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The Utility of the Cube Root of Income

Joseph E. Schwartz!

Abstract: Social scientists, especially econo-
mists, have long thought that the distribution
of income is roughly lognormal. This belief
has justified, at least implicitly, using the stan-
dard deviation of the logarithm as a measure
of income inequality and using the logarithm
of income as a dependent variable in multivari-
ate analyses. This paper examines the full
family of power transformations with several

1. Introduction

This paper is about income and the way we
think about income. At its core lies the
assumption that the best way to study income
may be to study a transformation of it. This is
obviously not an original assumption since,
after all, economists usually analyze the loga-
rithm of income rather than income. There is
also a second assumption: that the use of alter-
native transformations has some effect on
one’s analyses and a substantial effect on the
interpretation of these analyses. Because of
this, it is important to choose an appropriate
transformation before applying the usual
multivariate methods to income data. In the
following, some of the principal criteria for
selecting a transformation are outlined and
subsequently applied in order to find the best
transformation for the analysis of income
data.
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years of American income data and finds that
the cube root — a transformation intermediate
between no transformation and the log trans-
formation — most closely approximates a
normal distribution. The cube root of income
exhibits additional statistical properties that
make it perhaps the most suitable transforma-
tion for multivariate analyses of income.

There are four principal criteria for select-
ing a transformation. The first two criteria are
derived from the basic assumptions of analy-
sis-of-variance and regression models; that
the residuals/errors of the model are indepen-
dent and identically distributed with a normal
(Gaussian) distribution having a mean of zero
and a variance of o2, i.e. N(0, %). In analysis-
of-variance this implies within-group normali-
ty — that the dependent (endogenous) variable
within each group, defined by the indepen-
dent (exogenous) variable(s), has a normal
distribution — and homogeneity of variances —
that the within-group variances are all equal
(to 0). Thus, two reasons for transforming a
variable are:

i. to increase the normality of the within-
group distributions of the dependent
variable; and

ii. to reduce the heterogeneity of the within-
group variances or to increase the homoge-
neity of variances.

The third criterion for transforming a variable

is:

iii. to increase the linearity and/or additivity of
the relationship between the dependent
and independent variables.



Non-linearity and non-additivity can frequent-
ly be treated by incorporating higher-order
polynomials or multiplicative interaction
terms for the independent variables into 6ne’s
model. However, an alternative is to seek a
transformation of one or more of the
variables, perhaps especially the dependent
variable, such that the resulting relationships
are linear and additive. Frequently such a
transformation exists and the resulting model
is more parsimonious than those with polyno-
mials or interactions. By transforming a
variable, we alter the functional form of the
relationship that is being estimated between it
and the other variables.

The final criterion for transforming a
variable is not statistical, but substantive. In
general, there is no reason why the form in

which data are collected should dictate the .

form in which they are analyzed. As Blalock
(1982) has emphasized, theory may suggest or
specify which transformation is appropriate,
usually by implying a specific functional form
for the relationship between two or more
variables. For example, since an income
elasticity is estimated by regressing the
logarithm of the demand for a good on the
logarithm of income, those who think that
elasticities are theoretically the most appropriate
tool (perhaps because they are unitless)
for describing demand curves will transform
income into its logarithm: the coefficient from
any other regression would not be an elasticity.
. The theoretical reason for estimating an
elasticity is likely to be an implicit assumption
that income elasticities are approximately
constant at different levels of income. If so,
this amounts to an assumption of linearity and
an attempt should be made to test its validity.
Thus, we may also transform a variable for:

iv. theoretical/conceptual reasons.

Both statistical criteria and theory should
guide the choice of functional forms. How-
ever, since this is not a paper on the transla-
tion of theory into mathematical equations,
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little more will be said about this criterion for
choosing a transformation except to suggest
that when the three statistical criteria strongly
support a particular transformation, the
researcher should seriously search for possible
substantive interpretations of the transformed
variable; the data may be trying to tell her
something.

Traditionally, income has either been
transformed to its logarithm or not been trans-
formed at all: the transformation which leaves
a variable untransformed is called the “ident-
ity” transformation. These are two special
cases of the one-parameter family of power
transformations:

f(x) = (Up)x" for p+#0,and

fx) =In(x) for p=0.

It is generally accepted that the log transfor-
mation (p=0) behaves better than the identity
transformation (p=1) with respect to the three
above-mentioned statistical criteria. This
paper considers the whole family of power
transformations and determines that, accord-
ing to each of the criteria, a different (inter-
mediate) transformation — the cube root
(p = 1/3) —is markedly superior to both of the
traditional transformations. For this reason,
we shall conclude that the cube root of income
is a more appropriate dependent variable for
multivariate analyses. )

The data for these analyses come from
several sources. Sections 2 and 3 use published
tables (Table 176 of the Handbook of Labour
Statistics, U.S. Department of Labor (1972))

2 Those who are unfamiliar with the practice of
treating the logarithmic transformation as the
power transformation when p equals zero might
prefer to define this family of transformations as

f(x:p) =fx”"dx.

These transformations are usually only applied to
non-negative incomes though a subset of them,
including the cube root are also appropriate for
zero incomes and even negative incomes.
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of the U.S. Current Population Survey’s
(CPS) annual family income distributions for
seven years, disaggregated by race and educa-
tion. For each year there are five levels of
education for two races, resulting in seventy
income distributions. Section 3 also uses
longitudinal microdata from the Michigan
Panel Study of Income Dynamics (PSID), while
Section 4 relies on cross-sectional data from
several sources including the PSID and the
1970 U.S. Census.

2. The Shape of the Income Distribution:
Transforming to Promote Normality

Those who study income know that its distri-
bution is positively skewed. Beyond this,
different economists have claimed that the
distribution of income conforms to one or
another family of distributional forms includ-
ing Pareto (primarily for the upper tail of the
income distribution), lognormal (occasionally
called Gibrat), and displaced lognormal®. As
their name suggests, the latter two types imply
that the income distribution is a transforma-
tion of a normal (Gaussian) distribution. The
family of displaced log transformations,
f(x) = In(x + constant), is one generalization
of the log transformation. However, the
family of power transformations is an alterna-
tive generalization that incorporates both the
log and identity transformations, the two
forms of income that are used most commonly
in multivariate analyses. Power transforma-
tions are also effective at altering the skewness
ofa distribuﬁon; the lower the power, the less
positive (or more negative) the skewness of
the transformed variable becomes. For these
reasons, we shall determine which power
transformation of income has the most normal
distribution.

3 Gibrat’s (1931) analyses were probably the first
to suggest that income has a lognormal or displaced
lognormal distribution. Metcalf (1972) provides a
useful summary of the relevant literature on the

distribution of personal income. (Also, see chapter
6 of Pen (1971) or Bronfenbrenner (1971).)

In order to find the most normal power.
transformation, one needs a measure of
deviation from normality. Since the seventy
(within race-by-education-by-year) CPS in-
come distributions are already categorized,
the x2-statistic is appropriate. For each of
several powers, we have transformed each
of the seventy income distributions and
measured its deviation from the best-fitting
normal distribution®. This yields a measure of
the non-normality of each transformation of
each income distribution.

The logic of inference does not allow one to
prove or even demonstrate the validity of the
null hypothesis that a particular power trans-
formation of income is normally distributed.
Inference only enables us to test the statistical
significance of observed deviations from the
null model. Furthermore, this statistical test is
a function of two parameters: a) the magni-
tude of the deviations of the observed probabil- .
ity distribution from the predicted; and b) the
sample size. It is clear that there exists a sample
size for which any power transformation of an
income distribution will differ significantly
from normality. It is equally clear that there
also exists a (much smaller) sample size for
which the deviations of a range of transforma-
tions, including the log and identity, from
normality would not be significant. But neither
of these facts should distract from the primary
concern of comparing the magnitude of the
deviations of alternative power transforma-
tions of the observed distributions from
a normal distribution. Therefore, the x*-
statistics have been standardized to a constant
sample size of 1 000. Fig. 1 shows how the

4 A description of the algorithms that have been
used for estimating the mean and standard devia-
tion of that Gaussian distribution which is most
similar to an empirically observed categorized
distribution is available upon request. It is possible
to minimize either the Io; likelihood ratio or
Pearson ' goodness-of-fit X“statistic. While the
reported results are based on minimizing the latter,
the difference between the alternative analyses are
minor.
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distributions of these standardized measures :

of non-normality vary by power transforma-
tion. It indicates, for example, that of the
seventy log (p=0) distributions, fifty percent
have a standardized y’-statistic less than 21,
ten percent have scores less than 7, while
another ten percent have scores greater than
30.

1t has been argued that one of the reasons
for transforming income data to the log is that
the transformed distribution is more normal.
Fig. 1 shows that while this is indeed true
(sixty-three percent of the distributions are
more normal in the log than when they are
untransformed), the cube root of income is
more normal than either the log or identity
transformations. In fact, when these three
transformations are compared, seven and
three percent of the income distributions are
most normal under the logarithmic and ident-
ity transformations respectively, while the
remaining ninety percent are most normal in
the cube root. The evidence overwhelmingly
supports the conclusion that the power trans-
formation which deviates least from normali-
ty, across seventy separate CPS income distri-
butions, is approximately the cube root.

- 3. Comparing Income Distributions: Trans-
forming to Promote Homogeneous Vari-
ances

When comparing two income distributions
(e.g., of blacks and whites) it is common to
compute either the ratio of the two medians or
the absolute difference between the medians.
The purpose of comparing two medians (or
means) is to summarize the  difference
between the distributions and not simply the
difference between a single point (albeit, the
center) of each distribution. However, unless
one distribution equals the other plus a
constant — implying that they have compara-
ble amounts of spread — the absolute differ-
ence between their medians will differ from
the absolute difference at other percentiles of

the two distributions. Similarly, unless one
distribution is a multiple of the other (in the
logs they would differ by a constant and have
equal variances), the ratio of their two
medians (related to the difference in the logs)
will differ from the ratio taken at another per-
centile. If the income distributions are not
multiples of each other, we must question
both the significance of the fact that the ratio
of the two medians is .65 and the validity of a
statement such as “Black income is about 65
percent of white income.”

To say that two distributions differ only by a
constant is equivalent, statistically, to saying
that the second and higher moments of the
two distributions are equal. But if the distribu-
tions are roughly normal, then it is the equal-
ity (homogeneity) of their variances which is
crucial, since a normal distribution is com-
pletely determined by its first two moments.
This is also the assumption that underlies
conventional significance testing in multivariate
data analysis. The most common and important
type of heteroscedasticity is the presence of a
significant relationship between the variance
and mean of the different distributions. Once
again, power transformations are often effec-
tive in reducing this type of heterogeneity.

Tukey (1970) describes a method by which
one can use the bivariate regression of the log
of the inter-quartile range on the log of the
median to approximately determine which
power transformation will minimize the
monotonic relationship between them. From
the unstandardized regression,

In(IQR) = a + b In(%),

“where IQR is the inter-quartile range and % is

the median,
the appropriate power (p) transformation is
given by,

p=1.00-b.

It is readily observed that if there is initially
no monotonic relationship between the median
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and inter-quartile range, then b will equal to be multiples of one another, then b will be
zero and the power will equal unity, the identity  unity and the power will equal zero indicating
transformation. Similarly, if distributions tend  the log transformation.
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Table 1. Unstandardized coefficients from regression of In(IQR) on lh()?) for ten income

distributions, for each year*

Year 1963 1964 1966 1967 1968 1969 1970
Regression Coefficient .589 .642 .576 .598 .656 .702 .668
Correlation .94 .96 .93 .93 .88 .90 91

* Average of regression coefficients = .633

Using this method, it is possible to examine
the heterogeneity of variances of the seventy
CPS income distributions and determine
which power transformation will reduce it.
Table 1 shows the unstandardized coefficient
which results from regressing In(IQR) on
In(£) for the ten distributions for each year,
one equation for each of the seven years.
Because each equation includes data from
only one year, the results in Table 1 are
unaffected by any changes from current to
constant dollars. The plot of all seventy
constant dollar income distributions is shown
in Fig. 2. This plot has a slope of .66 (r=.92)".
Thus, there is a strong positive relationship
between the median and IQR of income distri-
butions, but this relationship is rot simply
multiplicative. Applying Tukey’s method, we
find that the best power transformation for

5> When analyzing distributions from different
years, one faces the problem that differences
between distributions of current income are the
result of changes in the cost of living as well as
differences in real income. If, as a first approxima-
tion, changes in the cost of living reflect a constant
percentage change in the costs of all goods and
services, then these changes should have a multi-
plicative effect on the income distribution. Under
these circumstances, differences among current
income distributions from different years will be

. more multiplicative than differences between
constant income distributions and, therefore, the
slope of the log-log plot (analogous to Fig. 2)
should be somewhat nearer to 1.00. This is indeed
the case; the plot of the seventy current income
distributions has a slope of .71. Since this deviates
more from the within-year regressions of Table 1, I
conclude that income distributions should be
converted to constant dollars in order not to con-
found the differences in real income with the
multiplicative effect of inflation.

obtaining homogeneous variances should be
around .35, approximately the cube root. This
indicates that distributions of the cube root of
income (rather than raw income or log

~income) tend to differ from each other by an

additive constant and, therefore, that this
constant is probably a better one-parameter
description of the difference between two
income distributions than either the differ-
ence or ratio of medians.

Figures 3, 4, and 5 illustrate several of the
above-described features of income distribu-
tions. They show six cumulative probability
distributions: for blacks and whites in each of
three education groups for 1967. The percen-
tage (horizontal) axis is scaled in standard
deviations so that the graph will be a straight
line if the distribution is Gaussian. This type of
“probability plot” is discussed in Wilk and
Gnanadesikan (1968): if the distribution is in
fact Gaussian, then the y-intercept of the line
—the expected value of the ordinate at the 50th
percentile — is a good estimate of the mean
(and median), and its slope is an estimate of
the standard deviation. The only difference
between the three graphs is in the scale of the
income (vertical) axis, which employs a linear,
logarithmic, and cube root scale respectively.
The distributions in Fig. 3 (4) curve upward
(downward) demonstrating that the income
(log income) distribution clearly deviates
from normality by being skewed to the right
(left). When the same income distributions
are plotted with a cube root scale, the plots are
approximately linear, indicating that the
distribution of the cube root of income is
approximately Gaussian. Similarly, an exami-
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nation of the differences between any pair’ of
distributions in Fig. 3 (4), as suggested by the
solid vertical lines at the 10th, 25th, 50th,
75th, and 90th percentiles, reveals that the
difference between the two medians (50th
percentile) generally over- (under-) estimates
the difference between the distributions at the
10th and 25th percentiles, while it under-
(over-) estimates their differences at the 75th
and 90th percentiles. In contrast, Fig. 5 shows
that the difference between the medians of
two cube root income distributions is generally
about the same as (and therefore a good
summary of) the difference at other percenti-
les. This property of the cube root of income
follows not only from the fact that the graphs
are approximately linear, but more importantly
from the result that the slopes of the graphs
(estimates of the standard deviation) are

approximately equal, a reflection of the gene-
ral homogeneity of variances.

3.1. Annual Fluctuations in Income: Hetero-
geneity of Variances, Revisited

The possibility of heterogeneous variances
also occurs at the individual level because
each individual actually has a distribution of
annual incomes. However, since cross-section-,
al surveys contain only a single observation
per respondent, they cannot provide informa-
tion about individual distributions and the
problem of heterogeneoué variances remains
latent. With panel data, on the other hand, we
can study individual distributions and observe
the problem of heterogeneous variances.

A ‘brief example will illL{str_ate the issue.
Consider a hypothetical doctor with annual
incomes over three years of $79 507, $94 196,
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and $66 430 and a carpenter with corre-’

sponding incomes of $31 256, $18 610, and
$24 389%. Their average incomes are $80 045
and $24 752 respectively with standard
deviations of $13 887 and $6 331. How should
we compare the incomes of the doctor and the
carpenter? Clearly, the doctor earns more,
but how much more? To simply conclude that
the doctor earns $55 293 or $55 118 more than
the carpenter (the differences in observed
means and medians) is inadequate because
the lower portions of the two distributions are
much closer together than the higher portions.
On the other hand, it is also inaccurate to
conclude that the carpenter only earns 30.9,
30.6, or 30.7 percent as much as the doctor
(the ratio of means, geometric means, and
medians) since the ratio between the lower
portions of the carpenter’s and doctor’s distri-
butions is greater than that between the upper
portions. The difficulties in comparing the
incomes of a doctor and a carpenter are
caused by the heterogeneous variances;
doctors have a higher income variance, while
carpenters have a higher variance of In(in-
come). In this case, since by design the
variances of the cube root of their incomes are
equal, the difference in the means of the cube
roots of their incomes completely summarizes
the difference between the two individual
distributions.

Note that due to the relative behavior of
different power transformations, this summa-
ry implies, mathematically, that the lower
portions of the two income distributions will
converge while the lower portions of the log
distributions will diverge. From one perspecti-
ve, the cube root summary is simply a more
parsimonious (and perhaps precise) way of

¢ These numbers are completely artificial except
for the general difference between a typical doctor
and carpenter. Specifically, they were rigidly
created to be 1, 0, and -1 standard deviations from
the means of two normal cube root distributions;
N(43,2.5) for the doctor and N(29, 2.5) for the car-
penter.
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describing the differences between the two
hypothetical distributions.

This discussion can be translated into
an analysis of variance framework. Here,
individual i’s annual income for year ¢ is
expressed as: Y,; = Y; + e,;, where the e, are
assumed to be independent and normally
distributed N(0, 6%). Conceptually, this sepa-
rates the stable component (Y;) from the
transitory component (e,;) of annual income.
As the example of the doctor and the carpenter
shows, it is difficult to compare different
individuals’ income distributions if the variances
of the transitory component (0?) are hetero-
geneous’. Heterogeneous o? also imply that
the “reliability” of annual income as an esti-
mate of the stable component of income varies
across individuals or, equivalently, that individ-
uals experience different amounts of uncer-
tainty/risk in the determination of their income.

Comparisons between individuals are facili-
tated both conceptually and statistically if the
o? are homogeneous. Most importantly, the
amount of observed annual fluctuation, s?,
should be independent of the stable compo-
nent of income, Y;. The actual relationship

“between the s;and ¥; can be examined empiri-

cally.

Appropriate data for this purpose are con-
tained in the Panel Study of Income Dynamics
conducted by the Institute for Social Research
(1972) at the University of Michigan, Ann
Arbor, USA. The present analysis was restrict-
ed to male, non-student heads-of-households
aged 25-65 in 1972 who reported positive
annual earnings (measured in constant 1967
dollars) for each of the five previous years.

7 Permanent attributes of the individual cannot,
by definition, explain or predict the transitory
component of income. However, non-permanent
attributes can interact with permanent attributes to’
affect the transitory component. Though not
discussed in this paper, the same issue of hetero-
scedasticity arises for the recent and more sophisti-
cated structural equation models (e.g., with auto-
correlated/lagged transitory components) of
income dynamics.
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The average and standard deviations of the
heads’ annual earnings were computed for
each of the approximately 2 000 cases satis-
fying the above criteria.

The method for investigating the homoge-
neity of individual variances is the same as
above except that this time the data are
disaggregated into individuals’ income distri-
butions rather than into race-by-education-
by-year distributions. Analogous to the
earlier analysis, the logarithm of the standard
deviation of annual fluctuations was regressed
on the logarithm of the mean. The resulting
equation from the Panel Study is:

In(s) = .4592 + .6696 In(Y) (r = .7048),

indicating that Y and s are far from indepen-
dent. The correlation of .70, despite being
attenuated because the observed Y and s are
unreliable estimates (since they depend on
only five observations per individual) of each
individual’s underlying distribution of annual
income, is quite high for analyses at the
individual level. The power transformation of
annual income for which an individual’s
average would not be related to the size of his
annual fluctuations about this average is once
again the cube root (i.e., 1.0 - .67 = .33). Itis
interesting to observe that applying this same

15

analysis to the logarithm of income, one
observes a substantial negative correlation
between individuals’ mean log income and the
standard deviation of the annual fluctuations

“about the mean log; poorer people have higher

proportional fluctuations around the stable
component of their income than richer peo-
ple.

While the focus of the discussion has been
on the desirability of separating the stable and
transitory components of income, social scien-
tists are also interested in the behavioral,
social, and psychological effects of different
amounts of fluctuation. In economics this is a
problem in uncertainty or risk theory. Those
studying this problem presumably want a
measure of this fluctuation or risk -which is
independent of the average level of income.
Our analysis suggests that the standard devia-
tion of the transitory component of the cube
root of income would be suitable.

The variances of the stable and transitory
components of income can be estimated by
applying the standard analysis-of-variance
model to the cube root of income. The results
are summarized in Table 2. The analysis
allows for between-year changes in average
real cube root income (across all individuals).
While the variance attributable to differences
between years is significant, it accounts for a

Table 2.  Summary table for analysis of variance of the cube root of annual income over five

years for male heads in PSID

Source of Variation D.F. SS MS E(MS)
Persons 1982 128 970 65.069 505+ 0°
Years 4 184 46.110
Persons x Yeafs 7 928 20 226 2.551 o
Years + (PxY) 7 932 20 411 2.573 (c? assuming no be-
. tween-year variance)
Persons + (Px Y) 9910 149 196 15.055 (average within-year
variance)
Total 9914 149 380 15.067
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trivial amount of the total variance. Allowing
for differences between years, the persons-by-
years mean-square (2.55) is an estimate of the
variance of the annual fluctuation about each
individual’s average cube root income. Using
the expectation of the mean-square for
persons, the variance of the stable component
of cube root earnings is estimated to be:

0 = (MS, - MSpy) | 5 = 12.50.

Since the best estimate of the total variance
for a given year is 15.06 (the mean-square for
persons-within-years), the stable component
of cube root income accounts for 83 percent of
the total variance in a given year, while the
transitory component accounts for the remain-
ing 17 percent. Thus, the maximum percen-
tage of the annual variance that one could
possibly “explain” (R?), using only permanent
attributes of the individual, is 83 percent.

Thus far we have tried to justify the decision
to transform income data for the purpose of
increasing both the normality of the within-
group distributions and the homogeneity of
their variances at both the individual and
group levels. The substantive justification for
transforming has been that comparisons of
differences among distributions become more
meaningful and interpretable. The statistical
justification has been that the common multi-
variate statistical methods, such as analysis of
variance and regression, assume that the dis-
aggregated distributions of data are normal
and have homogeneous variances. (The
maximum-likelihood techniques which are
being increasingly used in econometrics are
especially sensitive to departures from these
assumptions.) For income, the cube root
transformation satisfies these assumptions
considerably better than either the logarith-
mic or identity transformations.
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4. The Functional Form of the Relationship
Between Income and Its Determinants

The third statistical reason for transforming
one’s data is to promote linearity and/or addi-
tivity in the relationship between the endoge-
nous and exogenous variables. The most
parsimonious models are those in which the
endogenous variable is an additive (without
interactions), linear function of the exogenous
variables. The two statistical criteria for com-
paring alternative functional forms are their
relative parsimony and some measure of their
relative goodness-of-fit to the data. Once
again, there is evidence that the cube root of
income makes a better dependent variable, in
this respect, than other power transforma-
tions of income. Since the evidence has been
published elsewhere, the results will only be
summarized here.

Although they did not argue specifically
for the cube root transformation, the best
evidence appears in Heckman and Polachek
(1974). In their article they use- maximum-
likelihood techniques developed by Box and
Cox (1964) and Box and Tidwell (1962) “to
determine the empirical functional relationship
between earnings and schooling” for three
separate sets of data. Unfortunately, they
conclude that, “the natural logarithm of
earnings is statistically preferable to any other
simple dependent variable (p. 350).” They
apparently assume that only the log and
identity transformations are “simple.” In the
body of their paper they present four graphs
showing how the log-likelihood statistic (a
measure of fit) varies for different power
transformations (of income) ranging between
the identity (p = 1) and the reciprocal (p = -1).
While their graphs do_show that using the
logarithm of earnings as the dependent variable

.results in a better fitting model than using

untransformed earnings, they also show that
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the cube root of earnings yields a better fitting
model than the logarithm. (According to their
graphs, the power transformations at which
the four plots show the maximum goodness-
of-fit are .40, .22, .43, and .33. The cube root
is a good summary of this range, especially
since the graphs are relatively flat around their
maxima.) In fact, three of their graphs show
that the improvement of the cube root over
the log is greater than the improvement of the
log over the untransformed earnings variable.

The analyses of Schwartz and Williams
(1979) on the functional form of the relation-
ship between earnings, education, and race
are not as sophisticated as those of Heckman
and Polachek. Schwartz and Williams com-
pare OLS regression equations predicting
earnings, the natural logarithm of earnings,
and the cube root of earnings for each of three
surveys. They also conclude that the cube root
of earnings makes the best dependent
variable. A large number of additional
comparisons among equations predicting
these three earnings variables appear in
Tables A2.2 through A2.12 of Jencks et al.
(1979) and they generally support this conclu-
sion. Schwartz and Williams also discuss the
effects of the three transformations on the
resulting regression coefficients and the likely
impact of these effects on the substantive
conclusions that are drawn regarding black/
white differences in the returns to education
and work experience.

5. The Substantive Implications of Transfor-
ming Income: A Brief Example

Previous sections have described reasons why
one should want to transform a variable and
some methods for selecting an appropriate
transformation. Despite several statements to
the contrary, the reader may have reached the
conclusion that the issue of whether or not to
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transform a variable is based on narrow statis-
tical criteria and is of little practical or
substantive importance. This final section
provides a brief example of how the transfor-
mation one uses can and does affect the con-
clusions that will be reached.

Consider an obvious policy-related question:
“Did the difference between black and white
incomes decrease between 1963 and 1970,
during the height of the civil rights movement
and the war on poverty?” Table 3 shows the
median family incomes (aggregated across
education) for blacks and whites for each of
these years. The average change per year in
the median white income is $595 while the
average change for blacks is $474. The abso-
lute difference between black and white
median incomes was therefore increasing at
the average rate of $121 per year. If this is the
“right” way to think about income, one must
conclude that blacks will never have incomes
equal to whites as long as this pattern continues.

Table3. Median Income of Blacks and Whites,
by Year, in Dollars

Year Blacks Whites
1963 3 465 6 548
1964 3839 6 858
1966 4 628 7722
1967 5232 8 471
1968 5 684 9179
1969 6 340 10 089
1970 6 692 10 545

What happens when the data are trans-
formed into logarithms? Over this eight-year
period, white median and black median log
incomes increased at the rate of .0715 and
.0967 log-dollars per year respectively. Trans-
lated into ratios, these imply rates of increase
of 7.4 and 10.2 percent per year. Now one sees
that the difference between black and white
median log income was decreasing an average
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of .0252 log-dollars, or 2.6 percent, per year.
According to this model one would predict
that blacks and whites will have the same
median income by 1987, a prediction that no
longer seems likely to be born out.

When the data are transformed to the cube
root, the same type of analysis can be per-
formed. The median cube root of income
increased an average of .482 cube-root-dollars
per year for whites and .546 cube-root-dollars
per year for blacks. The difference between
blacks and whites (3.085 cube-root-dollars in
1970) was decreasing at the average rate of
.064 cabe-root-dollars per year. At this rate,
black median income would equal white
median income in the year 2017. This simple
example illustrates that the transformation
one uses to analyze data can substantially
affect one’s projections as to how quickly (if at
all) the black and white income distributions
will converge.

6. Summary

Statistical theory tells us that there are three
‘primary reasons for transforming a variable
before subjecting it to multivariate analyses:
(1) to make the within-group distributions
more normal; (2) to reduce the heterogeneity
of within-group variances; and (3) to alter the
functional form of its relationship with other
variables in order to increase additivity, linear-
ity, and/or goodness-of-fit. While the loga-
rithm of income, the form most frequently
analyzed by economists, is preferable from
each of these perspectives to the untransformed
income variable, the present analyses demon-
strate that across a fairly broad range of
American data covering the period 1963-1975,
the optimal power transformation is very close
to the cube root. Future work should investi-
gate whether these results can be generalized
to other countries and other time periods.

~ As mentioned in the introduction, there
is no logical basis for assuming that a single

transformation will optimally satisfy each of

Journal of Official Statistics

the statistical criteria for transforming a vari-
able. However, having found this to be the
case, it is important to consider what the
substantive significance of the cube root of
income might be. Analysis of independent
psychometric data (to be reported in another
paper) suggests that the cube root of income
is linearly related to the American public’s
general conception of the utility of income,
making it theoretically, as well as statistically,
a desirable variable.
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