
The Twelfth Morris Hansen Lecture
Simple Response Variance: Then and Now

Paul P. Biemer1

This article begins by reviewing the measurement error model proposed by Hansen, Hurwitz,
and Pritzker (1964), with particular emphasis on their concept of simple response variance.
More recent developments in the modeling of measurement error are linked to their model and
are shown to be extensions and generalizations of their essential concepts. The index of
inconsistency, which was first formally described in their paper, is shown to have at least three
interpretations, depending upon the statistical framework adopted for describing the gross
differences in an interview-reinterview study. Several examples illustrate and compare their
classical methods with more modern approaches that employ latent class analysis to estimate
the error parameters. It is shown that use of estimates of simple response variance for survey
evaluation may obscure important error structures that are more visible using estimates of
classification error probabilities to assess data quality.
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1. Introduction

One of the most influential papers in the field of survey nonsampling errors is that of Hansen,

Hurwitz, and Pritzker (1964). In this landmark paper, Hansen, Hurwitz, and Pritzker (HHP)

consider the information on survey data quality that can be obtained from an analysis of

“gross differences” – i.e., the differences or discrepancies obtained from repeating a survey

or by replicating some questions in a survey. In their paper, the authors develop a model for

describing and interpreting the gross differences for measurements of binary data in a

survey. They derive an expression for the total mean squared error (MSE) of a sample

proportion including components for bias, sampling variance, and response variance.

The authors are thorough and precise in their derivations of the MSE components as they

consider both the within and between trial covariances of the response deviations.

However, a primary focus of their paper is on a component they refer to as the “simple

response variance.” HHP define the simple response variance as the “basic trial to trial

variability in response, averaged over the elements in the population : : : ”. To better

understand simple response variance, the authors use the analogy of tossing a coin with

probability Pi of a head for the ith population element. If the outcome is “head,” the element

is classified as a “1” by the survey process; otherwise, the element is classified as a “0.”

Each survey repetition results in an independent flip of the coin with the same probability Pi

of a head. Thus, the probability that the ith element will be classified as 1 is Pi and as 0 is

12Pi: Using the Bernoulli distribution, the variance of outcomes for a single element is
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Pið12PiÞ: Then simple response variance is the expected value of this variance over all

population units, viz., E½Pið12PiÞ�:

HHP show that the simple response variance is an important component of the total

variance of the sample proportion. To gauge the magnitude of the simple response

variance they introduce a measure called the “index of inconsistency,” which they define

as the ratio of the simple response variance to the total variance. Their estimator of the

index of inconsistency is a function of the gross difference rate, which is the proportion of

the replicate outcomes that do not agree with the original outcomes. Finally, HHP discuss

a number of applications at the U.S. Census Bureau where they estimated the index of

inconsistency and obtained important information on data quality that led to improved

survey processes.

For more than 40 years, the theories and methods first described in HHP’s seminal paper

have been the basis of numerous reinterview evaluation studies at the U.S. Bureau of the

Census and other survey organizations world-wide. Even today, the basic concepts

described in their paper continue to influence the analysis and interpretation of the results

from reinterview surveys. There have also been a number of important new developments

in the analysis of remeasurement data in general. For example, HHP’s model for gross

differences in binary data has been extended and generalized in several ways to include:

† three or more repeated measurements,

† polychotomous response variables,

† components for classification error probabilities, and

† more general assumptions for the error distributions through the specification of

latent class models.

The present article continues in the same spirit as Hansen et al. (HHP) (1964), sharing their

conviction that important survey improvements can be achieved through the analysis of

gross differences and replicated measurement data. One objective of the present article is

to present a modern view of simple response variance and to relate this view to the original

ideas developed by HHP. Specifically, we show that the more recently developed approach

of latent class analysis for the analysis of repeated measurements can be viewed as an

extension of HHP’s model for gross differences. The universal appeal of the index of

inconsistency as a measure of data quality is demonstrated by presenting three quite

distinct yet highly useful interpretations of the measure from the measurement error

literature. Some examples that illustrate the use of latent class analysis for evaluating

estimating simple response variance as well as other variance and bias components of the

total mean squared error are also presented. These examples clearly illustrate the

limitations of the index for error evaluation studies and demonstrate that in some cases,

classification error probabilities can be estimated that may be more informative for the

purpose of identifying the sources of the measurement error.

2. Simple Response Variance

In this section, the total mean squared error of a sample proportion is derived under the HHP

(sometimes referred to as the U.S. Census Bureau) model and the classification probability
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model. It will be shown that the latter model can be obtained from the former one by simply

decomposing the HHP response propensities into components for classification error

probabilities – i.e., false positive and false negative probabilities in the dichotomous case.

To facilitate the development of the theoretical results, we exploit an analogy between

repeated measurements of population elements under identical survey conditions and two-

stage cluster sampling. The next section briefly reviews the formulas for the estimator of the

population proportion under two-stage cluster sampling and its variance.

2.1. A review of two-stage cluster sampling formulas

The formulas for two-stage cluster sampling with equal size clusters can be found in

almost any text on sampling theory (see, for example, Cochran 1977). Simple random

sampling at both stages and equal cluster sizes are assumed. We begin by defining the

required population quantities and parameters.

Let the population consist of N clusters or primary sampling units (PSUs) each

containing M secondary sampling units (SSUs). Let Yij denote the value of the

characteristic of interest for the jth SSU in the ith PSU. To fix the ideas, we assume a

dichotomous (i.e., 0 or 1) survey variable; however, later we will generalize these concepts

to polychotomous categorical variables. Let Pi denote the proportion of 1’s (positives) in

the ith PSU, i ¼ 1; : : : ;N and let P denote the population proportion which is to be

estimated, i.e.,

P ¼ N21
XN

i¼1

Pi ð1Þ

Finally, we define S2
1; the between PSU variance, as

S2
1 ¼

XN

i¼1

ðPi2PÞ2

N21
ð2Þ

and S2
2; the within PSU variance, as

S2
2 ¼

XN

i¼1

PiQi

N
ð3Þ

where Qi ¼ 12Pi (cf. Equation 14 in HHP).

Next, we introduce the sample quantities and statistics needed for estimation. Let n and m

denote the number of PSUs and SSUs, respectively, in the sample. Let pi denote the sample

proportion for primary i; i ¼ 1; : : :n and let p denote the sample proportion given by

p ¼

Pn
i¼1 pi

n
ð4Þ

Assuming simple random sampling, p is an unbiased estimator of P with variance

Varð pÞ ¼ ð12f 1Þ
S2

1

n
þ ð12f 2Þ

S2
2

nm
ð5Þ

An unbiased estimator of this variance is

vð pÞ ¼
12f 1

n
s2

1 þ
f 1ð12f 2Þ

nm
s2

2 ð6Þ
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where

s2
1 ¼

Pn
i¼1 ð pi2pÞ2

n21
ð7Þ

s2
2 ¼

m

nðm21Þ

Xn

i¼1

piqi ð8Þ

f1 is the PSU sampling fraction, n=N; f2 is the within PSU sampling fraction, m=M; and

qi ¼ 12pi:

2.2. The HHP measurement error model

In this section, we consider the estimation of the population proportion P when the survey

observations are subject to measurement errors. Recall that the HHP model is analogous to

the situation where a coin is associated with each individual in the population. With each

survey trial, the coin is flipped to determine whether an individual in the sample is

classified as a “1” or “0.” In this sense, the ith individual represents a “cluster” of

responses with probability, Pi, of a positive response. Thus, HHP’s formulas for the mean

and variance of an estimator of the true population proportion can be obtained directly by

applying the formulas for cluster sampling.

Now suppose a simple random sample of size n is drawn from a population of size N and

consider a sequence of hypothetical repeated observations on the ith unit denoted by y1i,

y2i, : : : , yti, and so on. Of course, in a typical survey, only one observation is obtained on

each sample unit and these observations will be denoted by y1i, i ¼ 1; : : : ; n: In a

reinterview study, the individuals in the original sample are reinterviewed, resulting in two

observations on each individual denoted by y1i and y2i, i ¼ 1; : : : ; n.2 In general, we

denote the tth measurement on the ith individual in the sample as yti for t ¼ 1; 2; : : : ;m

and i ¼ 1; : : : ; n:

HHP assume that the repeated measurements are obtained under identical survey

conditions and that the values yti and yt0i for t – t0 are uncorrelated for each i. Thus, the

repeated measurements yti for t ¼ 1; 2; : : : are independent and identically distributed

random variables (sometimes referred to as parallel measurements). Under these so-called

parallel assumptions, the survey measurement process is analogous to the cluster sampling

setup described in the previous section. Individuals in the population represent the clusters

and the hypothetical repeated observations on each individual represent the units within a

cluster. The response propensity parameter, Pi, is interpreted as the probability that the ith

individual in the population will be classified as a positive by the survey process. For a

study with m trials, pi is the proportion of trials resulting in a positive classification for the

ith sample individual.

To obtain the variance of the sample proportion, note that the within PSU sampling

fraction f2 in (5) is 0 since we assume that the number of trials available for each individual

in the population is essentially infinite. Thus, from (5), we obtain HHP’s expression for the

2 Note we have tacitly assumed here that all original sample units are reinterviewed; i.e., the interview and
reinterview sample sizes are both n. This assumption is made to simplify the discussion of the general ideas.
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variance given by

Varð pÞ ¼ ð12f 1Þ
S2

1

n
þ

S2
2

nm
ð9Þ

HHP consider the important special case of a single observation on a sample of size 1, i.e.,

n ¼ m ¼ 1 in (9). In that case, the total variance is ðN21ÞN21S2
1 þ S2

2: HHP refer to the

first term in this expression as the sampling variance (SV) and to the second term (viz., S2
2)

as the simple response variance (SRV). The SRV is the trial-to-trial variation in response

averaged over all individuals in the population. HHP further show that SV þ SRV is

simply PQ where Q ¼ ð12PÞ: Further, if f1 is negligibly small, then the variance simplifies

to

Varð pÞ ¼
PQ

n
ð10Þ

which is the usual variance of the sample proportion in simple random sampling with

replacement.

Note that if there is no measurement error, then Pi is either 1 or 0, S2
2 is 0 and (9) is

reduced to the usual formula for variance of the sample proportion under simple random

sampling. In that case, total variance is equal to sampling variance. The SRV is at its

maximum value and SV is 0 when Pi is the same for all i. In that case, the classification

process is equivalent to flipping the same coin, with PðheadÞ ¼ Pi ¼ P; n times to

determine the n observations in the sample where a “head” generates a 1 classification and

a “tail” a 0 classification and total variance is equal to the simple response variance.

This gives rise to a useful measure of unreliability or inconsistency referred to by HHP

as the index of inconsistency defined as

I ¼
SRV

SV þ SRV
¼

SRV

PQ
ð11Þ

which may be interpreted as the proportion of the total variance that is the response

variance for a sample of size 1. It is can also be expressed as the complement of the

reliability ratio, R; i.e., R ¼ 12I: Thus, reliability is the proportion of total variance that is

“true score” variance (see, for example, Fuller 1991). Note that I and R are both bounded

by 0 and 1.

2.3. Classification probability model

Further insights into the structure and effects of classification error can be obtained by

considering a classification probability model (Biemer and Stokes 1991). This model

assumes that a true value of the characteristic exists for every member of the target

population denoted by mi, i ¼ 1; : : : ;N which takes the value 1 or 0.3 As before, yi is a

dichotomous variable denoting the observed value of the characteristic. Assume that the

population can be stratified into groups which are homogeneous with regard to Pi; i.e.,

within a stratum or group denoted by g, individuals that are truly in Class 1 are classified as

3 Note that the existence of a true value was not required for the HHP model.
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1’s with probability 12ug where ug ¼ Pðyi ¼ 0jmi ¼ 1Þ: Likewise, individuals that are

truly in Class 0 are classified as 1’s with probability fg where fg ¼ Pðyi ¼ 1jmi ¼ 0Þ:

Thus, for all i in group g,

Pi ¼ mið12ugÞ þ ð12miÞfg ð12Þ

To simplify the notation, we initially consider the case of a single group, dropping the

subscript g, and then generalize the results to multiple groups. In addition, we assume a

single survey trial, dropping the index, t.

We will refer to the classification error probabilities f and u as false positive and false

negative probabilities, respectively. The probabilities 12f and 12u are also referred to in

the epidemiological literature as specificity and sensitivity, respectively (see, for example,

Rothman and Greenland 1998).

Substituting (12) into S2
1 and S2

2 in Equations (2) and (3), we obtain the following

expressions for one group (see Biemer and Stokes 1991, for details):

N21

N

� �
S2

1 ¼ pð12pÞð12u2fÞ2 ð13Þ

and

S2
2 ¼ puð12uÞ þ ð12pÞfð12fÞ ð14Þ

Letting p denote the true population proportion, we have the following expression for the

bias, Eð p2pÞ :

Biasð pÞ ¼2upþ fð12pÞ ð15Þ

2.4. Estimation of SRV and the index of inconsistency

Of particular interest in this article is the estimation of SRV. As noted above, the general

estimator for m repeated observations on each unit is given by (8). For the important case

where m ¼ 2; we form the interview-reinterview table as in Table 1. In this table, p11

denotes the proportion of individuals in the sample that are classified as 1 in both the

interview and the reinterview, p01 is the proportion classified as 0 in the interview and 1 in

the reinterview, p10 is the proportion classified as 1 in the interview and 0 in the

reinterview, p00 is the number classified as 0 in both the interview and the reinterview, and

p11 þ p01 þ p10 þ p00 ¼ 1: In addition, we adopt the notation frequently used in the

literature on latent class analysis and denote the original observation by A (previously

denoted by y1i) and the reinterview classification by B (previously denoted by y2i). Then it

can be easily shown that (8) can be rewritten as

s2
2 ¼

p01 þ p10

2
¼

g

2
; say ð16Þ

where g is referred to as the gross difference rate. Note that g is the disagreement rate

or proportion of the sample that is classified inconsistently in the interview and

reinterview.
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The denominator of the index of inconsistency, PQ, can be unbiasedly estimated by the

sample quantity pq and thus, a consistent estimator of the index of inconsistency is

Î 0 ¼
g

2pq
ð17Þ

An estimator that has somewhat better stability and incorporates information from both the

interview and reinterview to estimate PQ is

Î ¼
g

pAqB þ pBqA

ð18Þ

where pA and pB are the interview and reinterview proportions, respectively.

Hess, Singer, and Bushery (1999) show that Î is identical to 12k where k is Cohen’s

kappa measure of reliability (Cohen 1960) and is given by

k ¼
P02Pe

12Pe

ð19Þ

where P0 is the agreement rate between the interview and reinterview classifications

(i.e., 12g) and Pe is an estimate of the expected agreement by chance alone, i.e., Pe ¼

pApB þ qAqB: Kappa may be interpreted as a “chance corrected” agreement rate since it

compares the agreement rate in excess of chance agreement (i.e., P02Pe) relative to the

maximum value of this quantity ð12PeÞ:

Thus, Î; has two very different interpretations: (1) it is an estimator of I, the ratio of

response variance to total variance, and (2) 12k or the chance corrected agreement rate.

As we will see subsequently, Î also has a third interpretation when viewed from a latent

class model perspective.

Recall that, in order for s2
2 to be unbiased for S2

2; the two replicate measures should be

equivalent to a simple random sample of size m ¼ 2 from an individual’s response

distribution, i.e., interview and reinterview measurements must be parallel. As HHP

discuss, these assumptions are seldom satisfied in practice. For example, despite attempts

to ensure that the general survey conditions are identical for both survey trials, the design

of the reinterview survey may be altered or the survey operations associated with the

reinterview may be somewhat different from those used in the original survey, violating

the equal error distribution assumption. This can happen if the reinterview survey uses an

abbreviated questionnaire and more experienced interviewers, or if reinterview

respondents tend to be more knowledgeable about the subject matter of the survey as a

result of the original interview.

The assumption of conditional (or local) independence of response errors is also

unlikely to hold in practice: errors made during the interview are often correlated with

those in the reinterview. For example, between trial correlation may be induced if

respondents tend to simply recall their interview responses and repeat them rather than

Table 1. An interview-reinterview table

Interview (A) Reinterview (B)

1 0

1 p11 p10

0 p01 p00
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regenerating a response through an independent cognition. However, even when new

responses are regenerated, response errors may be correlated if respondents tend to

misinterpret the survey questions in the same way on both occasions.

If the error probabilities for the interview and reinterview are different and the errors are

correlated, then Î will be biased. HHP show (cf. Equation 30 in their paper) that in general,

EðgÞ ¼ SRVA þ SRVB2rAB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SRVASRVB

p
þ D2

AB ð20Þ

where SRVAand SRVB denote simple response variance for the interview and reinterview,

respectively, rAB is the between trial error correlation, and DAB denotes the expected

difference between the interview and reinterview responses. Suppose rAB and DAB are

both 0 and let IA and IB denote the indexes of inconsistency for the interview and

reinterview, respectively. HHP show that Î estimates ðIA þ IBÞ=2: Thus, if IA , IB; then Î

will overestimate I and if IA . IB; then Î underestimate I (see also U.S. Census Bureau

1985). Now supposing that SRV is the same for both trials, DAB ¼ 0 and rAB – 0; HHP

show that EðgÞ ¼ 2SRVð12rABÞ: Thus, if response errors are positively correlated (as is

their general tendency), g/2 will underestimate the simple response variance under these

conditions. However, in general, if the parallel assumptions do not hold, then the bias in g

can be unpredictable. We will see some examples of that in the illustrations in Section 4.

3. Latent Class Models

An approach which addresses some of the shortcomings of traditional reinterview analysis

is latent class analysis (LCA). When only two repeated measures are available, the LCA

method must assume local independence to arrive at an identifiable model; however, the

assumption of equal error probabilities can be relaxed. In this way, LCA can provide

estimates of the misclassification probabilities associated with both the interview and the

reinterview. This obviates the need to maintain the same essential survey conditions for

the interview and the reinterview. In order to relax the equal error probabilities

assumption, LCA with only two measurements requires additional assumptions which

may still be problematic in some survey situations. However, for many reinterview

surveys they may be more easily satisfied than the traditional parallel assumptions. In the

next section, we describe the LCA model when two measurements are available and when

both latent and manifest variables are dichotomous. Subsequently, we will address the

situation of polychotomous variables and three or more measurements (see also

McCutcheon 1987).

3.1. LCA with two measurements

Let X denote the true but unobserved (latent) classification for an individual in the sample,

where X ¼ 1 if the individual is a true positive and X ¼ 0 if a true negative; let A denote

the interview response and B the reinterview response, also assumed to be dichotomous

variables taking value 1 for an observed positive and value 0 for an observed negative. Let

p denote the true population proportion, i.e., p ¼ PðX ¼ 1Þ; let uA and uB denote the false

negative probability for the interview and reinterview, respectively, and fA and fB denote

the false positive probability for the interview and reinterview, respectively. That is,

uA ¼ PðA ¼ 0jX ¼ 1Þ and fA ¼ PðA ¼ 1jX ¼ 0Þ with analogous definitions for B.
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Under the assumption that A and B are conditionally independent given X (sometimes

referred to as local independence), we can write the expected cell counts associated with

Table 1 in terms of the five parameters p, uA, uB, fA and fB. For models which are

identifiable – i.e., a unique maximum value of the likelihood exists – maximum

likelihood estimation can be used to estimate the parameters. A necessary condition of

identifiability in LCA is that the number of parameters does not exceed the number of

degrees of freedom for the model. With five parameters and three degrees of freedom in

the AB cross-classification table (Table 1), the LCA model for two measurements is not

identifiable. However, we can employ a device suggested by Hui and Walter (1980) to

achieve an identifiable model.

Let G denote a grouping variable having two categories. For example, G may denote

gender where G ¼ 1 for a male and G ¼ 2 for a female. Extending the LCA model to the

three-way classification table, GAB, there are now 8 cells or 7 degrees of freedom, but 10

parameters to estimate: pg, uAg, uBg, fAg and fBg, for g ¼ 1; 2: Hui and Walter (1980)

show that an identifiable model with seven parameters can be obtained by introducing the

restrictions:

(a) uA1 ¼ uA2 ¼ uA; say,

(b) uB1 ¼ uB2 ¼ uB; say,

(c) fA1 ¼ fA2 ¼ fA; and

(d) fB1 ¼ fB2 ¼ fB

That is, the classification error probabilities are the same for the two groups. In addition to

these restrictions, a necessary condition for the model to be identified is that p1 – p2; i.e.,

the prevalence rates in the two groups are different. The resulting model is fully saturated

so there are no residual degrees of freedom for assessing lack of fit.

The Hui-Walter model can be expressed as a hierarchical log-linear model with three

terms {GX, AX, BX}(see Hagenaars 1993). Under this model, the true prevalence in the

population varies by group (hence, the GX term) while the error probabilities (represented

by AX and BX) do not. Any software that can fit log-linear models with latent variables

can be used to obtain the MLEs of the parameters for this simple model. The software

used in the illustrations to follow is ‘EM software developed by Dr. Jeroen Vermunt

(Vermunt 1997).

3.2. Models for three measurements

Extension to three locally independent measurements is straightforward. Let A, B, and C

denote the three measurements of the latent variable, X. As for the Hui-Walter model, the

three measurements of X need not be obtained under identical survey conditions, i.e., the

measurements can have distinct error distributions. However, unlike the case of two

measurements, the likelihood associated with the three-measurement model is identifiable

without any grouping variable restrictions. Estimation proceeds as before using maximum

likelihood estimation.

In practice, three measurements of the same survey characteristic are difficult to obtain,

particularly by using a reinterview approach. Reinterview methods risk problems such as

respondent burden and resistance, the response conditioning effects of prior contacts, and
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high costs associated with repeat contacts with the respondent. Another method for

obtaining three measurements of the same variable is that of embedded replication, in

which replicate measurements are embedded in a single survey instrument and collected at

the same interview. Embedded replication has an even greater risk that respondents will

impose a false consistency on their responses by repeating the same response each time the

question or a similar question is asked. In this situation, the possibility that the errors are

locally dependent must be explicitly considered in the analysis. Altering the wording of

the replicated items may help to conceal item redundancy from the respondent. This can

help avoid respondent resistance to the burden of answering the same questions repeatedly

while reducing the risk of correlated errors due to memory effects. However, it can also

introduce additional complexity in the modeling process as a result of nonparallel

measurements.

Latent class models for three measurements that assume three locally independent

measurements having unequal error probabilities are saturated, leaving no degrees of

freedom for modeling correlated errors. Thus models which introduce additional terms for

local dependence are not identifiable unless further restrictions are placed upon the model

(Hagenaars 1988). For example, by imposing the restriction that the classification error

probabilities for A, B, and C are identical, two degrees of freedom are saved (in the case of

dichotomous measurements) which can be used to estimate the two additional parameters

introduced by relaxing the independence assumption for two of the three indicators, – for

e.g., pbjax: However, this equal error probability restriction is not plausible and is likely to

be violated if the methods (i.e., question wordings) for obtaining A, B, and C vary within

the questionnaire.

As we described for the Hui-Walter methods, another technique for increasing the

model degrees of freedom is to introduce a grouping variable, G, having L levels. Now, the

number of cells of the GABC table is L times the number of cells in the ABC table.

Equating some parameters of models across the L groups to free-up enough degrees of

freedom for estimating the correlated error parameters often results in more plausible

restrictions on the model parameters than are possible without the grouping variable. This

will be discussed in more detail in Section 4.

3.3. Estimation of simple response variance

Latent class analysis can be employed to obtain estimates of SRV and I under more general

assumptions than are made in traditional analysis. In this section, two types of

generalizations will be described. Each method is introduced assuming that only two

measurements of the same dichotomous survey characteristic are available. Extensions of

the methods to three or more measurements and polychotomous characteristics are also

briefly outlined.

One alternative estimator of I can be derived directly from the expression of SRV

(i.e., S2
2) in (14). For interview-reinterview data, the Hui-Walter method can be applied to

estimate the parameters p, uA, uB, fA, and fB. Denote the MLEs of these parameters by the

parameter’s symbol with a “hat.” Using the MLEs from the LCA, we can estimate I for

the original interview by replacing the parameter in (13) by its MLE and dividing by the

survey estimate of the total variance as follows:
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ÎA ¼
p̂ûAð12ûAÞ þ ð12p̂Þf̂Að12f̂AÞ

pAð12pAÞ
ð21Þ

The index of inconsistency for the reinteriew can be estimated by the same formula

replacing the estimates ûA; f̂A; and pA by ûB; f̂B; and pB, respectively.

In Section 2.4 we noted that I can have two interpretations: (a) the proportion of total

variance that is due to simple response variance and (b) 12k; where k is the expected

agreement rate beyond chance agreement. A third interpretation of I, given by

Guggenmoos-Holzmann (1996) and Guggenmoos-Holzmann and Vonk (1998), will now

be described.

Assume that the population consists of two types of individuals: those that are easily and

unequivocally classified as either 1’s or 0’s by the survey process and those that are

difficult to classify and may be classified randomly as 1’s or 0’s from trial to trial.

Guggenmoos-Holzmann refers the former group as “conclusive” and the later group as

“inconclusive.” She assumes that conclusive elements are classified consistently across

repetitions of a survey process; i.e., PðB ¼ 1jA ¼ 1Þ ¼ PðB ¼ 0jA ¼ 0Þ ¼ 1 for

conclusive elements. For inclusive elements, this constraint is removed.

Note that it is not possible to accurately identify to which group an individual belongs

since inconclusive persons can sometimes be classified consistently across trials purely by

chance and are, therefore, indistinguishable from conclusive persons. Thus, group

membership is latent. Further, in terms of the HHP, Pi is either 1 or 0 for persons in the

conclusive group while for persons in the inconclusive group, 0 , Pi , 1:

Let H denote an latent indicator variable for conclusive and inconclusive individuals in

the population; i.e., H ¼ 1 for individuals in the conclusive group and H ¼ 2 for

individuals in the inconclusive group. Let pH¼1 denote the proportion in the conclusive

group and let pH¼2 ¼ 12pH¼1 denote the proportion in the inconclusive group. Further,

let pA¼1jH¼1 denote the proportion of the conclusive group that is classified as a 1 by the

survey process, i.e., PðA ¼ 1jH ¼ 1Þ; and let pA¼ 1jH ¼ 2 denote the probability that an

individual in the inconclusive group is classified as a 1. Finally, we assume these

probabilities hold for each replication of the survey process which is analogous to the

parallel assumption of the HHP model.

Denote by p11, p01, p10, and p00 the expected cell proportions in Table 1; i.e.,

EðpijÞ ¼ pij for i; j ¼ 0; 1: Under these assumptions, the expected cell proportions under

this model are:

p11 ¼ pH¼1ðpA¼1jH¼1Þ þ pH¼2ðpA¼1jH¼2Þ
2

p01 ¼ p10 ¼ pH¼2ðpA¼1jH¼2ÞðpA¼0jH¼2Þ

p00 ¼ pH¼1ðpA¼0jH¼1Þ þ pH¼2ðpA¼0jH¼2Þ
2

ð22Þ

Gugenmoos-Holzmann refers to this model as the “agreement” model and the latent class

model described in Section 3.1 as the “error” model. Note that, as in the HHP model, the

concept of a true value is not required under the agreement model since the latent variable,

X, representing the true status of an individual does not appear in the expressions

for the cell probabilities. With three parameters and only two degrees of freedom
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(since p11 þ p01 þ p10 þ p00 ¼ 1), the model is not identifiable in general; however, the

model is identifiable when three measurements on each individual are available or when

two measurements are available and the manifest variables are at least trichotomous.

An important restriction that achieves identifiability for the two degrees of freedom model

is to set

pA¼1jH¼1 ¼ pA¼1jH¼2 ð23Þ

i.e., we assume that the probability of a positive classification is the same for both

conclusive and inconclusive groups. This restriction will be referred to as the kappa-

constraints since Guggenmoos-Holzmann shows under (23), k ¼ pH¼1; i.e., the

proportion of the population belonging to the conclusive group is equal to Cohen’s k.

Equivalently, I ¼ pH¼2; i.e., the size of the inconclusive group in the population is

identical to the index of inconsistency.

Thus, we see that a third interpretation of HHP’s index of inconsistency is the

proportion of the population that would be classified at random by the survey process. For

the groups of inconclusive individuals, positive classifications are made at random with

probability pA¼1jH¼2: For the conclusive groups, positive classifications are made with

certainty and consistently across all repetitions of the survey process with prevalence

pA¼1jH¼1.

The agreement model yields a more general definition of reliability than either the HHP

model or Cohen’s k since under the agreement model k is equal to pH¼1 only when the

kappa constraints (23) are imposed. When the constraints are relaxed, pH¼1 may be

interpreted more generally and is referred to as a k-like measure or a generalized k.

Gugenmoos-Holzmann and Vonk argue that, in general, (23) will not be satisfied by

most survey processes; moreover, there is no compelling reason why it should be. For

example, (23) will hold if A and H are independent random variables. However, that

assumption seems untenable since individuals having ambiguous classifications may have

quite different characteristics than those whose classifications are more easily determined.

As an example, if the characteristic A is labor force status (in particular, employed or not

employed), persons in the conclusive group may be predominantly employed whereas

persons whose status is inconclusive may be not employed since determining that status is

usually more difficult.

Another way in which (23) is satisfied is if the classification process for the survey has a

type of learning mechanism that classifies inconclusive individuals at the same rate as

previously encountered conclusive individuals were classified. This situation might be

plausible if a single interviewer conducted all the interviews. As the interviewer

encounters conclusive elements, he or she learns that roughly 100pA¼1jH¼1 percent of the

population is positive. Thus, when he or she encounters an inconclusive element, the

interviewer “guesses” a category to assign. Since prior experience suggests that roughly

100pA¼1jH¼1 percent are positive, the interviewer assigns roughly the same proportion of

inconclusives to the positive category.

Guggenmoos-Holzmann and Vonk (1998) conclude that for reporting the reliability

of survey measurements, the assumption pA¼1jH¼1 ¼ pA¼1jH¼2 is not plausible and thus,

k (or 12 Î) should not be used as a measure of reliability whenever the more general

measure, pH¼1; can be computed. Another advantage of the agreement model formulation
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for I is that, like ÎA in (21), the agreement model estimate of I is always between 0 and 1, the

parameter space of reliability and inconsistency measures, since it is obtained using

maximum likelihood estimation. Both k and Î may sometimes lie outside this range, which

creates additional problems in the interpretation of the estimates. Some examples

illustrating the use of these indicators of classification error are provided in the next section.

4. Illustrations

4.1. Illustration 1: Reliability of a question on race

In 1997, the U.S. Office of Management and Budget released new standards for asking

about race to better reflect the increasing racial and ethnic diversity of the population of the

United States. Under the new standards, Federal agencies are required to offer individuals

the opportunity to select one or more of the following five race categories: (1) American

Indian/Alaska Native, (2) Asian, (3) Black/African American, (4) Native Hawaiian/Other

Pacific Islander, and (5) White. The first nationwide implementation of these standards

was in the 2000 decennial Census.

To test this and other census questions, in 1998 a dress rehearsal pretest of the census

operations was conducted in three sites: Columbia, SC, rural SC, and Sacramento.

Immediately following the dress rehearsal census in these areas, a reinterview (or post

enumeration) (PES) survey was conducted to evaluate the quality of the census data.

Reinterviews were conducted for n ¼ 40; 519 census dress rehearsal respondents. These

data will be used in the following to illustrate the methods for estimating I described

above. All estimates are based upon unweighted data and are for illustrative purposes only.

To illustrate the simple case of a dichotomous measure, consider the reliability of the

census variable A where A ¼ 1 if an individual is classified as belonging to two or more

races and A ¼ 2 if only one race. Define the corresponding PES variable, B, analogously.

We wish to compare the three estimates of I for these data: the traditional estimate, Î;

the latent class error model estimate, ÎA; and the agreement model estimate, p̂H¼2: The

interview-reinterview cross-classification, which provides the sufficient statistics for the

preliminary analysis is given in Table 2.

The inconsistency between the Census and PES classifications is apparent from the data

in Table 2. Among the 2,757 persons who chose multiple races in the Census, 2,328 (or 84

percent) changed to a single race in the PES! One possible explanation for this is that

different modes of data collection were used for the two surveys. The Census responses

were obtained through self-administered, paper questionnaire while the PES was

Table 2. Census by PES multiple race response

Census classification (A) PES Classification (B)

Multiple Single Totals

Multiple 429 2,328 2,757
Single 956 36,806 37,762
Totals 1,385 39,134 40,519
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conducted by face to face and telephone interviewing. Since the race questions in both

questionnaires were essentially the same, it is possible that the inconsistency is the result

of interviewer effects.

Note that 2,328 individuals classified as multi-racial in the Census, or 84 percent of the

Census multi-racial group, were reclassified into a single race category in the PES.

Clearly, the parallel repeated measures assumption does not hold for these data. The

assumption of equal error distributions can be formally tested by the test H0: PA ¼ PB: If

the test is rejected, the equal error probabilities assumption must also be rejected. For this

table, pA ¼ 6:8 percent and pB ¼ 3:4 percent, which are highly significantly different and

the test is rejected. Thus, Î (or k) as well as p̂H¼2 will be biased for I and considerably so,

judging from the magnitude of the difference. In this situation, the estimator ÎA in (20) is

likely to be a better estimator of I under these conditions.

The “true race” of an individual, which is needed for the latent error model, is

conceptually difficult since in many cases race can be subjective and based upon personal

preference or racial identity. To use the error model, one must conceptualize a preferred

method of obtaining race data – one that is devoid of influences that would cause

instability in responses to the race question. This preferred response is regarded as an

individual’s true race and deviations from this response are interpreted as error. One

advantage of such a concept is that it allows an examination of the systematic errors in the

determination of race that may be related to the mode of interview. In this illustration, the

focus will be on simple response variance; however, Biemer and Woltman (2001) discuss

the bias in the race classifications using this error concept.

The alternative estimators of I that can be computed from the data in Table 2 are shown

in Table 3. To obtain the Hui-Walter model estimates, ÎA and ÎB; we used a dichotomous

grouping variable denoted by O where O ¼ 1 if the individual is of Hispanic origin and

O ¼ 2 if not. Since the prevalence of multiple race responses differs markedly between

Hispanics and non-Hispanics, this choice of grouping variable satisfies one of the Hui-

Walter assumptions. However, the assumption that error rates are equal across groups is

still questionable. An alternative grouping variable that may better satisfy this assumption

is the site variable, S, with three levels: Columbia, SC, rural SC, and Sacramento. But this

variable is not ideal either since the proportion of respondents classified in multiple race

categories does not differ appreciably across the sites. Perhaps the best choice is a

combination of O and S: This model will be discussed subsequently.

The estimator ÎA may also be computed using the parameter estimates from a latent class

error model that assumes parallel measures. This is easily accomplished by the latent class

model {AX BX} with constraints AX ¼ BX or equivalently uA ¼ uB and fA ¼ fB:

We refer to this estimator as ÎA¼B: All four estimators of I are shown in Table 3 as well as

ÎB; the error model estimate of the index of consistency for the PES (IB). Standard errors of

the estimates are not shown; however, they are quite small – less than 0.2 percentage point.

Table 3. Estimates of the index of inconsistency by various methods

Î p̂H¼2 ÎA¼B ÎA ÎB

Estimate 83.1 83.6 78.5 44.6 94.1
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The estimates of index of inconsistency for the dress rehearsal census are extremely

high, particularly for the three methods that assume parallel measures. The estimate of ÎA;

which specifies separate error terms for census and PES, is the smallest. Since ÎB is more

than twice that of ÎA; it appears that the source of the large estimates of I for the first three

estimates in the table is the PES with an index of 94.1. Note that ðÎA þ ÎBÞ=2 is 69.3 which

approaches the magnitude of estimates of I based upon the parallel measures assumption.

Since the models underlying the estimates p̂H¼2 and ÎA (or ÎB) are saturated, the usual

chi-square goodness of fit test cannot be used to assess fit. The latent class error model with

the equal error distribution constraint (i.e., AX ¼ BX) permits a test of fit with two degrees

of freedom; however, the test is not particularly useful owing to the large sample size.

When the sample size is as large as it is in this example, the chi-square goodness of fit

criteria will reject models that fit the data well by most other fit criteria since the power of

the test is near 1. An alternative measure of model adequacy that is often useful in such

cases is the similarity index, d, defined as

d ¼
k

P
jnk2n̂kj

2n
ð24Þ

where nk is the count in cell k of the cross-classification table and n̂k is the expected cell

count under the model. The index d may be interpreted as the proportion of observations

misclassified by the model. A d of 0.01 or lower is usually considered an indication of a

well-fitting model since it indicates that less than 1 percent of the data is inconsistent with

the model. The highest value of d for the estimates in Table 2 is d ¼ 0:029 for ÎA¼B while

the lowest value, d ¼ 0:0015; was associated with the estimates ÎA and ÎB:. For the

agreement model estimate, d ¼ 0:017: Thus, the error model with separate error terms

provides the best fit under this criterion.

As mentioned previously, the Hui-Walter model can easily be extended to two or more

grouping variables; for example, to incorporate both the site variable (S) and Hispanic

origin (O). In addition, rather than restricting the analysis to dichotomous race variables

we will next consider the reliability of a race classification variable having five categories.

Let A denote the census response with 1 ¼ White, 2 ¼ Black, 3 ¼ API, 4 ¼ Some

Other Race, and 5 ¼ More than One (or Multiple) Race, respectively, and let B

correspond to the PES response defined analogously. The “Some Other Race” category

contains all persons who marked any single race category other than White, Black, and

API or wrote-in a single other race. The More than One or Multiple Race category contains

all persons who marked two or more race categories or one category and wrote-in one or

more other categories. API is formed by collapsing Asian, Native Hawaiian, and other

Pacific Islander categories.

The polychotomous form of Î is the so-called aggregate index of inconsistency defined

in U.S. Census Bureau (1985) as

ÎAG ¼

12
k

P
pkk

12
k

P
pk·p·k

ð25Þ
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where pkk is the observed agreement for category k and pk. p.k is the product of the marginal

probabilities of assigning category k. For the agreement model, we again assume the

population consists of two types of individuals: conclusive and inconclusive. Let pH¼2

denote the proportion of inconclusive individuals in the population, let pA¼ajH¼1 denote

the proportion of individuals in category a in the conclusive group, and let pA¼ajH¼2

denote the corresponding probability for the inconclusive group. Under these assumptions,

the agreement model is identifiable and has nine parameters since
P5

a¼1 pA¼ajH¼h ¼ 1 for

h ¼ 1; 2:

The estimate of pH¼2 under this model may be interpreted as a generalized, aggregate

index of inconsistency. Guggenmoos-Holzmann (1996) shows that with the constraints

pA¼kjH¼1 ¼ pA¼kjH¼2; for k ¼ 1; : : : ; 5; p̂H¼2 is equivalent to ÎAG in (25). However, as

noted in the discussion for the dichotomous case, the constraints are rather implausible and

not likely to hold in most survey situations. For the general model, the cell probabilities for

the interview-reinterview table are

pkk0 ¼ pH¼1pA¼kjH¼1 þ pH¼2pA¼kjH¼2pA¼k0 jH¼2; k; k 1 ¼1; : : : ; 5 ð26Þ

With the constraints pA¼ajH¼2 ¼ pA¼ajH¼1 for a ¼ 1; : : : ; 5; we have p̂H¼2 ¼ ÎAG ¼

0:776 with dissimilarity index d ¼ 0:153: Removing these constraints, pH¼2 ¼ 0:826 with

d ¼ 0:0426: Note, however, that neither model provides an adequate fit of the data.

For the latent class error model, several alternative models are feasible and can be

explored in the model selection process. One identifiable model that also appears to fit the

data well is, in hierarchical model notation, {SOX, AOX, BOX, AS, BS}. The SOX term in

the model specifies race prevalence rates across all six groups formed by crossing S and O

variables. Note that the absence of the AB-interaction implies that independent

classification error (local independence) is assumed.

Since there are 150 cells in the SOAB table and 126 parameters in the model, 24 degrees

of freedom are available to test the fit of the model. Again, the model was rejected using

the standard chi-square test criterion. However, d for the model was 0.0009, indicating a

well-fitting model.

This latent class model provides estimates of pg, uAg, uBg, fAg and fBg, where g ¼

1; : : : ; 6 denotes the site by Hispanicity groups. These estimates were then used to

estimate IAand IB, using (21). The model fit the data quite well with d ¼ 0:0017: The

results are given in Table 4.

Table 4. Reliability for the Census and PES by race and hispanicity

Race Overall Non-Hispanics Hispanics

ÎA ÎB ÎA ÎB ÎA ÎB

White 15.0 20.1 6.9 8.0 84.7 95.8
Black 14.4 9.4 3.5 6.6 94.2 33.9
API 20.0 20.1 18.2 16.4 68.1 85.3
Some Other Race 58.6 39.3 86.4 55.2 60.5 49.1
Multiple 67.1 91.7 63.0 72.8 77.1 99.1
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The equality of the terms AOX and BOX (i.e., equal error rates for the Census and the

PES) can be tested using a likelihood ratio test in which the restricted model sets the

conditional probabilities P(AjSOX) equal to P(BjSOX) and the unrestricted model removes

this restriction. The restricted model was rejected with p , 0:001 hence, the hypothesis

AOX ¼ BOX must also be rejected. This implies that IAand IB are not equal.

The largest differences between IA and IB in these tables occur for the Multiple Races

and Some Other Race categories. Note that in some cases, census inconsistency is

considerably less than PES inconsistency.

An aggregate index can be computed from the latent error model estimates in Table 4 by

noting that the aggregate index in (25) is equivalent to

ÎAG ¼
k

X
WkÎk ð27Þ

where Îk is the dichotomous index of inconsistency computed from the 2 £ 2 table with

categories k and k0 – k; Wk ¼ denomðÎkÞ=
P

j denomðÎjÞ; and denomðÎkÞ is the

denominator of the index. For the estimates of I in Table 4, the denominator of Îk is

pkð12pkÞ where pk is the proportion in category k (from (21)). Thus, the corresponding

latent class aggregate index computed from (27) is 35.3 percent for the Census and 22.3

percent for the PES. These values are considerably lower than the estimates previously

obtained under the equal error distribution assumption, illustrating the heavy reliance of

the estimates on the assumed model.

4.2. Illustration 2: Reliability of self-reported marijuana use

Biemer and Wiesen (2002) consider the case of three measurements obtained in a single

interview in an application to the National Household Survey on Drug Abuse (NHSDA).

The NHSDA is a multistage household survey designed to measure the U.S. population’s

current and previous drug use activities. Before 1999, the NHSDA was primarily a self-

administered interview using a paper and pencil questionnaire. A number of drug use

questions are repeated in the questionnaire since research has shown that some

respondents who indicate that they never used the drug when asked directly, will later

answer an indirect question about the drug in a way that implies use of it. The multiple

measurements of drug use can therefore be used to improve the accuracy of drug use

prevalence estimates. This redundancy in the questionnaire provides the basis for

constructing three remeasurements of past year marijuana use which will be used in an

LCA evaluation of these questions.

Biemer and Wiesen define three indicators of past year marijuana use (referred to as A,

B, and C) in terms of the questions asked at various points during the interview. Indicator A

is the response to the so-called recency of use (or recency) question which asks about the

length of time since marijuana or hashish was last used. Past 12-month use was coded as

“yes” for responses of “within past 30 days” or “more than 30 days but within past 12

months” and was coded “no” otherwise. The Indicator B is the response to the so-called

frequency of use (or frequency) question which asks how frequently, if ever, the

respondent has used marijuana or hashish in the past year. This indicator was coded “yes”

for any response of one or more days and was coded “no” otherwise. Indicator C is a
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composite of a number of questions on the so-called drug answer sheet that involved the

use of marijuana in the past 12 months. An affirmative response to any one of these is

coded as “yes” for C, otherwise the code is “no.”

Biemer and Wiesen analyzed three years of NHSDA data – 1994, 1995, and 1996. Their

research was primarily focused on estimating the false positive and false negative

probabilities separately for A, B, and C in order to determine the accuracy of each method.

In this section, we use these data to illustrate the three methods of estimating I described in

Section 3.3 for the case of three dichotomous measures.

It is unlikely that the assumptions of traditional analysis hold for the three measures just

described. The assumption of equal error distributions also does not seem plausible since

the three measures are based upon very different questions. The local independence

assumption is also likely to be violated since all three measurements are obtained in a

single interview and respondents may remember their earlier responses and try to respond

consistently to similar questions. These dependencies can be modeled to some extent using

latent class analysis. However, the introduction of additional terms into the model to

reflect correlated errors will result in an unidentifiable model unless some restrictions on

the model parameters are made (Hagenaars 1988).

Therefore, to achieve an identifiable locally dependent model, Biemer and Wiesen used

the Hui-Walter grouping variable technique to increase the model degrees of freedom and

then equated some parameters of models across groups to free-up enough degrees of

freedom for estimating the correlated error parameters. They represented the between trial

correlations in their models by AB, BC, and AC interaction terms in accordance with the

ideas of Hagenaars (1988). Since sufficient degrees of freedom are a necessary but not

sufficient condition for model identifiability, Biemer and Wiesen verified the

identifiability of the models using the method of Goodman (1974).

As an example, for the case of two groups, say G ¼ 1 for younger adults and G ¼ 2 for

older adults, the GAB table has a total of 2(23) or 16 cells. Denoting the conditional

classification probabilities for indicator A in group g by pajgx; we assume that

pajG¼1;X¼x ¼ pajG¼2;X¼x ¼ pajX¼x ð28Þ

i.e., the classification error probabilities for younger and older adults are equal. For a

hierarchical linear model, this is represented by setting the interaction terms GAX and GA

to 0. The analogous assumptions are made for indicators B and C as well.

To account for potential local dependence, a causal ordering of errors in the indicators

can be assumed that reflects the temporal ordering of the indicators in the interview. That

is, we assume local dependence between chronologically adjacent indicators in the

NHSDA questionnaire so that the error in B depends upon A and the error in C depends

upon B, and the error in C conditional on B is independent of A. Thus, the interaction terms

AB and BC are introduced to model the correlation and the interactions AC and ABC are

assumed to be 0.

These ideas can be extended in a number of ways. Additional grouping variables can be

added to the model which may be desirable, not only to provide additional degrees of

freedom for parameter estimation, but also to capture the heterogeneity of response errors

across various population subgroups. As the number of grouping variables in the

analysis increases, a greater range of model assumptions can be explored that reflect the
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inter-relationships between the latent variable, the indicators, and the subgroups.

However, the quantity of grouping variables was restricted to only a few to avoid problems

with model instability and over-fitting.

Biemer and Wiesen explored a number of latent class models with three grouping

variables: age (G) with two categories, race (R) with four categories, and sex (S).

Interestingly, the best-fitting model in their analysis did not include the local dependence

interaction term since it was only marginally significant. The best model was a path

model with structural term XGRS and three measurement terms corresponding to

the three indicators: AjXGRS ¼ {AX AG AR AS}; BjXGRSA ¼ {BX BG BR BS}

and CjXGRSAB ¼ {CX CG CR CS}: The reader is referred to their paper for an

interpretation of the model terms.

Biemer and Wiesen did not consider the simple response variance associated with the

three measures. However, error probability estimates from their model can be used to

estimate the index of inconsistency for each indicator using the estimator in (21). These

estimates appear in Table 5. The estimates in the columns labeled Îgen and Îtrad are

computed from the agreement model. The estimate Îgen allows the proportion of positives

for the conclusive and inconclusive domains to differ while Îtrad constrains these to be

equal using kappa-like constraints. The latter estimate may be viewed as an extension of

the traditional index of inconsistency (or Cohen’s kappa) to three measures. Gugenmoos-

Holzmann and Vonk (1998) consider a further generalization of Îgen to allow the

conclusive populations to differ for each indicator; however, those estimators are not

considered here. The last column is 12k; where k is the chance corrected agreement rate

for three indicators.

Several observations can be made from Table 5. Focusing first on the columns labeled

ÎA; ÎB; and ÎC; note that the inconsistency rates for C are considerably larger than those for

A and B, particularly in 1994. Also, the estimates of I from using the agreement model, Îgen

and Îtrad (or equivalently, 12k), are quite different from those using the latent class error

model. Interestingly the estimates using the more constrained estimate, Îtrad and 12k; tend

to agree more closely with the estimates assuming different error distributions for the three

measures.

Table 6 provides the false negative and false positive probability estimates from the

latent class model that were used to generate the estimates ÎA; ÎB; and ÎC: These estimates

provide additional information about measurement errors that is not apparent in Table 5.

For example, note that the false negative rates for measures A and C are quite large

compared to those for B. However, in Table 5, ÎA; and ÎB were quite similar across years,

Table 5. Index of inconsistency for three measures of marijuana use

(Entries are percentages)

Year ÎA ÎB ÎC Îgen Îtrad 12k

1994 8.30 9.87 41.53 11.6 22.6 26.8
1995 10.27 11.38 23.14 4.2 13.3 18.2
1996 8.30 10.30 19.74 4.9 15.0 20.6
Average 8.96 10.52 28.14 6.9 17.0 21.9
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masking the relatively high false negative probabilities for A. This occurs because, as

shown in (21), ûA is multiplied by p̂; which is approximately 0.08 for past year marijuana

use; thus, the effect of high false negative error on response inconsistency is small.

Note also from Table 6 that the false positive rate for C is very high in 1994 (viz., 4.07

percent) and then drops considerably in 1995 and 1996. This explains the very high

estimate of I for C in 1994 in Table 5. The higher estimates of both f̂C and ûC in Table 6

for all three years explain the generally higher levels of inconsistency for C in Table 5.

These results clearly illustrate the advantages estimates of error probabilities have over

estimates of variance components in data quality investigations.

Biemer and Wiesen conducted additional analyses of the NHSDA data for these three

years and discovered that the high false negative rate in measure A was the result of

infrequent marijuana users who responded falsely to the recency question (A) but

responded honestly to the frequency question (B). A possible explanation for this is that,

through B, infrequent users are able to note their limited use of the drug (e.g., once or twice

in last 12 months) rather than to code themselves simply as “users.” Further analysis of the

data provided additional support for this hypothesis. Likewise, further investigation of the

high false positive rate for measure C in 1994 led to the discovery of a questionnaire

problem that year that was repaired in the following years. Confusing question instructions

and complex question wording led many nonusers of marijuana to classify themselves as

users in 1994.

5. Discussion

When Hansen, Hurwitz, and Pritzker published their seminal work in 1964, the concept of

simple response variance was as novel as it was revolutionary. HHP explained why two

measurements of the same characteristics for the same individuals will often differ even

though nothing has changed in the population. They provided the statistical methodology

to allow statisticians to interpret these so-called gross differences so as to better understand

what they imply about the quality of survey responses and survey estimates. Their simple

statistical model extended theory of finite population sampling developed by Neyman and

other early statisticians to include both randomization theory and nonsampling error

theory. This greatly enlarged the contemporary view of the estimation process and

provided survey methodologists with a framework for estimating and evaluating

measurement errors. Their paper also emphasized the utility of measurement error

variance estimates for the purpose of controlling and minimizing errors in surveys.

In Section 2 we showed how HHP’s model for response error can be derived directly

from the formulas for two-stage cluster sampling with equal size clusters. By recasting it

Table 6. Misclassification probabilities for three measures of marijuana use

(Entries are percentages)

Year f̂A ûA f̂B ûB f̂C ûC

1994 0.03 7.29 0.73 1.17 4.07 6.60
1995 0.08 8.61 0.84 1.38 1.36 7.59
1996 0.03 7.29 0.78 0.90 1.17 5.99
Average 0.05 7.73 0.79 1.15 2.20 6.73
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as a simple application of the cluster sampling, the sometimes challenging concept of

response error modeling may be made more accessible to some students of nonsampling

error theory. In viewing individuals as “clusters” of potential survey observations, simple

response variance is analogous to within cluster variance. Its magnitude can be gauged by

the index of inconsistency, which is the ratio of simple response variance to the total

variance for a single random observation.

Since it was introduced in 1964, the index of inconsistency has been a key measure of

data quality for many years. The importance of this parameter to survey methodologists is

evidenced by the fact that no fewer than three interpretations of it exist: (a) as the

proportion of total error that is simple response variance, (b) as 12k; where k is Cohen’s

agreement rate adjusted for chance, and (c) as Guggenmoos-Holzmann’s parameter pH¼ 2,

the proportion of the population belonging to an “inconclusive” domain under the

agreement model with kappa constraints.

However, despite its importance, we have seen examples of its limitations. In the

Census Dress Rehearsal race question example, we showed how the estimates of I based

upon the parallel indicator assumptions are quite different from the latent class error model

estimate that allows error distributions to differ by survey trial. HHP discussed in detail the

consequences of the failure of the model assumptions to hold, but they did not have the

statistical machinery for dealing with the problem. Latent class analysis provides a

structure for estimating classification errors within a much broader range of survey

conditions and in situations where conditions between the original and the reinterview

surveys may differ in unknown ways. Although the basic concepts of latent class analysis

were laid out by Lazarsfeld in the 1950’s (Lazarsfeld 1950), the use of latent class analysis

for obtaining estimates of inconsistency and reliability is a fairly recent development.

Although improved estimates of I are possible using an appropriate LCA model, I is

quite limited as an indicator of data quality, and this was illustrated in the NHSDA past

year marijuana use example. In that illustration, all estimates of I failed to identify

important problems in the data – problems that were obvious when the individual

classification error probability estimates that are combined to produce ÎA; ÎB; and ÎC were

considered. Those results beg the question: “Why bother to compute an estimate of I from

classification probability estimates when the probability estimates themselves can provide

more detailed information on data quality?”

We have seen that, even when only two indicators of a latent variable are available, it is

possible to estimate the false positive and false negative probabilities using the approach

of Hui and Walter (1980). When it is not possible to find one or more grouping variables

that can satisfy the assumption of this model, the Guggenmoos-Holzmann agreement

model can often be used, which provides a more general measure of inconsistency than I.

Although the general agreement model is not identifiable with two dichotomous

indicators, it is identifiable for two trichotomous or three dichotomous indicators.

This leads to the recommendation that analysis of reliability or inconsistency should not

be limited to the traditional estimates of Î or k. There is much to be gained by exploring

latent class analysis in situations that will allow the specification of plausible identifiable

models. Further, LCA is a generalization of the traditional modeling approaches in the

sense that, when the traditional assumptions hold, LCA and traditional analysis will often

produce the same results. Guggenmoos-Hozmann’s generalized kappa index is a good
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example of this. Under certain parameter constraints, the parameter pH¼2 is equal to I;

however, removing these parameter constraints produced a more general measure of

inconsistency.

When the assumptions associated with traditional analysis do not hold, LCA may be the

only valid method for assessing the error in the original measurements. The two

illustrations clearly demonstrate that even when the repeated measurements were not

intended either to be a replicate of the original measurement or to provide a gold standard

measurement, LCA methods can be used to estimate the variance, bias, and the building

blocks of these mean squared error components – viz., classification probabilities.

For data quality investigations, perhaps the best strategy is to use multiple approaches

for assessing the magnitudes of the errors. In this regard, we recommend that the latent

variable models be used to supplement traditional approaches rather than to supplant them.
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