidly from one category

near 1 to another near 1 and so on, and is rare in this context. Should it occur these methods

may be inappropriate.

6. Conclusion

We have illustrated how the problem of forecasting proportions may be dealt with, not

only for a univariate series, but also a multivariate series. These techniques may be easily

applied to the analysis of repeated surveys, and our example is of one such survey, the

Australian Labour Force Survey. The technique is based on applying an instantaneous
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transformation which will map the data from the positive simplex Sd to the d-dimensional

real space Rd. In particular we suggested the use of the multivariate additive-logistic trans-

formation, ad, because of its wide application. The transformation requires that one of the

compositional variables be used as a reference variable. We have demonstrated that our

approach is invariant to the choice of reference variable. Clearly having applied the appro-

priate transformation, any range of forecasting techniques could be used, provided one

takes care in calculating the inverse transformation of the forecasts. In most cases this

will be the straight inverse. Not only can other time series models be used, e.g., the struc-

tural models of Harvey (1989), but other transformations are available which map Sd to

Rd. A transformation may be selected so that, for example, the transformed variables

have some further property, e.g., normality or stationarity. The advantages of this general

approach for static compositional data have been well investigated and are summarised in

Aitchison (1986). Many of these advantages will carry over into this time series context.

Previously the only distribution available was the Dirichlet and generalisations of it (e.g.,

Connor and Mosimann (1969)). These distributions impose a strong independence struc-

ture on the data such as neutrality or `independence except for the constraint.' The `f -nor-

mal' distribution overcomes this problem and allows dependence between the

variables xt [ Sd (other than the constraint). The additive-logistic-normal distribution

was used by Aitchison (1982) for just this purpose. Applied to compositional time

series it is similarly possible to look for relationships between components of

xt [ Sd
�t � 0;61;¼�. In such a context these relationships may be directional as

well as instantaneous. Part of the motivation for the use of other transformations could

be partly due to the wish to investigate such interactions between each of the series; again

Aitchison (1986) summarises many possibilities for the static case. A further area of inves-

tigation would be to use this technique to enhance the estimates of a repeated survey, as

outlined in the Introduction using a multivariate version of Scott, Smith, and Jones (1977).

This should be a fairly straightforward extension, with a little thought needed to transpose

the cross-correlation structure of the properties to the transformed series. Again Aitchison

(1986) has tackled this for the static situation.

A particular dif®culty with the additive logistic transformation is that of zero values, see

Aitchison (1986, Ch.11). If any elements of xt are zero the resulting transformed series will

take values of 6¥. One possible solution is to ®nd an alternative transformation. However,

many transformations which map Sd to Rd yield the same results unless the transformed

series y
t

(say) is bounded above and below. The second possibility is to recode zero as

some suf®ciently small number. For example, if the data is recorded to the nearest decimal

place then any value in the range 0 < x < 0:05 would have been rounded down and

recorded as zero. Thus one might re-code zero as 0.025, the mid-point of this range.

The success of this technique needs further investigation, but is likely to be adequate

for most situations where the data does not contain too many zeros. The effect of recoding

zeros will be to set a lower and upper bound on the y
t

series. Thus the two solutions are

virtually identical.

In general the method outlined above for forecasting multivariate time series with a

sum-constraint seems to work well. There is scope for further methodological develop-

ment and for combining with other ®elds, such as survey analysis. Finally there are

new problems to investigate, such as ``seasonal non adjustment.''
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