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A common strategy for handling item nonresponse in survey sampling is hot deck imputation,
where each missing value is replaced with an observed response from a “similar” unit. We
discuss here the use of sampling weights in the hot deck. The naive approach is to ignore
sample weights in the creation of adjustment cells, which effectively imputes the unweighted
sample distribution of respondents in an adjustment cell, potentially causing bias. Alternative
approaches have been proposed that use weights in the imputation by incorporating them into
the probabilities of selection for each donor. We show by simulation that these weighted hot
decks do not correct for bias when the outcome is related to the sampling weight and the
response propensity. The correct approach is to use the sampling weight as a stratifying
variable alongside additional adjustment variables when forming adjustment cells.
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1. Introduction

Missing data are often a problem in large-scale surveys, arising when a sampled unit does

not respond to the entire survey (unit nonresponse) or to a particular question (item

nonresponse). We consider here imputation for item nonresponse, a common technique for

creating a complete data set that can then be analyzed with traditional analysis methods. In

particular we consider use of the hot deck, an imputation strategy in which each missing

value is replaced with an observed response from a “similar” unit (Kalton and Kasprzyk

1986). The hot deck method does not rely on model fitting for the variable to be imputed,

and thus is potentially less sensitive to model misspecification than an imputation method

based on a parametric model, such as regression imputation. It preserves the distribution of

item values, unlike mean imputation which leads to a spike of values at the respondent

mean. Additionally, only plausible values can be imputed, since values come from

observed responses in the donor pool.

The most common method of matching donor to recipient is to divide responding and

nonresponding units into imputation classes, also known as adjustment cells or donor

pools, based on variables observed for all units (Brick and Kalton 1996). To create cells,

any continuous variables are categorized before proceeding. Imputation is then carried out

by randomly picking a donor for each nonrespondent within each cell. These classes

historically have been formed a priori based on knowledge of the subject matter and

choosing variables that are associated with the missing values. In addition, variables that

are predictive of nonresponse may be used to define imputation classes.
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Once imputation has created a filled-in data set, analysis can proceed using the

sampling weights determined by the sample design. Unlike weighting for nonresponse,

where sample weights must be combined with nonresponse weights for subsequent

analysis, no adjustment to the weights is necessary. However, ignoring sample weights

effectively imputes using the unweighted sample distribution of respondents in an

adjustment cell, which may cause bias if these respondents have differing sampling

weights. In this article, we consider several ways for using the survey weights in

creating donor pools and carrying out hot deck imputation. Section 2 reviews methods

developed for incorporating sample weights into the hot deck. In Section 3 a simulation

study compares estimators of a population mean using these methods. Section 4

demonstrates these methods on data from the third National Health and Nutrition

Examination Survey (NHANES III).

2. Methods for Incorporating Sample Weights

Two approaches to selection from hot deck donor pools have been used: sequential and

random. Sequential selection first sorts all units within a donor pool and then imputes for

each missing value the closest preceding respondent value, a variant of nearest neighbor

imputation. The sort order can be random, or sorting variables can be auxiliary variables

presumed related to the item being imputed. In contrast, random selection imputes each

missing value with a random draw from the donor pool for each nonrespondent. Neither of

these methods necessarily incorporate survey design weights into donor selection.

A modification to the sequential procedure to incorporate sample weights was proposed

by Cox (1980) and called the weighted sequential hot deck (WSHD). The procedure

preserves the sorting methodology of the unweighted procedure, but allows all

respondents the chance to be a donor and uses sampling weights to restrict the number of

times a respondent value can be used for imputation. Respondents and nonrespondents are

first separated into two files and sorted (randomly, or by auxiliary variables). Sample

weights of the nonrespondents are rescaled to sum to the total of the respondent weights.

The algorithm can be thought of as aligning both these rescaled weights and the donors’

weights along a line segment, and determining which donors overlap each nonrespondent

along the line (Williams and Folsom 1981). Thus the set of donors who are eligible to

donate to a given nonrespondent is a function of the sort order, the nonrespondent’s sample

weight, and the sample weights of all the donors. The algorithm is designed so that, over

repeated imputations, the weighted mean obtained from the imputed values is equal in

expectation to the weighted mean of the respondents alone within imputation strata. If

response probability is constant within a cell then the WSHD leads to an unbiased

estimator. “Similarity” of donor to recipient is still controlled by the choice of sorting

variables.

Adjustments to the random selection method that incorporate the sample weights

include inflating the donated value by the ratio of the sample weight of the donor to

that of the recipient (Platek and Gray 1983) or selecting donors via random draw with

probability of selection proportional to the potential donor’s sample weight (Rao and

Shao 1992; Rao 1996). The former method has drawbacks, particularly in the case of

integer-valued imputed values, since the imputations may no longer be plausible values.
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The latter method does not suffer from this inconsistency problem and yields an

asymptotically unbiased estimator, assuming constant response probability within an

adjustment cell. Note that in contrast to the weighted sequential hot deck, the sample

weights of nonrespondents are not used in determining the selection probabilities of

donors. We refer to this method as the weighted random hot deck (WRHD) to

distinguish it from the weighted sequential hot deck (WSHD).

We suggest that neither WRHD nor WSHD are appropriate ways of incorporating

design weights into the hot deck. Specifically, both the WSHD and WRHD fail to

remove bias if outcome is related to the design weights and response propensity is not

constant within an adjustment cell. The correct approach is to create donor pools based

on stratification by auxiliary variables and design variables that determine the sampling

weights. The goal should be to create imputation cells that are homogeneous with

respect to both the outcome and the propensity to respond. Creating cells by cross-

classification of both auxiliary and design variables is the best way to achieve this goal,

in so far as these variables are associated with outcomes and nonresponse. With

adjustment cells created in this way, draws proportional to sample weights are

unnecessary and inefficient. One concern with this method is that if response is not

related to the design variables, excess noise is added by over-stratifying without an

accompanying bias reduction. However, simulations in Collins, Schafer, and Kam

(2001) suggest that the benefits of reduction in bias outweigh the increase in variance.

Little and Vartivarian (2003) demonstrated by simulation that when weighting for

nonresponse adjustment, computing the unweighted response rate applied within cells

defined by auxiliary and design variables was the correct approach, and that weighting

the nonresponse rates using the sampling weights does not remove bias in all cases. In

the next section we describe a simulation study which shows that a similar scenario

holds for the hot deck estimators.

3. Simulation Study

A simulation study was conducted to compare the performance of the various forms of the

hot deck under a variety of population structures and nonresponse mechanisms. We build

on the simulation in Little and Vartivarian (2003) which compared weighting estimators

for the population mean. Categorical variables were simulated to avoid distributional

assumptions such as normality.

3.1. Description of the Population

As in Little and Vartivarian (2003), a population of size 10,000 was generated on a binary

stratifier Z known for all population units, a binary adjustment variable X observed for the

sample, and a binary survey outcome Y observed only for respondents. Taking S to be the

sampling indicator and R the response indicator, the joint distribution of these variables,

say [Z, X, Y, S, R], can be factorized as follows:

½X; Z; Y; S;R� ¼ ½X; Z�½YjX; Z�½SjX; Z; Y�½RjX; Z; Y; S�

The distributions on the right side were then defined as follows:
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(a) Distribution of X and Z. The joint distribution of [X, Z ] was multinomial, with

PrðX ¼ 0; Z ¼ 0Þ ¼ 0:3, PrðX ¼ 1; Z ¼ 0Þ ¼ 0:4, PrðX ¼ 0; Z ¼ 1Þ ¼ 0:2, and

PrðX ¼ 1; Z ¼ 1Þ ¼ 0:1.

(b) Distribution of Y given X and Z. Population values of the survey variable Y were

generated according to the logistic model

logitðPrðY ¼ 1jX; ZÞÞ ¼ 0:5 þ gXðX 2 �XÞ þ gZðZ 2 �ZÞ þ gXZðX 2 �XÞðZ 2 �ZÞ

for five choices of g ¼ ðgX; gZ ; gXZÞ chosen to reflect different relationships between

Y and X and Z. These choices are displayed in Table 1 using conventional linear model

notation. For example, the additive logistic model [X þ Z ]Y sets the interaction gXZ to

zero, whereas the model [XZ ]Ysets this interaction equal to 2. The models [X ]Y and

[Z ]Y allow the outcome to depend on X only and Z only. The null model, where

outcome is independent of X and Z, is denoted [f ]Y.

(c) Distribution of S given Z, X, and Y. The sample cases were assumed to be selected

by stratified random sampling, so S is independent of X and Y given Z, that

is ½SjX; Z; Y� ¼ ½SjZ�. Two different sample sizes were evaluated. A sample of

n0 ¼ 125 was drawn from the stratum with Z ¼ 0 and size n1 ¼ 25 from the stratum

with Z ¼ 1, yielding a total sample size of 150. A larger sample of size 600 was then

obtained by sampling n0 ¼ 500 and n1 ¼ 100 from the strata with Z ¼ 0 and Z ¼ 1,

respectively.

(d) Distribution of R given Z, X, Y, and S. Since the response mechanism is assumed

ignorable and the selection was by stratified random sampling, R is independent of Y

and S given X and Z, i.e., ½RjZ;X; Y ; S� ¼ ½RjZ;X�. The latter was generated

according to the logistic model

logitðPrðR ¼ 1jX; ZÞÞ ¼ 0:5 þ bXðX 2 �XÞ þ bZðZ 2 �ZÞ þ bXZðX 2 �XÞðZ 2 �ZÞ

where b ¼ ðbX ;bZ ;bXZ Þ took the same values as g, found in Table 1. As with the

distribution of Y given X and Z, this yielded five models for the distribution of R given

X and Z. For example, [X þ Z ]R refers to an additive logistic model for R given X and

Z. This produced an average response rate over all simulations of 60%.

There were a total of 5 £ 5 ¼ 25 combinations of population structures and nonresponse

mechanisms in the simulation study and two different sample sizes. A total of 1,000

replicate populations of (X, Z, Y, S, R) were generated for each of the 25 £ 2

combinations.

Table 1. Models for Y given X, Z

gX gZ gXZ

[XZ ]Y 2 2 2
[X þ Z ]Y 2 2 0
[X ]Y 2 0 0
[Z ]Y 0 2 0
[f ]Y 0 0 0
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3.2. Estimators

A total of seven methods for estimating the population mean were employed. Four

versions of the hot deck were used to impute missing values, followed by computing the

usual sample-weighted Horvitz-Thompson estimator for the population mean. The four

hot deck methods are summarized in Table 2. All hot deck methods stratify on X, that is,

perform imputation separately for units with X ¼ 0 and X ¼ 1. The weighted hot deck

methods, wrhd(x) and wshd(x), use information in Z in determining donor probabilities, in

contrast to uhd(xz), which imputes within cells additionally defined by Z, and uhd(x),

which ignores the information in Z. We implemented the wshd(x) in both a sorted (by Z,

within adjustment cells) and unsorted form. The results were similar and we report only

the unsorted results. In addition, three weighting estimators were used to estimate the

population average without imputation, shown in Table 3. The weighting estimators

wrr(x) and urr(xz) are analogous to the hot deck methods wrhd(x) and uhd(xz),

respectively. We expected to see larger variance with the hot deck methods, but parallel

results in terms of bias. For each replicate we also calculated the complete-case estimate

using the Horvitz-Thompson estimator, with weights unadjusted for nonresponse. Finally,

for comparison purposes we calculated the before-deletion estimate using the Horvitz-

Thompson estimator, that is, before sampled units with R ¼ 0 had their Y values deleted.

This captures simulation variance in measures of bias and acts as a benchmark for

evaluating increases in root mean squared error due to nonresponse.

Empirical bias and root mean squared error (RMSE) for each method M were calculated

as follows:

EBias ¼
1

1; 000

X1;000

i¼1

ûMi 2 ui
� �

ð1Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1; 000

X1;000

i¼1

ûMi 2 ui
� �2

vuut ð2Þ

where ûMi is the estimate of the population mean using method M for the ith replicate and

ui is the full population mean for the ith replicate. Selected pairs of hot deck estimators

were compared to determine if differences in performance were statistically significant.

The average difference between a pair of estimators was calculated as

�d ¼
1

1; 000

X1;000

i¼1

jûBDi 2 û1ij2 jûBDi 2 û2ij ð3Þ

Table 2. Hot deck methods

Method Adjustment cells Draws

wrhd(x) Weighted Random Hot Deck X Proportional to
sample weight

wshd(x) Weighted Sequential Hot Deck X n/a
uhd(x) Unweighted Hot Deck X Equal probability
uhd(xz) Unweighted Hot Deck X and Z Equal probability
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where for the ith replicate ûBDi is the estimated sample mean before-deletion of cases due

to nonresponse and û1i and û2i are estimates found after imputation with the two different

hot deck methods being compared.

3.3. Results

Tables 4 and 5 display the empirical bias for all seven methods as well as the complete

case and before-deletion estimates for the smaller and larger sample sizes. Tables 6 and 7

show the percent increase in RMSE for each method over the before-deletion method

for sample sizes n ¼ 150 and n ¼ 600 respectively. Table 8 displays �dð£10; 000Þ for

the comparison of uhd(xz) with each of the other three hot deck methods for the smaller

sample size; results were similar for the larger sample size and are not shown. Differences

that are statistically significant from zero based on a t-test are asterisked

ð* ¼ p , 0:05; ** ¼ p , 0:01Þ.

As shown in Table 4, the unweighted hot deck using cells based on X and Z, uhd(xz), has

small empirical bias in all population structures. With this method, the expected outcome

and response propensity are constant within a cell, regardless of the model for Y and R, so

imputation leads to an unbiased estimate of the population mean. This is similar to the

weighting estimator that uses unweighted response rates but stratifies on both X and Z,

urr(xz), which also has low empirical bias over all populations. Not surprisingly, the hot

deck estimator that ignores Z, uhd(x), is biased for situations where Y depends on Z, since

the dependence on Z cannot be ignored. However, the weighted hot decks (wrhd(x) and

wshd(x)) do not correct the bias for all these cases. When the response propensity does not

depend on Z, both wrhd(x) and wshd(x) have low bias, since the response propensity is

constant within their adjustment cells (based on X only). If the response propensity is not

constant within adjustment cells, as in populations where R depends on Z, then wrhd(x)

and wshd(x) are biased and in fact have larger bias than the method that ignores Z, though

we believe this to be an artifact of the simulation design and cannot conclude that uhd(x)

would always outperform wrhd(x) and wshd(x) in these situations. This parallels the

performance of the weighting methods that stratify on X only (wrr(x), urr(x)), which have

similar performance with two exceptions. As noted in Little and Vartivarian (2003), wrr(x)

outperforms urr(x) where R depends on both X and Z and Y depends on X but not Z

(specifically Rows 11 and 12 of Table 4). This is not seen with the hot deck methods; all

hot deck methods have low bias for populations where the outcome Y does not depend on

Z, regardless of the model for R. When Y depends only on X, both the weighted and

unweighted respondent means are unbiased within cells defined by X. Thus the hot deck

methods are all unbiased, as over repeated imputations they impute the (weighted)

respondent mean to the nonrespondents. For the weighting methods, using unweighted

Table 3. Weighting methods

Method Adjustment cells Response rate

wrr(x) Weighted Response Rate X Weighted
urr(x) Unweighted Response Rate X Unweighted
urr(xz) Unweighted Response Rate X and Z Unweighted

Journal of Official Statistics26



Table 4. 1,000 £ (Average Empirical Bias) of 1,000 replicate samples (n ¼ 150)

Generated model for Y and R Hot deck esitimators Weighting estimators

[]Y []R wrhd(x) wshd(x) uhd(x) uhd(xz) wrr(x) urr(x) urr(xz) Complete case Before deletion

1 XZ XZ 22 22 4 24 21 17 24 66 0

2 XZ X þ Z 37 37 21 1 37 27 2 71 2

3 XZ X 22 22 213 22 22 22 21 57 0

4 XZ Z 30 28 14 21 29 27 21 21 21

5 XZ f 0 0 213 1 0 0 0 0 1

6 X þ Z XZ 37 37 10 0 37 33 1 78 2

7 X þ Z X þ Z 59 59 34 2 59 51 1 87 0

8 X þ Z X 23 23 227 21 23 22 21 59 21

9 X þ Z Z 39 41 21 1 41 39 2 33 0

10 X þ Z f 0 21 218 21 21 0 0 0 0

11 X XZ 0 1 0 1 0 26 0 65 21

12 X X þ Z 0 21 0 21 0 216 0 54 21

13 X X 1 0 21 1 0 1 0 84 0

14 X Z 21 21 21 22 21 24 21 213 1

15 X f 21 0 0 21 21 21 21 21 1

16 Z XZ 36 37 11 21 36 38 0 20 0

17 Z X þ Z 52 52 29 22 52 58 23 33 22

18 Z X 22 21 225 21 22 21 0 217 0

19 Z Z 43 41 20 22 41 42 22 44 0

20 Z f 23 24 223 23 24 23 23 23 22

21 f XZ 22 21 1 0 21 21 0 21 21

22 f X þ Z 22 23 22 23 23 23 23 22 21

23 f X 0 21 22 22 22 22 21 21 21

24 f Z 1 1 2 2 1 1 1 1 1

25 f f 4 4 4 4 4 4 4 4 2

Mean 14 14 2 21 14 12 0 30 0

Mean absolute average

empirical bias

15 15 12 2 15 15 1 33 1

Smallest absolute empirical average bias among hot deck methods shown in italics.
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Table 5. 1,000 £ (Average Empirical Bias) of 1,000 replicate samples (n ¼ 600)

Generated model for Y and R Hot deck estimators Weighting estimators

[]Y []R wrhd(x) wshd(x) uhd(x) uhd(xz) wrr(x) urr(x) urr(xz) Complete case Before deletion

1 XZ XZ 26 25 8 0 25 21 1 68 1

2 XZ X þ Z 35 35 20 0 35 25 0 68 0

3 XZ X 2 1 214 2 1 2 2 59 21

4 XZ Z 32 31 16 1 31 29 1 23 0

5 XZ f 21 21 213 0 0 0 0 0 0

6 X þ Z XZ 36 37 9 1 37 33 0 78 0

7 X þ Z X þ Z 57 58 32 0 58 49 0 86 0

8 X þ Z X 21 21 226 0 21 0 0 62 0

9 X þ Z Z 40 40 21 0 40 38 0 32 0

10 X þ Z f 0 0 218 0 0 0 0 0 21

11 X XZ 2 1 0 0 1 25 1 67 1

12 X X þ Z 0 0 0 21 0 217 21 55 0

13 X X 0 0 21 21 0 0 0 84 1

14 X Z 2 2 2 2 2 22 2 210 1

15 X f 1 1 1 1 1 1 1 1 1

16 Z XZ 37 37 11 1 37 39 1 21 0

17 Z X þ Z 56 56 31 1 56 61 2 36 1

18 Z X 21 21 225 0 21 21 0 216 0

19 Z Z 43 43 22 1 43 44 0 46 1

20 Z f 21 21 220 21 21 21 21 21 0

21 f XZ 0 0 0 0 0 0 0 0 0

22 f X þ Z 21 21 21 0 0 0 0 21 0

23 f X 1 1 1 1 1 1 1 1 0

24 f Z 0 0 0 0 0 0 0 0 0

25 f f 1 0 1 1 1 1 1 1 1

Mean 14 14 2 21 14 12 0 30 0

Mean absolute average

empirical bias

15 15 12 2 15 15 1 33 1

Smallest absolute empirical average bias among hot deck methods shown in italics.
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Table 6. Percent increase in RMSE compared to before-deletion estimate, 1,000 replicate samples (n ¼ 150)

Generated model for Y andR Hot deck estimators Weighting estimators

[]Y []R wrhd(x) wshd(x) uhd(x) uhd(xz) wrr(x) urr(x) urr(xz) Complete case

1 XZ XZ 66 56 49 53 55 53 39 108
2 XZ X þ Z 77 71 57 45 68 62 35 115
3 XZ X 60 52 59 63 48 48 48 89
4 XZ Z 55 45 37 29 45 43 22 42
5 XZ f 40 31 42 37 26 26 25 29
6 X þ Z XZ 83 78 58 49 75 71 38 139
7 X þ Z X þ Z 116 109 74 40 108 97 31 159
8 X þ Z X 57 49 67 52 47 43 43 91
9 X þ Z Z 61 60 36 26 56 53 18 49
10 X þ Z f 43 33 51 39 30 29 26 31
11 X XZ 57 48 49 47 45 50 37 107
12 X X þ Z 50 42 44 48 39 51 35 82
13 X X 53 41 47 55 39 40 44 132
14 X Z 33 28 28 26 24 26 17 34
15 X f 34 27 29 38 21 22 23 26
16 Z XZ 90 82 70 62 78 84 50 50
17 Z X þ Z 99 93 65 51 90 105 38 53
18 Z X 74 59 89 65 55 56 50 47
19 Z Z 80 73 52 39 68 70 29 74
20 Z f 50 40 68 47 35 35 32 35
21 f XZ 59 48 53 53 46 48 40 32
22 f X þ Z 47 41 46 46 39 43 34 28
23 f X 63 49 53 61 46 46 50 30
24 f Z 37 33 32 34 28 29 22 29
25 f f 43 32 38 46 29 29 30 29

Mean percent 61 53 52 46 50 50 34 65

Lowest percent increase in RMSE among hot deck methods shown in italics.
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Table 7. Percent increase, in RMSE compared to before-deletion estimate, 1,000 replicate samples (n ¼ 600)

Generated model for Y andR Hot deck estimators Weighting estimators

[]Y []R wrhd(x) wshd(x) uhd(x) uhd(xz) wrr(x) urr(x) urr(xz) Complete case

1 XZ XZ 102 91 58 53 90 78 37 259
2 XZ X þ Z 130 124 77 40 123 93 33 257
3 XZ X 65 53 73 63 52 51 48 215
4 XZ Z 105 98 55 34 96 88 23 71
5 XZ f 37 31 51 34 24 24 21 26
6 X þ Z XZ 143 138 59 50 136 122 39 312
7 X þ Z X þ Z 241 237 129 42 237 200 32 375
8 X þ Z X 71 57 112 59 53 49 44 243
9 X þ Z Z 153 149 74 30 147 137 20 113
10 X þ Z f 43 30 65 35 26 25 22 28
11 X XZ 57 44 52 46 43 49 35 256
12 X X þ Z 51 41 46 42 39 64 32 191
13 X X 60 49 54 57 47 47 47 320
14 X Z 29 26 28 24 22 22 16 37
15 X f 40 34 37 39 26 27 27 31
16 Z XZ 169 163 79 60 160 170 44 86
17 Z X þ Z 238 232 124 52 230 261 41 135
18 Z X 76 59 129 64 56 57 47 70
19 Z Z 179 178 89 45 174 178 28 186
20 Z f 54 38 93 44 34 34 29 34
21 f XZ 57 48 47 52 43 45 34 33
22 f X þ Z 57 49 49 50 45 49 37 35
23 f X 66 51 56 63 47 47 48 32
24 f Z 45 37 37 37 32 32 24 32
25 f f 40 32 38 43 26 26 26 26

Mean percent 92 84 68 46 80 79 33 136

Lowest percent increase in RMSE among hot deck methods shown in italics.
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Table 8. Pairwise comparisons of average absolute error ð �d £ 1; 000Þ of hot deck methods (n ¼ 150)

Generated model for Y and R

[]Y []R uhd(xz) and wrhd(x) uhd(xz) and wshd(x) uhd(xz) and uhd(x)

1 XZ XZ 25.2** 21.7 0.7

2 XZ X þ Z 211.2** 28.1** 22.9**

3 XZ X 20.4 3.4** 0.2

4 XZ Z 210.0** 26.5** 22.6**

5 XZ f 0.3 4.6** 22.4**

6 X þ Z XZ 212.9** 210.9** 23.2**

7 X þ Z X þ Z 231.2** 229.3** 211.9**

8 X þ Z X 22.1 0.8 27.2**

9 X þ Z Z 217.1** 216.9** 24.8**

10 X þ Z f 22.0* 3.0** 25.6**

11 X XZ 20.4 3.2** 0.6

12 X X þ Z 2.2* 5.1** 3.5**

13 X X 1.1 6.3** 2.2*

14 X Z 20.5 3.0** 0.7

15 X f 1.5 4.6** 1.2

16 Z XZ 211.6** 28.3** 23.0**

17 Z X þ Z 223.6** 221.9** 28.5**

18 Z X 25.7** 20.1 210.3**

19 Z Z 218.0** 214.8** 26.4**

20 Z f 22.7** 2.6** 27.7**

21 f XZ 21.1 4.1** 0.2

22 f X þ Z 4.3** 6.8** 3.4**

23 f X 21.2 4.3** 1.6

24 f Z 0.2 3.2** 1.7*

25 f f 0.0 4.8** 1.0

Negative value: First estimator does better.

Positive value: Second estimator does better.
* Significance at the 5 percent level.
** Significance at the 1 percent level.
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response rates as in urr(x) yields biased estimates of the response rate, and thus biased

estimates of the overall mean, and weighting the response rates as in wrr(x) corrects this

bias.

All hot deck and weighting methods perform well in terms of bias when the outcome is

independent of X and Z, regardless of the response model. Of note, in comparing the

average absolute errors, wshd(x) has statistically significantly lower empirical bias than

uhd(xz) when Y does not depend on Z, though the size of the difference is small compared

to the differences seen when uhd(xz) outperforms the weighting methods.

When missingness is independent ofX andZ, that is, missingness is completely at random

(Rubin 1976), the complete case estimator is unbiased. Nonresponse adjustment via any of

these methods is unnecessary but not harmful in almost all cases. All hot deck and weighting

methods produce unbiased estimates with one exception: the unweighted hot deck that

ignores Z, uhd(x), induces bias when the outcome is dependent on Z (populations 5, 10,

and 20). In this case the nonresponse compensation has an adverse effect and is dangerous,

demonstrating the need to condition on as much auxiliary data as is available.

A crude summary of the overall performance of the methods is the average of the percent

increase in RMSE over all populations, shown at the bottom of Tables 6 and 7. The best

overall hot deck method under both sample sizes is uhd(xz), which as expected has higher

RMSE than the best overall weighting method, urr(xz). Differences between uhd(xz) and

other hot deck methods follow similar patterns for both sample sizes but are exaggerated

with the larger sample size (n ¼ 600). The worst hot deck method is the weighted random

hot deck, with a higher overall RMSE than the sequential version. Somewhat surprisingly,

the unweighted hot deck showed lower overall RMSE than both the weighted hot decks and

two of the weighting methods (wrr(x), urr(x)). Though uhd(x) is biased in more scenarios,

the magnitude of the bias is much lower than wrhd(x), wshd(x), wrr(x), and urr(x), and this

difference drives the difference in RMSE. We reiterate that this finding is likely an artifact of

the simulation design, and in fact though the bias is smaller, uhd(x) is biased for a larger

number of populations than the weighted hot deck methods. The sequential version of the

weighted hot deck (wshd(x)) has lower RMSE than wrhd(x) in all populations for both

sample sizes, and in fact has the lowest (or in one case just slightly larger than the lowest)

RMSE among hot deck methods when Y does not depend on X or Z.

Overall, the unweighted hot deck that stratifies on both design and covariate

information is robust under all scenarios, and the expected increase in RMSE when

response does not depend on the design variable was not severe. In fact uhd(xz) had very

similar RMSE to the unweighted method that stratified on X only, uhd(x), in the ten

populations where Y did not depend on Z, demonstrating that over-stratifying at least in

this case did not lead to a notable increase in variance. Of the weighted hot deck methods,

the sequential version performed slightly better than the method using weighted draws

from the donor pools.

4. Application

The third National Health and Nutrition Examination Survey (NHANES III) was a large-

scale stratified multistage probability sample of the noninstitutionalized U.S. population

conducted during the period from 1988 to 1994 (U.S. Department of Health and Human

Journal of Official Statistics32



Services 1994). NHANES III collected data in three phases: (a) a household screening

interview, (b) a personal home interview, and (c) a physical examination at a mobile

examination center (MEC). The total number of persons screened was 39,695, with 86%

(33,994) completing the second phase interview. Of these, only 78% were examined in the

MEC. Previous imputation efforts for NHANES III focused on those individuals who had

completed the second phase; weighting adjustments are used to compensate for

nonresponse at this second stage. Since the questions asked at both the second and third

stage varied considerably by age we chose to select only adults age 20 and older who had

completed the second phase interview for the purposes of our example, leaving a sample

size of 18,825. Design variables that were fully observed for the sample included age,

gender, race, and household size.

In order to demonstrate the hot deck methods on a continuous outcome we used systolic

blood pressure measured at the MEC examination (SBP, defined as the average of three

recorded measurements). The nonresponse rate was 16%. As our stratification variable (X)

we chose a self-reported health status variable (Excellent/Very Good/Good/Fair/Poor)

from the household interview. Since only 6% of subjects reported the lowest level of

health status, the lowest two categories (Fair/Poor) were combined, leaving 4 strata. The Z

variables were the design variables: gender (2 levels), race (3 levels), age (3 levels), and

household size (3 levels). The goal was to estimate the population mean of SBP.

In order to demonstrate the effect of larger nonresponse rates we increased the

missingness as follows. First, we fit a logistic regression model on an indicator for

missingness of SBP using the entire sample (n ¼ 18; 825), using main effects for health

status and all design variables as predictors, leaving the variables age and log(household

size) as continuous. This created predicted probabilities of nonresponse mimicking the

actual propensities observed in the NHANES data and ranging from 0.05 to 0.39. The

mean probability for respondents was 0.15; in order to double the missingness to 32% we

required an additional 19% of the respondents to have missing values, so each predicted

probability was increased by 0.04. Nonresponse indicators for each respondent were then

independently drawn from a Bernoulli distribution with these predicted probabilities and

values were subsequently deleted from the sample to create a second data set.

The four different imputation strategies implemented in the simulation study were

applied to each of the two data sets. The weighted hot deck methods, wrhd(x) and wshd(x),

stratified by health status and used the sample weights to determine donor probabilities

within the donor pools. The most naive hot deck method, uhd(x), stratified by health status

and ignored the sample weights, and the fully stratified method, uhd(xz), stratified by both

health status and the design variables for a total of 215 donor cells (one cell was empty).

Complete case estimates were also calculated. In order to obtain measures of variability

and better compare estimates, imputation was via the Approximate Bayesian Bootstrap

(Rubin and Schenker 1986). Within each adjustment cell the respondent values were

resampled with replacement to form a new pool of potential donors and the imputation

method (wrhd(x), wshd(x), uhd(x), uhd(xz)) was then applied to this bootstrapped donor

pool. This method is easy to compute, and repeated applications yield proper multiple

imputations. A total of 10 multiply-imputed data sets were created for each method, the

Horvitz-Thompson estimator of the mean SBP calculated for each data set, and resulting

inference obtained using the combining rules of Rubin (1987).
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Resulting mean estimates and 95% confidence intervals are displayed in Figure 1 for

both the original 16% missingness and the induced 32% missingness. The larger level of

nonresponse showed more exaggerated differences in performance between the methods.

For both scenarios the weighted hot deck methods (wrhd(x) and wshd(x)) lead to intervals

that are close to the complete case estimates. The uhd(xz) method generates estimates that

are higher than those of the weighted methods, with the difference becoming more

exaggerated with the larger amount of nonresponse. The mean estimate for uhd(xz) is the

same across both missingness scenarios, which is comforting since the overall mean

should be the same in both cases, while both wrhd(x) and wshd(x) parallel the complete

case estimate and show a downward shift under 32% missingness. The unweighted hot

deck that ignores the weights (uhd(x)) also shows a downward shift as missingness

increases. One feature that is evident with these data that did not appear in the simulations

is the increase in variance with uhd(xz) – for the larger amount of missingness the

confidence interval for uhd(xz) is larger than that of the weighted methods, though

the difference is minimal. Though the “truth” is not available for this real data set, the

performance of uhd(xz) appears to be the most robust as it produces similar estimates

under both missingness mechanisms.

5. Conclusion

The simulation study suggests strongly that the two forms of sample-weighted hot deck

(WSHD and WRHD) do not correct for bias when the outcome is related to the sampling

weight and the response propensity, and are inferior to the method that uses the sampling

weight as a stratifying variable when forming adjustment cells. The simulation study

focused on estimating a mean and was deliberately kept simple, but it varied

systematically the key elements of the problem, namely the relationship between the

outcome and the response propensity and the sampling stratum and adjustment cell

variable. It seems to us unlikely that more complex simulations will lead to different

conclusions, although admittedly this possibility cannot be ruled out. The conclusions

Fig. 1. Estimates of mean SBP for NHANES III data, after imputation with different hot deck methods. Original

missingness was 16%; artificially increased missingness was 32%. Results from 10 multiply-imputed data sets.

cc ¼ Complete Case
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parallel similar results for weighting nonresponse adjustments in Little and Vartivarian

(2003). Weighting adjustments are a bit more efficient than the hot deck, since the latter is

effectively adding noise to the estimates to preserve distributions. However, the hot deck is

a more flexible approach to item nonresponse than weighting, and the added noise from

imputing real values from donors can be reduced by applying the hot deck repeatedly to

generate multiply-imputed data sets (Rubin 1987). Since a benefit of the hot deck is the

preservation of associations among variables, future evaluation of these methods when

estimating a second-order relation such as a correlation or regression coefficient would be

of interest. However, we conjecture that methods that condition on the design information

would outperform sample-weighted hot deck methods for these kinds of estimands, as they

do for the mean.

The main drawback to creating adjustment cells that stratify on sampling strata as well

as other covariate information is that it may lead to a large number of cells, and hence

some cells where there are no donors for a case with missing values. With an extensive set

of covariates X and Z, imputation based on the multiple regression of Y on X and Z

maintains the logic of the suggested approach while accommodating extensive sets of

covariates. Specifically, a hot deck approach is to create adjustment cells based on the

predicted means from the regression of Y on X and Z, or to generate donors for incomplete

cases based on predictive mean matching (Little 1986). For a review of recent extensions

of hot deck adjustment cell methods, including predictive mean matching, see Andridge

and Little (2008).
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