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The Use of Composite Estimators with Two
Stage Repeated Sample Designs

D. Holt' and T. Farver*

Abstract: The use of composite estimation
for inference from repeated survey designs
has a long history. Whilst algebraic exten-
sions have been made to take account of two
stage sampling designs, there does not
appear to have been a systematic attempt to
understand how the clustered structure of
the population affects the potential gains
from composite estimation. What are the
population structure characteristics, for
example, that would imply greater or less
potential benefits from composite esti-

1. Introduction

National statistical agencies conduct many
surveys at regular intervals to provide
estimates of the population mean or total on
each occasion (i.e., estimates of “level”).
The difference between population means
on successive occasions is also of interest
(i.e., estimates of “change’). More rarely
estimates of level for successive periods are
sometimes averaged or totalled to provide
an estimate for a longer period (e.g., four
quarterly estimates averaged to provide an
annual estimate). Whilst this latter case is
comparatively unusual for social surveys,
it is adopted for some epidemiological or
veterinary applications when estimates such
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mation than in the simple random sampling
case? A simple superpopulation model is
used to characterise a clustered population
structure over time and this is used to
explore the effect of the population structure
on the potential gains in efficiency for com-
posite estimation.
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as the incidence of new cases of a disease or
condition are required. In this case regular
surveys throughout the period of interest
are used to control for. seasonality effects.
We refer to this case as an estimate of
“average level”.

Many repeated surveys have rotating
designs in which units selected into the
surveys are retained for a fixed number of
occasions and are then discarded from the
sample. At each survey period the sample
will comprise a set of usually equal rotation
groups with some sample members included
for the first time, some for the second time
and so on.

The fact that observations on the same
unit across time are positively correlated can
lead to efficiencies for estimation and the
theoretical foundations for the design and
estimation of such surveys were developed
by Jessen (1942) and Patterson (19503. The
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original theory was developed for simple
random sampling although extensions to
two stage sampling were provided by Singh
(1968) for estimates of level, change and
average level for the special case when whole
PSU’s are either retained or renewed. Other
authors, notably Abraham, Khosta and
Kathuria (1969), Singh and Kathuria
(1969), Kathuria (1975) and Okafor (1987)
have extended the results to more general two
stage sample rotation patterns, although the
main emphasis has been on estimating the
level on each occasion. All of this work
follows the usual sample survey theoretical
framework in which estimators and proper-
ties of estimators are based on the ran-
domization distribution determined by the
sampling scheme.

The approach adopted in this paper is to
propose a simple, but plausible, super-
population model with parameters which
are readily interpretable as features of the
population structure. Within this framework
it is relatively simple to derive minimum
variance unbiased estimators for level,
change and average level and express these
in algebraic form. Under simplifying assump-
tions and without the complexity of finite
population corrections, variances of esti-
mators may also be expressed in relatively
simple form.

Our purpose is to provide a framework
in which the relative efficiencies of alterna-
tive estimators are more easily understood
and in particular to provide an insight into
those situations where the population struc-
ture may or may not have an effect on the
gains in efficiency obtained from optimal
estimation.

2. Model Framework

We assume, for simplicity, that the popu-
lation consists of N clusters each containing
M units although the formulation may be
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extended to take account of unequal cluster
sizes. We assume that on occasion ¢ the jth
member of the ith cluster takes the value y,;

Yijg = KW+ o + &y M
and that
Vie;) = o2 for all ¢, i, j;
V(a,) = o> forallti
COV(suj', 81+l,i’j’) =po, (i,j)=(,))
=0 else
Cov(oy, o, 7) = pos i =1
=0  i#T
Cov(g,, o) = 0 foralle, ¢, i, 7

and j

This is a simple, but natural extension to the
usual components of variance superpopu-
lation model for one point in time ¢ where o
and ¢ are random components for the clus-
ter and individual effects respectively and
the usual intra-cluster correlation p is given
by p = o2/(c? + o2). For this extension the
variances of the cluster and individual level
effects are each assumed to be constant over
time so that the intra-cluster correlation p is
the same for all time points z. However, the
cluster effects are correlated over time with
correlation coefficient p, and the individual
level effects are correlated over time with
correlation coefficient p,.

We note that observations on the same
unit are correlated over time since

Cov( Yy Yivry) = P20: + pios (2

and hence
(1 — p)p,.

Furthermore observations on different
units within the same cluster are also
correlated over time since

po,  J AT B)

For the case of two surveys at times ¢ and

Corr(ytij’yt+l,ij) = pp; +

COV(yn‘j’ yl+l,i,j’)
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t + 1 we define the population parameters
for level, change and average level to be
Hoprs A = Py — 1 and § = %(Hz + Werr)
respectively. In the superpopulation frame-
work these quantities are model parameters
and each may be identified with natural
finite population values.

3. Survey Design and Sample Properties

We consider a survey design in which »
PSU’s are sampled on each occasion and
from each sampled PSU a subsample of m
units is selected. From the first occasion (¢)
to the next (¢ + 1), np, sampled PSU’s are
retained (matched PSU’s) and the residual
nq, are dropped from the sample after the
first occasion and replaced at time ¢z + 1 by
a fresh sample of PSU’s (p, + q, = 1).
Within each PSU which is retained for both
occasions there is a similar rotation pattern
of second stage units with mp, being
retained for the second occasion and mg,
replaced by a new sample from within the
same PSU (p, + ¢, = 1).

The sample data from occasion ¢ may be
separated into three subgroups as follows:

Pua 18 the mean of unmatched units from

unmatched PSU’s at time ¢

P 18 the mean of unmatched units from

matched PSU’s at time ¢

Pumm 18 the mean of matched units from

matched PSU’s at time .

The sample data from occasion ¢ + 1
may be treated similarly.

It may be shown that the variance covari-
ance matrix of these six sample means is
given by

Yy =
A+ E 0 0 0 0 0
B+ D D 0 pD nD
C+D 0 pD  p D+ p,C
A+ E 0 0
B+ D D
C+D
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where the first three rows and columns
relate to the three sample means for time ¢
(in order uu, mu, mm) and the second three
rows and columns relate to time ¢t + 1 and,

o, c. o.
A = N B = s C = s
mng, mnp,q, mnp, p,
2 P
D =22 and E =22 (5
hp, nq,

Note that this pattern can be extended to
rotation patterns that span more periods
but the proportion of overlap between
PSU’s and individuals will change for each
off-diagonal block of the enlarged matrix. A
second complication would be introduced if
the correlation between times ¢ and f
diminished as |t — | became larger which
is frequently observed in many situations.
In general we consider an estimator for
some parameter 0 which is made up of a
linear combination of the six sample means

9 = "l’].}—)luu + \I’Z.}-}lmu + ql}j)lmm

+ &1k taw + P2YVer 1+ D3Pk 1mm
(6)
and hence
V@ = @i+ V) + E)

+(93 + ¥3)(B + D)
+ (43 + ) (C + D)
+2 (d295 + V\3)D
+ 2(¢; + ¢5) (W, + V3) pi D
+ 235 p, C.

In the following sections we consider the
cases of level, change and average level.

4. Estimating Level

The simplest estimator of y,,, is the sample
mean of all data collected at time ¢t + 1. In
equation (6) this corresponds to the case

v = {0} = {0,0,0} and ¢ = {¢,,
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&2, &3} = {91,192, P12} yielding the well-
known variance expression

V(5u) = =L{1+(m—1p}  ®

where 67 = 62 + o2,

The MVUE of p,,,, designated fi,,,, is
obtained for given design parameters (m, n,
p: and p,) and population structure (p, p,
and p,) by minimizing (7) subject to the
constraints £¢; = 1; Z{y, = 0.

It may be shown that the optimum values
of {¢;} and {\,} are given by

$, = BKX, y, = — BKY,

b, = CK(X — p,Y), §, = CK(p,X-Y),

‘T>1 =1- ‘132 — ¢ Yy = —(l/72 + 'pa),
)

€

where
X=A4AB+ C)+ B(C+ D + E)

Y = p DB + O)
+p,C(4 + B+ D + E)
K=U+EX-Y)X+7Y)

and V(i) may be obtained by substituting
the optimum values of {¢;} and {,} into
equation (7).

The relative efficiency of composite
estimation {V(fi,,,)/(V(,5,)} 100% may be
investigated numerically for a variety of
design parameters (m, p, and p,) and popu-
lation structure parameters (p, p, and p,).
We shall restrict the choice of design par-
ameters to those that are plausible in prac-
tice rather than those appropriate for an
optimal design. Practical and cost con-
siderations lead to designs which retain a
substantial proportion of the sample from
one occasion to the next whereas optimal
design would be achieved by a much smaller
retention.
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Nevertheless, the investigation of the
relative efficiency of [i,, , is a six dimensional
non-linear function of the design and
population structure parameters. Numerical
investigations show that of these six par-
ameters, the least important in general are
the cluster sample size m and the intra-
cluster correlation coefficient p. Thus for
simplicity, Table 1 contains the relative
efficiency of i, , for a choice of values of p,,
D, p; and p, but for the case when p = 0.05
and m = 12.

In broad terms, Table 1 shows what we
would expect: that the greatest gains in
efficiency occur when both correlations p,
and p, are high and the proportion of
retained clusters and individual units within
clusters are low. However these gains in
efficiency do depend on the population
structure (p, and p,) and design (p, and p,).
In general rotation of the clusters leads to
greater gains in efficiency than rotation of
the units within cluster. Thus p;, = 0.95,
p, = 0.67 and p, = 0.67, p, = 0.95 each
result in the same proportion of units being
retained from one occasion to the next but
the former pattern will lead to lower gains in
efficiency than the latter. This is to be
expected since the effective matched sample
size is increased by retaining the same PSU’s
taking it further away from the optimal
matched proportion. In practice of course,
this must be offset by the fact that rotation
of PSU’s may be more expensive than rota-
tion of units within PSU’s and thus for less
extreme alternatives such as p, = 0.9,
p, = 0.8 compared to p, = 0.8, p, = 0.9
the question of alternative costs for the
two designs would dominate the negligible
differences in efficiency gains.

The effects of the population structure (p,
and p,) indicates that high values of p, have
a greater effect on the efficiency gain that p,.
However it is notable that high values of p,
(the correlation between the cluster effects
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Table 1.
m = 12 and p = 0.05

409

Relative efficiency (%) of [\,,, compared to 3, , for values of p\, p,, p, and p, when

J 2 95
p, 4 6 8 9 4 6 8
P

p = 095
99 98 96
99 97 96
98 97 95
98 97 95

p = 090

98 97 95
98 96 94
97 95 93
97 95 92

py = 0.80

97 95 92
9 94 90
95 92 89
94 91 87

p = 0.67
9% 93
95 91
93 89
92 88

95
94
94
94

VRSN N

94
93
92
91

N-R-R-NEN

91
90
88
87

RSN NN

90
87
84
83

89
87
84
82

N-R-SR- NN

90
90
89
89

89
88
87
87

87
85
83
82

85
82
79
78

over time) do result in a gain in efficiency
of up to 8% even when the unit level corre-
lation p, is modest.

Table 2 contains the relative efficiency of
fi;; when p, = p, = 0.8 and m = 12 and
examines the effect of different values of the
intra-cluster correlation p.

Table 2 shows that the effect of p is small
except when p, is small (e.g., 0.4) and p, is
large (e.g., 0.9).

Table 2. Relative efficiency (%) of [i,,, for values of p, p, and p, when m = 12 and p,

Table 3 contains the relative efficiency of
fL,; when p, =p, =08, p=0.05 for
various values of p,, p, and m. It may be
seen that the effect of m is modest and once
again the largest effect is when p, is small
(e.g., 0.4) and p, is large (e.g., 0.9).

The pattern of the results in Table 1
conforms in a general way to the correspond-
ing results for simple random sampling
which in modelling terms is equivalent to a

p2 = 0.8

p 0.01 0.05 0.10 0.20

pbp, 4 6 8 9 4 6 8 9 4 6 8 9 4 6 8 9
4 96 92 8 81 97 94 90 87 97 95 92 90 97 96 94 93
.6 9 92 85 81 9% 92 8 8 95 93 90 8 95 93 92 91
8 96 91 85 80 95 91 8 83 93 91 87 85 92 90 88 87
9 96 91 84 80 94 90 85 82 92 89 8 84 90 89 86 85
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Table 3. Relative efficiency (%) of [\, for values of m, p, and p, when p = 0.05 and p,
p2 = 08

m 6 12 24 36

ppp, 4 6 8 9 4 6 8 9 4 6 8 9 4 6 88 9
4 97 93 87 84 97 94 90 87 98 95 92 90 97 95 93 92
.6 9% 92 8 83 96 92 88 8 95 93 90 8 95 93 91 89
8 95 91 85 82 95 91 8 83 93 91 87 8 93 90 88 86
.9 95 91 85 81 94 90 8 82 92 8 86 8 91 8 86 84

simplified model with no components of
variance for cluster effects.

The relative efficiency of the usual com-
posite estimator for simple random sampling
is given (e.g., Cochran 1977) by

V() 1 - gp
V(3i1) 1 - ¢p’
where ¢ is the proportion of unmatched
units and p is the correlation between
observations on the same unit on the two
occasions. If p = 0.8, for example, the
optimum value for ¢ is 0.62 (p = 0.38)
yielding a relative efficiency of 80% but with
a low proportion of retained units. For a
common design with ¢ = 0.2 (p = 0.8) and
p = 0.8 the relative efficiency is 89.5%. The
greater the retention between surveys, the
greater the difference between the actual and
optimal designs and the more modest the
efficiency gain for the composite estimator.
A corresponding case in Table 1 is given by
p = p, = 09 (matched proportion
0.81)and p = 0.05, p, = p, = 0.8 yielding
an overall correlation between observations
on the same unit of pp, + (1 — p)p, = 0.8.
The corresponding efficiency gain given in
Table 1 is 92% compared to the simple
random sampling efficiency gain of 89.5%.
The numerical results can be extended to
include lower proportions of retained units
such as p, = p, = 0.4. For brevity these
results are not presented in the tables but the
relative efficiency of i,,, is slightly higher
than for simple random sampling.

re =

(10)

In general the relative efficiency for fi,,,
with two stage sampling is higher than for
simple random sampling although there
are exceptions for some combinations of
parameters. In the main the ratio of the two
relative efficiencies is about 1.05 showing
that a smaller gain in efficiency is obtained
for two stage sampling. However the largest
differences occur when p, is small (i.e., 0.67)
and p, is large (i.e., 0.8 or 0.9) when
p =0.05 and m = 12 leading to a ratio as
high as 1.1. In the most adverse cases when
p = 0.1 or 0.2 and for large cluster sizes
m = 24 or 36 the largest observed ratio was
1.2.

Thus as a rough guide to the relative
efficiency for composite estimation used
in conjunction with a two stage sample,
the corresponding expression for simple
random sampling could be used. A simple
multiplicative factor of 1.05 would yield a
reasonable approximation to the expected
relative efficiency. This approximation will
be too low if p, is high and a large rotation
rate is used within each PSU and will be at
its worst if in addition p and/or m are
particularly large. In general efficiency gains
for composite estimation for level are
modest for both simple random sampling
and two stage sampling. The best situation
for simple random sampling is when the
retained proportion is small and the corre-
lation for observations on the same unit is
high. These are the very conditions when the
two stage population structure ameliorates
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the potential efficiency gain and so prevents
a substantial gain being achieved.

5. Estimating Change

The simplest estimator of A is A, the dif-
ference between the sample means: y,,, —
7,. This will have smaller variance than
would be achieved by two independent
samples at times ¢ and ¢ + 1 because of the
effect of the overlap across the two samples.
In equation (6) A, corresponds to the case
¢ = —V = {41, 14, piP>} and it may be

shown that
2

o 20
Va,) = m_nT(l — PiP2P2)

m(l — p,p;) }]
1 1 . 11
X[ * { 1 — pipap; P (1

The MVUE of A, designated A is obtained
by minimizing (7) subject to the constraints
Tp, =1L, 2y, = —1.

It may be shown that the optimum values
of {¢;} and {\;} are given by

2 B(A + E)
¢3 - l//3 - X— Y )
- , C(l — p))(4 + E)
¢2 - —lp2 - X — Y )
(12)
and
&)l - —lpl
4+ E)
= 1 —7_—},{3 + C(1 —pa)}-

The relative efficiency of composite esti-
mation compared to A, may be investigated
numerically for a variety of design parameters
(m, p, and p,) and population structure
parameters (p, p; and p,). We restrict the
. choice of design parameters to the same values
as were used in the previous section which
are considered to be plausible in practice.
Table 4 contains the relative efficiency of

411

A compared to A, for values of p,, p,, p, and
p, when m = 12 and p = 0.05

V(A)

— 100%.
V@) 0%

re =

(13)

We note that this represents the additional
gain in efficiency for composite estimation
after taking into account the lower variance
of A, associated with the overlap between
the sample from the two periods. The con-
sistency with analogous numerical results
for simple random sampling is maintained
in that efficiency gains are much larger for
estimating change than for level. The
general pattern and conclusions are

a. The greatest gains in efficiency are asso-
ciated with high values of p, and p,.

b. For any overall proportion of overlap,
D, the greater gains in efficiency occur
when p, is higher and p, lower. This is con-
sistent with the pattern for estimating level.

c. For given values of p, and p,, p, has a
stronger effect on the gain in efficiency,
although when p, is high, high values of p,
can have a substantial additional effect.

Table 5 contains the relative efficiency of
A compared to A, for values of p, p, and p,
when m = 12 and p, = p, = 0.8. The
effect of p is small except when p, is small
and p, is large. In this situation the effect of
p is significant. This patterns is precisely the
same as for estimating level in Table 2.

Table 6 contains the relative efficiency of
A compared to A, for values of p,, p, and m
when p, = p, = 0.8 and p = 0.05. When
p, and p, are unequal, the effect of m is much
stronger than for estimating level (Table 3).
The strongest effects occur when p, is small
and p, is large.

The pattern of results in Table 4 conforms
in a general way with the corresponding
results for simple random sampling. In this
case the relative efficiency for cemposite
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Table 4. Relative efficiency (%) of A for values of p,, p,, p, and p, when m = 12 and
p = 0.05
Ds .95 .90 .80 .67

p, 4 6 8 9 4 6 8
P

p = 0.95
98 96 91
97 94 87
9% 91 81
95 90 77

P = 0.90
97 94

9 91 82
94 87 74
92 84 68

p = 0.80
9 91
93 86
90 81
88 77

P = 0.67
94 88
91 83
87 76
84 71

87
81
71
63

94
92
89
88

87
83
77
72

-SRI N

87 82
74
62

53

92
90

84
79

(RSN NN

83 65

82
75
64
57

76
66
51
42

90 80

80
76

63
56

Lo

78
70
58
51

71
60
45
35

88 77

57
50

76
72

oo h

81
77
70
65

96
95
93
93

89
87
84
82

76
71
64
60

66
59
48
41

79
74
66
60

95
94
92
91

88
86
82
79

75
70
62
57

65
57
46
39

77
70
60
54

95
93
90
88

87
84
79
76

74
67
59
53

64
55
43
36

75
67
57
50

94
92
88
86

87
82
71
73

74
66
57
51

64
54
42
34

estimation is given by

V@A) 1—p
VA) (- pg) — pp)’

(14)

If we consider the case when p, = p,
0.8,p = 0.05and m = 12, Table 7 contains
the ratio of the relative efficiency under simple

Table 5. Relative efficiency (%) of A for
pr=p =038

random sampling compared to the relative
efficiency under the two stage model.

We note that when p, = 0.9 the relative
efficiency of composite estimation under
two stage sampling does not yield as much
of an efficiency gain as in the case of simple
random sampling (e.g., p, = 0.4, p, = 0.9,
ratio = 1.64). However when p, is high (0.9)

values of p, p, and p, when m = 12 and

p 0.01
p, 4 6 8 9 4 6 8

94
94
93
93

84
83
82
81

64
61

46
42

P
4 95
.6 93
8
9

57 36 88

68

46
37

95
91
85
81

91 84 719
68
52

39

95
90
80
71

89 87
77
76

70

62
52

63

49 ‘41
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Table 6. Relative efficiency (%) of A for values of m, p, and p, when p = 0.05 and

p=p, =08

m 6 12 24 36

p, 4 6 8 9 4 6 88 9 4 6 8 9 4 6 8 9
P1

4 95 8 70 58 95 88 77 68 95 91 83 718 95 92 86 83
6 93 8 65 50 93 84 70 59 92 8 75 68 91 86 T8 73
8 92 81 59 42 90 79 60 46 8 71 62 51 83 15 63 54
9 91 79 56 36 88 76 54 37 8 70 52 39 77 67 51 40

and p, is low (0.4, 0.6) the composite esti-
mator yields a greater efficiency gain when
used in conjunction with two stage sampling
as compared to simple random sampling.

The pattern becomes more distinct as p
and m increase. In extreme cases such as
p = 0.2 and m = 36 the ratio of the two
relative efficiencies can be as low as 0.5 when
p; is high (0.9) and p, is low (0.2). This
shows that composite estimation yields sub-
stantially greater gains in efficiency in this
case for two stage models as compared to
simple random sampling.

However when the situation is reversed
and p, is small (0.2) and p, large (0.9) the
ratio of relative efficiences can be as high as
1.7 showing that composite estimation does
not lead to as much of an efficiency gain
for two stage models compared to simple
random sampling.

In general when p, and p, are both large
(0.9) the composite estimator for two stage
sampling does not quite achieve as high an

Table 7. Ratio (x 100) of relative effi-
ciency of composite estimator under a
two stage model to that under single random
sampling

P1P2 4 .6 .8 9

4 101 106 126 164
.6 99 102 118 151
.8 96 96 105 127
.9 94 93 96 107

efficiency gain as in the case of simple
random sampling.

6. Estimating Average Level

The simplest estimator of § = L{p, + p,,}
is &, the average of the sample means:
U9,.1 + 7). In equation (6) this corre-
sponds to the case ¢ = ¥ = Hq,, p1q;
pip,} and it may be shown that

2

P c
VE) = 5 -+ pmp)

m(l + pp,) }]
1 T | . 15
XI: +{ 1 + pipops P (1)

The MVU of &, designated & is obtained by
minimizing (7) subject to the constraints

o, = Ty, = %
It may be shown that the optimal values

of {¢;} and {\,} are given by

. . _ BA+E)

Vs = & = 20X + Y)

. CU+p)d+E)

v, = ¢, = XX 1 7) (16)
‘p|=$1=%_&)2~$3-

The relative efficiency of composite
estimation compared to & may be inves-
tigated numerically for the same design
parameters (m, p, and p,) and population
structure parameters (p, p, and p,) as used
in previous sections. Table 8 contains the
relative efficiency for values of p,, p,7 pyand
p, when m = 12 and p = 0.05. The overall



414

Table 8. Relative efficiency (%) of & for values of p,, p,, p, and p, when m

= 0.05
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12 and

D> .95

p, 4 6 8 9 4 6 8
P1

p, = 095
99 99 98
99 98 98
99 98 98
99 98 97

p = 0.90
99 98
98 98
98 97
98 97

P = 0.80

98 97 96
97 96 95
97 96 94
96 95 94

p = 0.67

97 95 94
97 95 93
94 94 93
95 94 92

97
97
97
97

RN NN

97
97
96
96

96
96
96
96

NSRS

95
94
93
93

RSN NN

94
93
92
91

oo s

97
96
96
96

96
95
95
95

94
94
93
93

93
92
92
91

.80

99
98
98
98

97
97
97
97

96
96
96
96

95
95
95
95

98
98
98
98

97
97
97
97

95
95
95
95

94
94
94
94

98
98
98
98

97
97
96
96

95
95
95
95

95
94
94
94

98
98
98
97

96
96
96
96

95
95
94
94

94
94
93
93

98
98
97
96

96
96
95
95

95
94
93
93

94
93
93
92

98
97
97
96

96
96
95
95

94
94
93
93

93
93
92
92

97
97
96
95

96
95
94
94

94
93
92
92

93
92
91
91

97
97
96
96

96
95
94
94

94
93
93
92

93
92
92
91

conclusion is that composite estimation
offers little improvement over the simple
estimator. The most favourable situation is
when p, is small (.67) and p, and p, are high
but even in this case the efficiency gains are
extremely modest.

Table 9 contains the relative efficiencies
for values of p, p, and p, when m = 12 and
p, = p, = 0.8 and it is clear that p has no

Table 9. Relative efficiency (%) of & for
p=p =08

effect on the gain in efficiency. Table 10
contains the corresponding results for values
of m, p,, p, when p = 0.05 and p, = p,
0.8. The conclusion is the same: that gains in
efficiency are extremely modest.

These results are analogous to the corre-
sponding results for efficiency gains using
composite estimators in the case of simple
random sampling. In general there is even

values of p, p, and p, when m 12 and

p 0.01
p, 4 6 8 9 4 6 8

95
95
95
95

93
93

92
92

98

P
4
.6
8 97
9 95

93 91

94
93

92

98
97

97
96

96
95
94
93

95
94
93
93

98
97
96
95

97
96
95
94

97
95

94
93

96
95
94
93

96 95
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Table 10. Relative efficiency (%) of & for values of m, p, and p, when p = 0.05 and

pr=p, =038

m 6 12 24 36

p, 4 6 8 9 4 6 8 9 4 6 8 9 4 6 8 9
P1

4 98 96 94 93 98 96 95 94 98 97 96 95 98 97 96 96
6 97 95 93 92 97 96 94 93 97 96 95 94 97 96 95 95
8 97 95 93 92 97 95 93 93 96 95 94 93 96 95 94 93
9 97 95 93 92 96 95 93 92 96 95 93 93 95 94 93 93

less benefit than for the corresponding
results for estimating W, ;.

7. Discussion

In the case of simple random sampling
the efficiency gain to be achieved from com-
posite estimation when estimating p,,, for
designs that are generally used in practice is
modest unless the period to period corre-
lation p is extremely high. For two stage
sampling this general pattern is confirmed
and for most parameter combinations the
efficiency gain is smaller than in the simple
random sampling case. Nonetheless, the
role of the population structure is interest-
ing and the results reveal the separate effects
of the PSU level correlation p, and the
individual level correlation p,. Most designs
used in practice will employ a higher
matched sample than is optimal. One inter-
pretation of the results is that a positive
PSU level correlation, p,, will increase the
effectively matched proportion and so move
the design further from the optimal matched
proportion. Thus the achieved efficiency
gain in two stage sampling is not as much as
for simple random sampling.

The reverse is true for estimating change
where the efficiency gains are much greater
for both simple random sampling and two
stage sampling. However the two stage
design can lead to even greater efficiency
gains because of the increase in the effectively
matched sample proportion. The separate
effects of p, and p, are of considerable

interest and we see that high values of p, can
lead to substantial efficiency gains even
when p, is low. The values of p and m have
little effect on this situation unless p, is high
and p, is low.

As in the case of simple random sampling
the value of composite estimators when
estimating the average level is modest for
designs used in practice.

Perhaps the most interesting observation
is the modest effect that the cluster sample
size and the intra-cluster correlation have on
the relative efficiency of optimal estimation,
particularly for estimates of level.
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